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Abstract

This paper describes a probabilistic method of inferring the position of a point with respect to a reference point
knowing their relative spatial position to a third point. We address this problem in the case of incomplete information
where only the angular spatial relationships are known. The use of probabilistic representations allows us to model prior
knowledge. We derive exact formulae expressing the conditional probability of the position given the two known angles,
in typical cases: uniform or Gaussian random prior distributions within rectangular or circular regions. This result is
illustrated with respect to two different simulations: the first is devoted to the localization of a mobile phone using only
angular relationships, the second, to geo-positioning within a city. This last example uses angular relationships and

some additional knowledge about the position.
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I. INTRODUCTION

Human beings have the amazing capability of being able to find their way using very incomplete

references. For instance, when visiting a city, one may find without (too much) difficulty the small
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souvenir shop “in the direction of the cathedral” and “on the left when walking towards the sea”.
Such an ability may be called “spatial reasoning”. Indeed spatial reasoning consists in representing
knowledge concerning spatial entities and spatial relationships and reasoning on them. It is different
from classical geometrical reasoning which, for instance, allows the third side of a triangle, of which
two sides and an angle are known, to be calculated. To address the common tourist problem presented
above, our reasoning is made up of several deductions derived under uncertainty and incomplete
information.

In the first instance, the pieces of information are not accurate. “On the left of” and “in the
direction of” are instances of information which have no exact value. They convey a rather loose
meaning which may be interpreted in different ways depending on the context [1]. These elements
carry the “uncertainty” aspect of the spatial information dealt with in spatial reasoning.

Furthermore, no piece of information is complete enough to solve the reasoning problem at hand
entirely. Each one provides a degenerated solution (to a localization problem for instance), where
a large part of space is acceptable. This constitutes the “incomplete” aspect of spatial information.
We expect that combining these pieces of information will somewhat reduce the level of uncertainty.
But how can we combine such elements which do not share any common reference and can hardly be
projected in a consistent framework? This is the objective of this paper which primarily addresses the
“incompleteness” of spatial information, more than its “uncertainty”.

In Section II, we present previous work devoted to reasoning with spatial information. We first
present a brief overview of the literature dealing with uncertainty reduction and information com-
pounding. We subsequently deal with spatial knowledge representation with emphasis on the two
aspects of quantitative and qualitative representations. The problem we are trying to solve is precisely
stated and formalized in Section III. In particular, we detail the cases where we have reduced prior

information and we assume that points are uniformly distributed in a bounded space (circle or rectan-
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gle) in Section IV, or follow a Gaussian distribution in Section V according to some prior information.
Inference is then performed in a Bayesian framework (Section VI). Two illustrative examples are
described in Section VII, one dealing with small objects such as in the case of localization of mobile

phones, and one addressing the problem of georeferencing in a city.

I[I. RELATED WORK
A. Spatial reasoning under uncertainty and compounding for position estimation

Although uncertainty management is not the primary goal of this paper, it is worth mentioning
the attempts at dealing with uncertainty on positioning and combining uncertain measurements on
relative position. Indeed, a large body of literature addresses this problem, in particular in the robotics
community. Mobile robotics is a typical domain where uncertainty degrades the robot’s knowledge
about the geometry of its environment [2], [3], [4].

Since the early work based on error modeled as Gaussian distributions or covariance matrices (see
e.g. [5], [6]), and on the notion of occupancy grid [7] and position probability grid [8], several solu-
tions have been proposed in order to take into account successive relative position estimates. In [4],
stochastic maps are built under complete but uncertain spatial information. A stochastic map consists
of two features: the first represents spatial relationships (distance and angle) reflecting the spatial
location of object with respect to the world reference frame, and the second is an associated covariance
matrix which models the uncertainty of each location. Using an algebraic composition of approximate
estimates, the authors propose a procedure to build this map, extract information from it, and update
it incrementally as new information (a new object or a new constraint) is obtained. Successive sensor
measurements lead to uncertainty reduction. In this work the distance information plays an important
role. Other approaches assume a known environment, or a model of it. Positioning is then achieved by

matching estimates from measurements and the model. Active sensing allows a position probability



grid to be updated, for instance using Markovian error estimation [9]. Other methods use Kalman
filters to track observed beacons and match them with a prior map of their location [10], or geometric
reasoning with complex numbers in order to solve the triangulation problem with respect to noisy data
and matching with the environment map [11].

Note that in several of these robotics problems, incompleteness of information is not the central
issue. Incomplete measures are often obtained for instance when localizing is performed only with
respect to the directions of landmarks. But under these constraints, several landmarks are usually
combined to provide an estimate of the sensor position.

An interesting issue is addressed in [12]: the authors propose a linear programming technique able
to efficiently solve one part of the problem we propose, namely the determination of the admissible
domain of localization. The position is bounded by some angular sector and range limits, which define
constraints on the possible set of positions. Several such constraints in multi-robot applications are
combined and lead to a polytope. We will make use of some of these results. In case of incomplete
information, for instance when only angular information is available, we can extend this work by
considering the uncertainty domain as an angular sector, infinite in range.

A dual problem was addressed in [13] for mobile communication optimization where the range of
information is bounded but no information is available on angular positions. This is obtained by
exploiting the connectivity of the network which imposes constraints on node proximity. The problem
is expressed in terms of linear matrix inequalities and solved by convex optimization. Furthermore,
because it only focuses on the solution domain, the method reaches its limits in case of loose constraints
(i.e. important incompleteness). In this case, it provides one possible solution but does not guarantee
that the most likely ones are exhibited. As mentioned by the authors, angular information has to be

introduced to achieve a better degree of convergence.



B. Further approaches in spatial knowledge representation and spatial reasoning

Several other scientific communities have addressed the problem of spatial knowledge representation.
Two main classes of methods can be distinguished. The first consists of qualitative representations
and are usually based on formal logics [14], [15]. Typically, spatial entities are elements of language or
propositional terms, while relationships are expressed as operators, modalities, etc. (see e.g. [14] for a
survey). The second class consists of (semi-)quantitative approaches and are often based on fuzzy set
or probability theories. While qualitative methods are most often applied to geographic information
systems (GIS) and natural language processing, quantitative approaches are mostly found in image
processing, computer vision, and robotics.

As far as directional relations are concerned, qualitative representations are less developed than
topological relationships. Cardinal directions (i.e. North, South, East, West) are used in [16]. Other
approaches are inspired by the temporal interval representations [17], and one of the most used repre-
sentations (in particular in GIS) is 2D strings [18] which use relations between the projections of the
considered objects on two orthogonal axes and interval-based representations on each axis. Finally,
we mention the approach in [19] which represents the relative position of a point with respect to two
other points as a 5 X 3 matrix based on a subdivision of the space into six sectors related to the two
reference points.

Quantitative representations of directional relations are more developed and try to define how ex-
pressions such as “to the left of” can be quantified. The ambiguity of such relations lead to fuzzy
representations, already suggested in [20]. Most existing methods for defining fuzzy relative spatial
positions rely on angular measurements between points of the two objects of interest [21], [22], and
concern 2D objects. A fuzzy relationship is defined as a fuzzy set, and the correspondence between the

relationship and the angle measurements is then evaluated. A method based on linear cross-sections
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of the objects instead of just points has been developed in [23]. Finally, methods based on whole
objects have been proposed, based either on learning from human evaluation [24], on projections of
the objects [25], or on a morphological approach [26]. A detailed comparison of these approaches can
be found in [27]. Besides these knowledge representation approaches, probabilistic models have been
largely developed, as described in Section II-A.

While the problem of inference and reasoning about spatial relations [28] has been widely addressed
in logical and qualitative representations, where the strong apparatus of formal logic is very useful,
there has been less development when quantitative representations are used. Some geometric reasoning
approaches in a probabilistic framework or on linear constraints have been developed, as described
above, as well as methods based on fuzzy logic (see e.g. [29]). Detailing these methods is beyond the
scope of this paper.

A large source of inspiration for knowledge representation and reasoning is found in the literature
on linguistics and cognitive science (see e.g. [1]). Interestingly enough, spatial language is rather
nonmetric (or metric information is digitized in a very rough way) but intensively uses directions,
mainly three coordinate axes [30]. This advocates reasoning processes based on linguistic descriptions
of a scene or a situation where distance plays almost no role. A remarkable feature of linguistic

expressions is that representation and communication are then achieved without using numbers.

C. Qutline of the proposed approach

In this paper, we use a quantitative representation of spatial uncertain information based on prob-
abilities, and propose a contribution to spatial reasoning and inference under incomplete information.
More specifically we model the inference of the relations between two points from knowledge about
the relations (angular position) of each of these points to a third point.

As in [12], we first compute the admissible domain. The main difference with respect to this work



is that, instead of only considering the acceptability domain as a binary set, we compute a probability
distribution on this domain. When no prior information is available on the objects, we use uniform
or Gaussian prior distributions, which allows us to derive analytical expressions of the distributions.
If prior information is available, it is modeled as specific distributions, which do not always lead to
analytical solutions, but to numerical ones, as shown in our second example.

In summary, the main contribution of this paper is to show how complex spatial reasoning activities
can be performed based on incomplete information (only angular information, no model or map) in
a probabilistic framework, and derive formal expressions in case of simple prior distributions. We
illustrate the method on two examples, one with prior uniform distribution, and the second showing

how more complex information can be incorporated.

III. PROBLEM STATEMENT AND PROBABILISTIC FORMULATION

We consider the problem of localization where points are only known through the direction where
they are with respect to a reference point, and not through their distance to this point. More precisely,
we address the simplest problem which may be stated as':

Problem 1: Let C' be an unknown point. Let C be in the direction [ from a point B, this point B
being itself in the direction o with respect to a reference point A. What can we say about the position
of point C' with respect to A?

We will demonstrate that, under rather loose assumptions, by assuming the statistical distribution
of the unknown points, we may derive the exact distribution function of point C' and propose good
estimates of its relative positioning with respect to A. Statistical distributions of the unknown points
reflect the prior knowledge of the exact spatial position of these points. If no prior knowledge is

available, the weakest assumption is made and we use a uniform distribution, which is the least

' Directions in the 2D space are defined by the angle with respect to the horizontal axis.



committed distribution, derived from maximum entropy considerations [31], in the solution space.
We first introduce some notations. We choose, without loss of generality, point A as the origin of
the Cartesian plane limited to some region (disk or square in the following). Any point M may be
represented by its Cartesian coordinates z,; and y,s, or by its polar coordinates 7, and 6,,. As a
convention, rys is a positive number and 6, belongs to [—m, w[. The notation [z + dz]| denotes the
interval [z — dz,z + dz].
We consider that points M are distributed in the image according to a random distribution f,(r, 6):

o P(Miry€lr+dr/2), 6y € [0+ do/2)
Ju(r,0) = d71;9113>0 rdrdf

. (1)

We will need in the sequel that fj; be an almost everywhere continuous function of the two variables
r and 6.

Figure 1 represents the configuration expressed in Problem 1.

da

a

Fig. 1. Problem 1 may be stated as: “Where is point C' with respect to A, knowing that it is in direction 8 with respect

to an unknown point B, itself in direction a with respect to A?”.

We are interested in the probability P(C, «, §) which expresses the probability distribution of point

C and the two angles o and 3. According to Figure 2, this probability is equal to:

P(C,a,p) = P(C) /P(B)dB, (2)

P

where ¥ = Sy 4 N Scr_p, and S and S —g are the two angular sectors described in Figure 2.



ap

Fig. 2. Every point B in the dashed area fulfills the two conditions to be in direction « with respect to point A (sector

S4,o) and to have point C in direction S (sector Sc,r—g) within the respective tolerances + da/2,+ dS/2.

The domain Y is limited by four lines with equations:

. sin[f, — (B — 7 £ dB/2)]
“sin[lf — (B — 7+ dB/2)]

0 = a+tda/2 (4)

This domain is empty if 6. & [a, §]. The probability P(C, «, ) is equal to 0 for 6, & [«, 5]

Denoting by g¢,¢(¢) the function of R — R:

_ Tsin[ec — (¢ — m)]
il =g (o~ ®

Equation 2 becomes:

P(C, «, 5) = fC’(Tca 06) X
atda/2  [gr.6,(B+dB/2)
/ (T‘b, Qb)rbdrbdﬁb (6)

lim
dadf—0 dozdﬁ a—da/2 Jg,.q,(B—dB/2)
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If the function fpz is continuous, some computation leads to:

P(C,a,p) =

/

92 2 cos(a—p)—cos(a+5—20.)
e 3sin(a—pf)—sin(3a—3p)

X

fo(re,0e) fo(reame=d,a) ifa <6, <8

3 (7)

0 otherwise.
\

This probability distribution (Equation 7) holds for any continuous distribution of points B in the

plane which represents the prior knowledge of the spatial position of this point.

IV. SOLUTION IN THE CASE OF A UNIFORM DISTRIBUTION

We consider here the case of a uniform distribution. We first express P(C, a, () for this distribution,
from which we derive P(«, 8). Finally, we compute P(C|a, §) and P(v|«, 8) from which inference will
be performed (see Section VI).

This case can be considered as the reference case when no information is available on fp and f¢ in

Equation 7.

A. Uniform distribution in a circular region

Let us now assume that the points B and C' have a uniform distribution in a circular region of radius

R and origin A, i.e.:

L =K ifr<R
fC(T:H):fB(Tao):f(rae): (8)

0 otherwise.
Then Equation 7 becomes:

os(a — ) — cos(a+ B — 26,)
3sin(a — B) —sin(3a — 36)

P(C,a, B) = 2r2K*S
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Figure 3 illustrates this distribution for « = § and g = %’r, and Figure 4 for « = ¥ and § = 7.
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Fig. 3. P(C,a,p) for a = % and 3 = 2?” Note that the displayed distribution is normalized so that the integral of

P(C,a,B) sums up to P(a, ) (in this example, P(a = %, 8 = 2F) = 0.0127, see Equation 11).
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Fig. 4. P(C,a,p) fora =% and f=n (P(a = %,8 = m) = 0.0586, see Equation 12).

The probability P(C, «, ) has to be computed in an angular sector of radius R, thus limiting its
support to a region D, 3. This region corresponds to the area covered by the angular sector Spg of
origin B, angle § and aperture df when B belongs to the angular sector S, (with origin A, angle «
and aperture da). This region can have two different shapes depending on § — « (see Figure 5):

o if (8 — ) €]2km, /2 + 2kn], then D, g is a complete angular sector;
o if (B—a) €|n/2+2kn, (2k+1)7[, then D, g consists of a complete angular sector (for § € [20—a—m, 3])
and a triangle (for 0 € [, 25 — a — 7]).

« The case where (5 — «) €](2k + 1), 2(k + 1)7] is symmetric with respect to the two first ones.
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These different cases are illustrated in Figure 5, and represent the polytope solution of spatial

constraints proposed by Spletzer and Taylor [12] in the case of unknown distance.

(a) (b) (c) (d)

Fig. 5. Definition of the domain D, g and its two possible shapes.

We can now derive an expression for P(q, ):

f%a,ﬁ):tz; P(C,a, B)dC, (10)

which leads to two different expressions depending on the shape of D, g. In the first case (complete

angular sector), we get:

(a — B) cos(a — ) — sin(a — S3)
27r2(sin(3a —38) — 3sin(a — 5)) ’

P, B) = (11)

while in the second case (complete angular sector plus triangle), we get:

Plo, B) =
5sin(a — ) + sin(3a — 38) — 3sin(ba — 58) + sin(7a — 70)
872(10sin(a — B) — 5sin(3a — 38) + sin(5a — 50))
2(8— a—m)cos(a— B) —sin(a — B) + sin(3a — 38)
472 (sin(3a — 38) — 3sin(a — B))

+ (12)

We note that the probability P(c«, ) is normalized so that:

A%A%Pmﬁme:L (13)
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The conditional probability P(Cla, 3) is expressed as:

2 cos(a—pf)—cos(a+B—26c) -
Klrc 3sin(a—pB)—sin(3a—3p3) if C e Da,ﬁ,

P(Cla, B) = (14)

0 otherwise,

where:
_ 2K?
P(a, B)’

K

which takes two different expressions depending on the value of g — a.
If we want now to assess the spatial relations between C' and A, we need to compute the probability

of angle v (between A and C) conditionally to o and S:

P(yla, ) = /D P(|C, 0, B)P(Cla, B)dC
a,fB

_ / P(Cla, B)dC, (16)
Sa,4NDy g

where Sy, is the angular sector of origin A, angle v and aperture dvy. The probability P(y| C, «, )
is equal to 1 if C' is in this sector and to 0 if it is outside, which explains the formula in Equation 16.
Again we have to distinguish between two cases:

o if (8 — ) €]2km, /2 + 2k~|, we obtain:

R? cos(a—pB)—cos(a+B—-27) -
Sy 3sin(a—p)—sin(3a—3p) ifa<vy<p,

P(y|e, B) = (17)

0 otherwise,
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o if (B — ) €]7/2+ 2km, (2k + 1)7[, we obtain:

P(vla, B) =

.
( sin(8—a) )4

Km0

cos(a—pB)—cos(a+B—27) )
3Si:(06—5)—sinoé3a—3g) ifa<y<28—a-—m,

X (18)

R? cos(a—pB)—cos(a+B—27) .
KlT 3sin(a—pB)—sin(3a—3p3) if 2ﬁ —a—7T<Yy < ﬂ’

0 otherwise.

1.8 T T T T T T T T T T T T T 1.8 T T T
Theoretical curve 12 Theoretical curve Theoretical curve
161 Numerical simulation 4 Numerical simulation 161 Numerical simulation
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Fig. 6. P(v|a,p) for a =0 and for § = 7, %’r and %’T. Grey: theoretical curves. Black: numerical simulations.

Figure 6 illustrates the shape of P(v|a, 8) for @ = § and for g = 7, %’r and %’T respectively.

To check this theoretical result, we ran a Monte Carlo simulation, where the position of point C
with respect to point A is computed according to a uniform distribution of the position of points B
and C. The superposition of the two curves obtained for a large number of trials (10'°) are presented
in Figure 6. Very similar shapes are obtained.

In the limit cases where 8 = a + km, different equations are obtained:
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« for even values of k, we have:

4r2

o

it C € Saa,
P(Cle, B) = (19)

0 otherwise,

1 ifty=a+kn,
P(yla, B) = (20)

0 otherwise,

« for odd values of k£, we have:

.
BR1e] if O € Sapa,
P(O|C¥, ﬁ) = { % if C e SA,a—i—ﬂ'a (21)
0 otherwise,
\
.

0 otherwise.

\

B. Uniform distribution in a square region

In most cases in image processing applications, the solution space represents a rectangular or square
region of the plane. So, let us now consider the case of a square region of side length equal to 2R, still
with a uniform distribution. The formula for P(C, «, 8) remains the same, except for the constant K

which is now:

1

In this Section, we just give the results for P(«, ) and P(v|«, 3). The detailed computation can be

found in [32].
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The domain D, s is more complex than for the circular window, and more cases have to be distin-
guished. We assume that o € [—n/4,7/4] (the other cases are easily deduced) and 8 €|, a + 27|

(without loss of generality).

S
S
g% %\
s. : ; N .
B N
A a &s& A o A o L #
N s s, A A

(f) (8) (h) (1) (i)
Fig. 7. Possible shapes of D, g for a square region.

Figure 7 represents the possible shapes of D, 3. The five last cases are symmetric with respect to
the five first ones, therefore only the five first cases are dealt with in the following.

1. Case a < f < m/4:

1

P(v|a, B) = 32P(a, B) X

cos(a—pB)—cos(a+L—27) fo<n~<
(3 sin(a—ﬁ)_sin(3a_35)) cost <7 <8, (24

0 otherwise,
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with
B 1
"~ 384 cosacos? B

P(e, f)

2. Case m/4 < < m/2:

1

P(v|a, B) = 32P(ax, B) X

cos(a—pB)—cos(a+B—27) if o < v < 71_/4’
(3 sin(a—,B)—sin(Sa—B,B)) cos? vy

N\

cosa=f)—cos(at5=2) _ jf /g << B, (26)
(3 sin(a—ﬂ)_sin(ga_gﬂ)) sin? 7y / S B,

0 otherwise,

\

with

P(a, B) = cos®(a + 7/4) x

(8sin(a — B) — 4sin(a + B) + 4 cos(a + B) + 4 cos(a — B))
192 cos? a(3sin(a — ) — sin(3a — 30))

+ cos(B + m/4)* x
(8sin(a — B) + 4 cos(a — ) — dcos(a + f) — 4sin(a + §))

27
192sin” B(3sin(a — B) — sin(3a — 34)) (27)
3. Case /2 < < 3m/4:
P(y], B) = =5——
a,f) = 5
17 32P(a, B)
p
(cos(,@—a)—cos(a+,@—2’y)) sint(a—p) .
ifa<y<o,
sint(y—p) cos4a(35in(a—ﬂ)—sin(3a—3ﬂ)) =7=¥
< cos(a—p)—cos(a+p—27) if(p <~ < ﬁ; (28)

(3 sin(afﬂ)fsin(i’.af?,ﬂ)) sin? y

0 otherwise,
\
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sin’(¢ — a) sin’(¢ + )
128 cos* a( cos? 3 — cos? g0)2

+sin?(8 — ) x
(3cos(a— B —¢) —cos(a — B+ @) — 2cos(a + 5 — @)

, (29
192 sin® ¢ sin® 3 (3 sin(a — B) — sin(3a — 33)) (29)
and ¢ is the angle limiting the two triangles building the domain D, g (see Figure 8):
o = cot! <cosacosﬁ + .sin(ﬂ — a)) . (30)
cos asin 3
[
sy
Fig. 8. Support of probability P(C,a, () in the case /2 < 8 < 3w /4.
4. Case 3> 3w /4 and ¢ < 37/4:
P(y], 8) = =——
a,f) = ——
T%P) = 39P(a, B)
4
(cos(ﬂ—a)—cos(a—l—ﬁ—Q’y)) sin(8—a) )
ifa<vy <oy,
sin?(y—B) c0s4a(3sin(af,3)fsin(3a73,3)) =T=9
cos(a—p)—cos(a+B—2v) if
; ; ; p <7 <3m/4,
) (3sm(a—,@)—s1n(3a—3,@)) sin? y (31)
cos(a+B—27)—cos(B—a) F3n/4 <~ <
(3 sin(,@—a)+sin(3a—3,@)) costy / v
0 otherwise,
\
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with

sin®(¢ — a) sin(p +
Pla, p) = 128 co(sfoz(co)s2 g —((‘()cosf(,?))2
4cos(a — B) + 2sin(a + B) — sin(a — B)
48(3sin(a — B) — sin(3a — 373))
_cos pcos(a — B)(2cos® p — 3) + cos(ar + B — 3p)
96 sin® (3 sin(a — B) — sin(3a — 34))
sin(a + ) + 2sin(a — B)

. (32
96 cos? B(3sin(a — B) — sin(3a — 33)) (32)
5. Case f < a+ 7 and ¢ > 37 /4:
P(Yla, f) = gz X
TP 2P (a, )
.
(cos(ﬂ—a)—cos(a—f—,B—Z'y)) sin*(f—a) .
fa<y<

sin?(y—p) cos4a(3sin(a—,6’)—sin(3a—3,8)) fa<y<,
{ _cos(p-a)-cos(a+f=2y) it <3 (33

(3 sin(afﬁ)fsin(3a73ﬁ)) cosy ify <ys<h,

0 otherwise,
\
with
sin?(¢ — o) sin?(¢ + 3
Plag)— S )sin (4 B)
128 cos* a( cos? 3 — cos? Qﬁ)
+sin®(8 — ) x
(2sin(8 — ¢ + @) — 3sin(B+ ¢ — @) —sin(8 — ¢ — a)) (34)
192 cos® ¢ cos? B(3sin(a — B) — sin(3a — 33))
1 { cos(f — a) + cos(B + )

ot : 35
Y =co (sin(ﬂ +a)+3sin(f—a))’ (35)

1 is the angle limiting the two triangles building the support D, g of the probability P(C,a, ) (see

Figure 9).



20

Fig. 9. Support of the probability P(C,a, )

in the case f < o+ 7 and ¢ > 37/4.

V. SOLUTION IN THE CASE OF A (GAUSSIAN DISTRIBUTION

Since Equation 7 holds for any distribution, the previous computations can be extended to other

distributions, such as Gaussian distributions for instance which are widely used to model sensor errors

and to express uncertain localizations in case of approximate positioning. Let us briefly present the

results obtained in this case.

We assume that the point distribution has the following form:

f(r,0) =

1
—e
2T

[

r

BER (36)

In the general case where 8 # «a + km (k € Z), we obtain:

P(C,a,p) =

(

r2 ( cos(a—ﬂ)—cos(a-ﬁ-ﬁ—%’t:)) X
272 (3 sin(a—,@)—sin(3a—3ﬂ))

2 .
_%(1_}_( sin(6c—B) )2)

sin(a—p) if o S ec S ﬁ

(37)

e

0 otherwise.
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The derivation of probability P(v, «, ) leads to:

P(v,a,8) =
cos(afﬁ)fCOS(OH-ﬁf?’Y) fa<~y<
7T2(3Sin(a_ﬂ)—sin(3a—3ﬂ))(:;:zég:zg_"l)z =7= B (38)
0 otherwise.

As for the other distributions, the special case of 8 = a + kn (k € Z) needs specific consideration
and different equations are obtained, that are not detailed here (see [32] for more results).

Figure 10 illustrates the obtained results for various values of o and f.

VI. BAYESIAN DECISION

We now address the problem of inference, defined here as a decision rule D(«, ) which assigns to
observations « and [ an angle v corresponding to the directional relative position of point C' with
respect to point A. This decision rule has to minimize a cost function that can be defined in different
ways.

For instance, the cost function could be the mean decision error over the complete set of distributions
of points. Let us denote by v* the exact position of point C' with respect to point A. The global error

probability is expressed as:

/ / D(a, B) # ) P(a; B)dads. (39)

The probability P(D(«a, ) = v*) is the probability that C' be in direction D(a, 3) conditionally to «

and (3. Therefore we have:

Pap=1- / ﬂ / P(D(@ §)|o, §)P (o f)dads. (40)

Minimizing the global error amounts to maximizing P(D(«, §)|a, 8) = P(7v|a, B).



22

Theoretical curve
Numerical simulation
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P(C,a=1/6,8=m/3). P(yla=m/6,8=m/3).
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P(C,a=7/6,8=m). P(C,a=7/6,8=m). Pyla=m7/6,5=m).

Fig. 10. Examples of P(C,a, ) (surfacic representation on the left and level curves in the middle) and P(v|a, 5)
(superposition of the theoretical curves and numerical simulation on the right) for various values of a and f in the

case of a Gaussian distribution. The simulated curves were obtained as in Figure 3.
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In the case of a uniform distribution in a circular window of radius R, the unique maximum of

P(v]a, B) is reached for a value of y (denoted ~y) which depends on § — «, which leads to:

D(a,B) =70 = (41)

28 —a —m otherwise.
The first case corresponds to a complete angular sector, for which the probability depends on cos(a +

B —27) and has a unique maximum for the given value. The second case corresponds to an incomplete

sector, for which the probability depends additionally on :ﬁgg:ﬁg If 5 —a < 27/3, then the maximum

is obtained for the same value as in the first case. Otherwise, it is obtained for v =25 — a — 7.
Another possible cost function is the likelihood. Maximizing the likelihood P(«, 3]y) amounts to

maximize the quantity:

P(v|a, B)
P(y) '

and finally to maximize the posterior probability P(+|a, 8) since no direction is favored. The results

(42)

are therefore the same as in the previous case.
As a last example, let us consider the minimization of the average decision risk, which generalizes
the first criterion by introducing a cost function A\(D(c, 8)|y). Minimizing the average risk amounts

to minimize the conditional risk expressed as:

R(D(e, B, 8) = [ ADla )P, S (43

For instance if )\ is defined as the squared difference (D(a, 8) — 7%*)?, then the minimum is obtained

for the following value of 7 (for a uniform distribution in a disk):

/

ath if (8 — «) € [2km, /2 + 2kn7],

T0= 14 YD it (5 ) e [akr + /2, (2 + D), “

a+Z iff=a+m,
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with

V(e f) = —4((28 — a —m)* = § + 1) cos(a — f})
+ 5cos(3a — 38) — cos(5a — 53)
— (12a — 208 + 8) sin(a — )
+ (8a — 108 + 5) sin(3a — 3/3)

— (28 — ) sin(ba — 50), (45)

and

ola, B8) = 8(a — B+ 7r) cos(a — f)

+ 8sin(a — B) — 2sin(3a — 383) — 2sin(ba — ). (46)

VII. ILLUSTRATIVE EXAMPLES

To illustrate how we can use these results, we give two examples of spatial localization. In the first
one we assume that we have no knowledge about the exact position of the points B and C, so we
have used a uniform distribution for the prior distribution probability P(B) and P(C'). In the second
example, we use a distribution which reflects the knowledge of the spatial localization of points B and
C. In this case, the prior distributions are synthetically built from the available knowledge. In real

applications, they could be obtained by another approach such as the one used in robot localization

(33], [9].

A. Localization of mobile phone simulation

Let us first consider the problem of inference of directional spatial relations in case of small (quasi-
points) objects, for which the previous results can be directly used. An example is given in Figure

11. The problem addressed in this simulated example is to find the position of point C with respect
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to point A, knowing its position with respect to some reference points B; (this is a quite common
situation when trying to localize mobile phones). In absence of any prior knowledge, we assume here

a uniform distribution in a circular window.

Fig. 11. Example of small objects. The reference point A is the center of the figure. One instance of point C' and six

instances of the intermediary point B are given (B;...Bg). Angular sectors for By, By and Bg are displayed.

In this simulated example, the solution is known: ~* = 0.64rad. The values for 7, (obtained with
inference based on minimization of error probability, see Equation 41), |yy —7*| (estimation error with
respect to the true value) and |3 — af are given in Table I for the six instances B; of B.

The smallest estimation errors occur for both low and large values of | — «|. This was expected
since the localization is more difficult if the angular sector D, g is larger, which results from average
values of |5 — «.

The error probability decreases if several intermediary objects are used, by combining the corre-
sponding probabilities P(«y|a, ). The probabilistic distributions are given in Figure 12, each curve
corresponding to one of the B;. All curves have a peak close to the exact value of v* (i.e. 0.64). They
are more or less spread depending on the uncertainty that remains in the location (i.e. depending on
|8 — «f). For instance, the angular sector for Bg is reduced (see Figure 11), which leads to a good

estimation (Figure 12). The product of these probabilities clearly tends towards a Dirac function



Reference point | v | |70 —7*| | |18 — «f
B, 0.52 0.12 2.12
B, 0.59 0.05 1.01
Bs 0.68 0.04 1.07
B, 0.79 0.15 2.16
Bs 0.67 0.03 2.83
Bg 0.62 0.02 2.94
TABLE I
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VALUES OF %o, |0 —*| AND |8 — a| FOR THE POINTS OF FIGURE 11. FOR LOW (CLOSE TO 0) OR LARGE (CLOSE

TO 7 VALUES OF | — a|, THE ERROR |yg — ¥*| IS SMALL.

corresponding to an intersection of several domains D, ), showing that using several reference points
& B g g

improves the localization, as expected. Note that if many point measurements are available, which

may be prone to errors, methods dealing with outliers should be added in the procedure [34].

The idea briefly presented here was further explored for mobile location in wireless communication

in [35].

B. Georeferencing in a city

In this example, we address a more complex situation, where we have to localize a point, here the

ENST (Ecole Nationale Supérieure des Télécommunications), in a real city map, based on knowledge

about relations to other geographical locations (subway stations in our example). This example aims

at showing how qualitative information may be used in improving a localization problem.

We assume that two fixed points are known: “Place d’Italie” and “Porte d’Italie” (see the map? of

http://www.maporama.com
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Fig. 12. Probability distributions P(vy|a, 3) obtained for some points of Figure 11. The vertical dashed line indicates

the correct solution.

the considered area in Figure 13). They will be referred to as points A; and A, and will successively
play the role of the starting point A according to the notations of Section III. The different pieces of
knowledge which will be used in the sequel are as follows:
« K1: “Tolbiac” is in the direction of A, with respect to A;
« K’1: “Tolbiac” is in the direction of A; with respect to Ay;
« K2: ENST is West of “Tolbiac”;
« K3: ENST is not far from “Place d’Italie”;
« K4: “Tolbiac” is not far from the mid point of the segment A; A, (“Place d’Italie”- “Porte d’Italie”).
Such pieces of knowledge, expressed as linguistic expressions, can be easily understood by human
beings, despite their imprecision, thanks to links between language and cognition [1]. Using them in our
framework requires to quantify them in some way. Each piece of knowledge is therefore expressed as a
probability distribution. Although this may sound rather ad hoc, the distributions have a sufficiently
large support to correspond to what is intuitively understood.
In order to exploit the results of Section III, in a first experiment, we make use only of K1 and

K2. We start from A; (“Place d’'Italie”) as point A. “Tolbiac” is the unknown intermediary point B,
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Fig. 13. Map of an area around ENST (square) in Paris. Two references points, “Place d’Italie” and “Porte d’Italie”

are indicated too.

and “ENST” the point C' we are trying to localize. At this point, no knowledge is available on the
position of ENST, thus we assume a uniform distribution inside the map. By applying the equations
derived in Section IV-B, we obtain the distribution described in Figure 14-a. The solution given by
the maximum posterior probability provides, as a candidate for ENST, the point in the bottom-left
corner. Note that a point at the border of the admission domain is likely to be obtained with the
uniform distribution assumption as demonstrated in Sections III and IV-B (see in particular Equation
7 and case (b) in Figure 7). With such a weak information, the obtained result is rather poor and
disappointing.

To improve the positioning, we now make use of knowledge K3, along with K1 and K2. In order
to translate quantitatively the linguistic expression “not far from”, we adopt a Gaussian probability
distribution for P(C'), centered at A; with a standard deviation equal to 1km (Figure 14-b), instead of
the uniform distribution. This corresponds to the usual way of communicating approximate distance

information expressed as linguistic expressions: for instance, when indicating a distance, even using
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a crisp number, the meaning is not exactly this number, but it should be understood in a smoother
way, expressed here by the choice of the Gaussian. A better solution is now obtained (Figure 14-c),
which is no longer peaking at the border of the admissible domain. The maximum of the distribution
is somewhat closer to what is expected.

A second improvement may be obtained by providing a more realistic information on the inter-
mediary point “Tolbiac”. For this purpose, we make use of knowledge K4. The prior probability
distribution of this intermediary point B is now no longer uniform in the direction of As with respect
to A;. As for K3, we choose for the distribution of B according to K5 a Gaussian distribution centered
at the mid-point of A; A, (Figure 14-d). The use of the starting point A; and the 4 pieces of knowledge
K1, K2, K3 and K4, provides a solution which is closer to the true solution (Figure 14-e).

From this series of examples, the exact position of “Porte d’Italie” has never been used. Can this
information improve our estimate? Let us take Ay as starting point A and evaluate the position of
ENST from K’1, K2 and K4 and by using the last distribution obtained in Figure 14-e as prior
distribution for ENST. We obtain a new distribution, better than the previous ones, presented in
Figure 14-f. The solution becomes more accurate and the maximum of the probability is very close to
the exact position of ENST.

These series of examples illustrate the contribution of every piece of information to the modeling
of the posterior probability. The compounding of probabilities, made under the Bayesian formalism,
provides a convenient framework. One may discuss the translation of every qualitative piece of knowl-
edge into a quantitative prior probability distribution and substitute any distribution to the Gaussian
or uniform distributions when some evidence advocates it. It appears from these results that the
quality of the results is only depending on the quality of the prior information and not on the way the

knowledge is processed. Improving constraints and knowledge allows to refine the positioning.
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VIII. CONCLUSION

In the field of spatial reasoning and inference of spatial relations, we proposed in this paper a
probabilistic formulation for this problem in the case of punctual objects. We derived analytical
formulae in case of circular and square domains, and for different types of point distributions. The
joint probability P(C, «, ) is valid for any distribution, while the conditional probability P(v|a, )
has to be derived specifically for each distribution.

In the general case, where we have to deal with spatial entities having any shape and spatial exten-
sion, two cases have to be distinguished. The first one corresponds to quite compact objects, either of
small size, or far from each other. As a first approximation, such objects can be considered as points
and the proposed approach applies directly. The second case corresponds to extended objects, for
which the size is too large with respect to the distance between them to allow us to consider them as
points. In such cases, the computation on points is no more sufficient. One possibility consists in com-
bining the probability distribution with angle histograms [21]. This approach has been investigated
in [32] but still needs to be further developed. In particular, estimating the conditional probability
P(f|«) seems to be a necessary step.

Extensions to 3D are also possible, but the derivations are likely to be much more complex since
positioning a point in a 3D space requires two angles instead of one. This is left for future work.

In cases where the knowledge is deduced from many measurements, not only the uncertainty due to
errors should be taken into account, but also possible bias or outliers. Robust methods should then
be combined with our approach [34].

In the examples we have presented, we focused upon relating the position of one point A to another
point C' through an intermediary location B. We also demonstrated this for multiple intermediaries

taken one at a time. An interesting extension would be to deal with cases where we have a list
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of constraints relating the relative positions across a large group of points (or objects) in order to
derive a probability distribution for each point simultaneously conditioned on all of the relative spatial
information. Such a problem was addressed in [12], where an efficient method is proposed to determine
the domain of all the possible solutions. An extension of our work could provide an information on
the probability of every point in this admissible region.

Foreseen applications concern for instance the localization of mobile phones as shown in our first

simulated example, and experienced in [35]. This application could be useful typically in rescue issues.
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(d) (e) (f)

Fig. 14. Combination of available knowledge: (a) distribution of point C' (ENST) according to K1 and K2 (the

probability distribution is displayed as level curves with increasing intensity and the maximum value is represented
by a star); (b) modeling K3; (c) distribution of C' given K1, K2 and K3; (d) modeling K4; (e) distribution of C
given K1, K2, K3 and K4; (f) distribution of C given K’1, K2 and K4 using the result of (e) as prior knowledge

on C.



