
Pattern Recognition Letters 24 (2003) 2219–2233

www.elsevier.com/locate/patrec
Evaluation of the symmetry plane in 3D MR brain images

Alexander V. Tuzikov a, Olivier Colliot b, Isabelle Bloch b,*

a Research-Engineering Center of Informational Technologies, National Academy of Sciences of Belarus,

Akademicheskaja 25, 220072 Minsk, Belarus
b D�eepartement TSI, CNRS URA 820, Ecole Nationale Sup�eerieure des T�eel�eecommunications, 46 rue Barrault,

75634 Paris Cedex 13, France

Received 11 January 2002; received in revised form 6 March 2003
Abstract

Although the brain is not perfectly symmetrical with respect to the mid-sagittal plane, the automatic detection of this

plane and of the degree of symmetry is of interest for many anatomical and functional studies. We propose a method

for detecting the best symmetry plane in 3D MR brain images. We express this problem as a registration problem and

compute a degree of similarity between the image and its reflection with respect to a plane. The best plane is then

obtained by maximizing the similarity measure. This optimization is performed using the downhill simplex method and

is initialized by a plane obtained from principal inertia axes, which proves to be close to the global optimum. This is

demonstrated on several MR brain images. The proposed algorithm is then successfully tested on simulated and real 3D

MR brain images. We also investigated the influence of the optimization procedure control parameters on the com-

putation speed and result precision. Preliminary results obtained on CT and SPECT images suggest that the method can

be extended to other modalities.

� 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The mid-sagittal plane is defined as the plane

that best separates both brain hemispheres. The
automatic detection of this plane in brain images

such as magnetic resonance images (MRI) is a

useful task. It can be used to reorient images, for
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example for further alignment in the Talairach

reference frame (Liu et al., 2001). It can also be a

first step in intra-subject registration (Ardekani

et al., 1997) or serve as a basis for the study of
dissymmetries in the brain (Thirion et al., 2000).

Brain images possess a high degree of plane

symmetry although they are not exactly symmet-

rical. Medical studies (see, for example, Amunts

et al. (2000) for some corresponding references)

demonstrate brain anatomical asymmetries in size

of the frontal and occipital lobes, in surface of the

planum temporale and planum parietale, in the
anterior speech region. Symmetry is a geometric
erved.
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feature. Since real brains and their images do not

exhibit exact symmetry, it is of interest to measure

the degree of symmetry in them. It can be com-

puted using the notion of symmetry measure

(Gr€uunbaum, 1963) or a distance function used for

comparing objects or images. A plane corre-
sponding to the maximal value of the symmetry

measure is called a symmetry plane. This plane is

often considered as the first approximation of the

mid-sagittal plane (Kruggel and von Cramon,

1999). The constraint of obtaining a plane is useful

for some of the foreseen applications, in particular

for computing spatial relationships with this plane

as a reference. Although the true separation be-
tween both hemispheres can usually be detected in

MRI and CT images, this is not possible on PET

images for instance. Estimating the plane to be

found as a symmetry plane allows to use the same

algorithm for several modalities, as will be shown

in our experiments. The main goal of this paper is

to develop an algorithm for the symmetry plane

computation in MR brain images.
There is a vast literature in mathematics, image

processing and computer vision domains dealing

with different kinds of symmetry (central, reflec-

tion, rotation, skew) of shapes and images. Let

us point out, for example, some publications

(Attalah, 1985; deValcourt, 1966; Marola, 1989;

Masuda et al., 1993; Sun, 1995; van Otterloo,

1988) devoted to the reflection symmetry. Most of
practical algorithms developed for symmetry

measurements are applied in the 2D case and only

some of them can be extended to 3D (Zabrodsky

et al., 1995). Principal axes of inertia were used in

(O�Mara and Owens, 1996) to define the best

symmetry plane. An algorithm for finding sym-

metry planes of 3D objects using extended

Gaussian image representation was developed in
(Sun and Sherrah, 1997). Octree representation of

3D objects is used in (Minovic et al., 1993) to

compute their symmetry degree.

Recently several new algorithms were proposed

for symmetry plane computation in 3D images of

the brain (Ardekani et al., 1997; Liu et al., 2001;

Prima et al., 2002; Thirion et al., 2000).

The cross-correlation between original and re-
flected images is used in (Ardekani et al., 1997) as a

symmetry measure of the image with respect to a
considered plane. Preliminary image filtering,

smoothing and size reduction are used there to

reduce the computational complexity of finding

the best symmetry plane. The optimization pro-

cedure includes the evaluation step for finding the

initial plane position that is further improved
using a downhill simplex optimization method.

The evaluation step computes the symmetry mea-

sure for a number of plane positions equally dis-

tributed in the space of plane orientations.

A two step algorithm for computation of the

symmetry plane in 3D brain images is proposed in

(Thirion et al., 2000). It is assumed that some

initial plane is already given. This initial plane can
be either the middle plane of the image, generally a

good starting point for the optimization proce-

dure, or the plane computed based on principal

inertia axes, if the brain is too tilted. The algorithm

allows automatically to reorient and re-center this

plane. At the first step a point-to-point corres-

pondence is established between two hemispheres

using the demons algorithm. Then this corre-
spondence is used for finding the new position of

the plane minimizing the least squares criterion.

The authors propose also a method to estimate the

3D dissymmetry field and apply it to the following

problems: the study of the normal dissymmetry

within a given population; the comparison of the

dissymmetry between two populations; the detec-

tion of the significant abnormal dissymmetries of a
patient with respect to a reference population. An

improved version of the symmetry plane compu-

tation algorithm is presented in (Prima et al.,

2002). In the first step, the demons algorithm is

replaced with a block matching. In the second

step, the authors use a robust least trimmed

squares criterion. Finally, the whole process is

iterated. As it is reported the algorithm is efficient
and achieves a good accuracy for anatomical and

functional images. The method also works for

pathological, highly asymmetrical brains.

A robust algorithm was developed in (Liu et al.,

2001) for finding the symmetry plane for 3D nor-

mal and pathological neuroimages. The algorithm

sequentially deals with preprocessed 2D slices and

uses a cross-correlation criterion for finding lines
of symmetry for every slice. The slice preproces-

sing includes smoothing, subsampling and edge
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detection. The global symmetry plane parameters

are computed using a robust estimation of the

information obtained from image slices proces-

sing. The authors compared the developed algo-

rithm with one based on the maximization of

mutual information registration, and reported the
superior performance of the developed algorithm

under tested conditions of noise and bias fields.

However, it is not clear whether the authors ap-

plied a special preprocessing of the initial 3D

images while using maximization of a mutual

information criterion.

The problem of finding symmetry plane and

symmetry measure can be treated as a constrained
rigid registration problem between original and

reflected images (with respect to some fixed plane).

Different similarity measures known in the litera-

ture (Maintz and Viergever, 1998) can be classified

depending on the type of registration: for mono-

modal registration one can use, for example, the

correlation coefficient (Brown, 1992), normalized

cross-correlation, sum of absolute intensity dif-
ferences, sum of squared intensity differences,

stochastic sign change (Venot et al., 1984); for

multimodal registration one can use the correla-

tion ratio (Roche et al., 2000); mutual information

(Maes et al., 1997) or normalized mutual infor-

mation (Studholme et al., 1999). Our problem is a

particular case of monomodal registration: both

images differ by a geometric transformation only
and therefore have the same contrast. In the fol-

lowing we use the normalized sum of squared in-

tensity differences as a similarity measure.

The paper is organized as follows. In Section 2

we discuss the problem of plane symmetry evalu-

ation in 3D images and the symmetry measure

used. In Section 3 the problem is reformulated in

terms of a constrained registration between the
original image and its reflection with respect to a

fixed plane. Then in Section 4 we propose an al-

gorithm for the computation of the brain sym-

metry plane. The algorithm is very close to the one

reported in (Ardekani et al., 1997). The main dif-

ference is in the choice of the initial plane for the

further optimization. In Section 5 we provide the

results of investigating the profiles of the symmetry
measure for several real MR brain images. The

main observation is that these profiles have a
regular form and that a plane computed from the

ellipsoid of inertia belongs to the region of the

global maximum of the similarity measure under

consideration. Therefore, starting the optimization

from this plane with a local technique gives more

chances to achieve the global maximum and be-
sides reduces substantially the complexity of the

algorithm. We also discuss in this section the re-

sults of processing simulated and real MR brain

images, the properties of the proposed algorithm

and the choice of its control parameters. The al-

gorithm works directly on 3D images and not slice

by slice as the one proposed in (Liu et al., 2001).

The algorithm is a natural extension of earlier
methods that used the best plane obtained from

principal axes of inertia as the symmetry plane (see

for example O�Mara and Owens, 1996). The ori-

entation and position of this plane is improved in

our method by maximizing the correspondence

between all voxels from its left and right parts.
2. Symmetry measure

In this paper we deal with 3D gray-level images,

i.e. non-negative functions f : F � R3 ! V . Here

V is a subset of Rþ or N.

Given a point b ¼ ðb1; b2; b3Þ 2 R3, we denote

by fb or by f þ b the translation of image f at

point b, i.e. fbðx; y; zÞ ¼ f ðx� b1; y � b2; z� b3Þ.
Let u be a unit vector in R3, S2 the unit sphere of

all possible directions in R3, S2
þ the hemisphere of

the unit sphere containing points with non-nega-

tive x coordinate, and Pu;d the plane in R3 ortho-

gonal to the vector u and passing at the signed

distance d from the coordinate origin. We denote

by eu;dðf Þ the reflection of image f with respect to

the plane Pu;d :

eu;dðf Þðx; y; zÞ ¼ f ðeu;dðx; y; zÞÞ:
Definition 1. An image f is called plane symmet-

rical if there exists a symmetry plane Pu;d such that
eu;dðf Þ ¼ f . We say in this case that Pu;d is a plane

of symmetry for f .

Note that images can have several symmetry

planes. In practice we often deal with images that



Fig. 1. The angles a and b define a normal vector to the sym-

metry plane.
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are almost plane symmetrical but do not possess

the exact symmetry. In this case the notion of

symmetry measure is very useful to access the de-

gree of symmetry in images. Suppose that one is

able to compute the symmetry measure lu;dðf Þ of

the image f with respect to an arbitrary plane Pu;d .
Then the problem we are dealing with in this paper

is to find a plane of maximal symmetry measure of

image f and the corresponding value of the sym-

metry measure lðf Þ. It can be formulated in an

equivalent form as (the search space can be re-

stricted to ðS2
þ;RÞ or ðS2;RþÞ since Pu;d and P�u;�d

define the same plane):

lðf Þ ¼ max
u2S2;d2Rþ

lu;dðf Þ ¼ max
u2S2

þ ;d2R
lu;dðf Þ: ð1Þ

In the right part of the formula we use a hemi-

sphere (as in our implementation) and therefore

we use the signed distance between the symmetry

plane and the coordinate origin. We use every-
where in this paper max instead of sup and assume

that the maximum is achieved (which in fact is true

under some continuity constraints on lu;d).

When comparing images it is usually assumed

that a distance or a similarity measure rðf1; f2Þ is

defined on the set of images. In this case the

symmetry measure lu;dðf Þ can be defined as the

similarity between images f and eu;dðf Þ, i.e.:

lu;dðf Þ ¼ rðf ; eu;dðf ÞÞ: ð2Þ

One can see that eu;dðf Þ is a translation of eu;0ðf Þ
at the point 2du ¼ ð2du1; 2du2; 2du3Þ, i.e.:

eu;dðf Þ ¼ eu;0ðf Þ þ 2du: ð3Þ
Therefore, one has:

lu;dðf Þ ¼ rðf ; eu;0ðf Þ þ 2duÞ:

It is clear that for the computation of the sym-

metry measure lðf Þ one needs to check all possible
orientations and translations of the symmetry

plane. It is an optimization problem in a three-

dimensional parametric space. Here two oriented

angles a and b define a normal vector (see Fig. 1)

to the symmetry plane and one parameter is nee-

ded for the signed distance to this plane. As u vary

in S2
þ, a and b will vary in ½�p=2; p=2Þ. Later in

Section 3 we discuss also how the problem of
computing the symmetry measure and the corre-
sponding plane can be reformulated in terms of a

constrained registration between the original im-

age and its reflection with respect to a fixed plane.
Given two images f and g, the l2 metric is de-

fined as follows:

l2ðf ; gÞ ¼ kf � gk

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ ZZ

R3

ðf ðx; y; zÞ � gðx; y; zÞÞ2
dxdy dz

s
:

We use the following symmetry measure in accor-
dance with our view of the problem as a mono-

modal registration problem:

lu;dðf Þ ¼ 1 � kf � eu;dðf Þk2

2kf k2
: ð4Þ

It holds 06 lu;dðf Þ6 1 and lu;dðf Þ ¼ 1 if and only

if Pu;d is a plane of symmetry for f . One can show

that this measure coincides with the normalized

cross-correlation.
3. Symmetry analysis in terms of registration

In this section we show that the computation of

the symmetry plane is equivalent to computing a

constrained rigid transformation between f and its

reflection with respect to a fixed plane. Denote

by ru;a a rotation in R3 about the oriented axis
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directed along vector u over an angle a (counter-

clockwise direction).

Given two unit vectors u1, u2 from the unit

sphere S2, denote by aðu1; u2Þ the angle in ½0; p�
between them. Following the outline of Tuzikov

and Sheynin (2002) the composition of plane
symmetries can be expressed as a rotation in the

following way:

eu2;0eu1;0 ¼ ru;2aðu1;u2Þ; ð5Þ

where u ¼ ðu1 � u2=ku1 � u2kÞ and u1 � u2 denotes

the outer product of vectors u1 and u2 (see Fig. 2).
Since reflections eu2;d and eu2;0 differ by a shift

2du2 along the vector u2 (3), then one gets:

eu2;d ¼ ru;2aðu1;u2Þeu1;0 þ 2du2:

Let us take for simplicity the vector u1 ¼ ð0; 0; 1Þ
and denote by f 0 the reflection of f with respect to

the xy plane, i.e. f 0 ¼ eu1;0ðf Þ. Denote also by S1

the great circle of S2 orthogonal to u1 (i.e. the

equator). It is clear that in this case the vector u
always belongs to S1. We will call the rotations

about axes passing through the equator as feasible
rotations. Therefore, every reflection eu2;d of image

f can be represented as a feasible rotation of image

f 0 followed by a shift along vector u2 ¼ ru;au1 at the

distance 2d, i.e.,

eu2;dðf Þ ¼ ru;2aðf 0Þ þ 2dðru;au1Þ:

To make u2 vary over S2 is equivalent to make

u vary over S1 and a vary over ½0p�. Now the
Fig. 2. Vectors u, u1, u2 and angle aðu1; u2Þ used in formula (5).
problem of symmetry measure calculation defined

by Eq. (1) can be written as follows in terms of

feasible rotations:

lðf Þ ¼ max
u2S1;a2½0 p�;d2Rþ

r f ; ru;2aðf 0Þ
�

þ 2dðru;au1Þ
�
:

ð6Þ
Therefore, one needs to find a rotation of image f 0

about an axis belonging to the xy plane followed

by a translation that maximizes the similarity

measure with f . Suppose that the maximum in (6)

is achieved for ðu�; a�; d�Þ then the corresponding

symmetry plane is defined by the normal vector

u2 ¼ ru�;a�u1 and the distance d� from the coordi-
nate origin. Note that a similar idea to find a

symmetry axis in 2D slices of a 3D image was used

in (Liu et al., 2001).

We would like also to note that it can be shown

as in (Tuzikov and Sheynin, 2002) that every fea-

sible rotation followed by a translation in a speci-

fied direction defines a reflection. The direction of

the translation is defined by the rotation axis and
angle.

In this paper we implemented the direct maxi-

mization of the symmetry measure given by Eq.

(1). Eq. (6) provides another option to compute

the symmetry measure. However, in this paper it

has more a theoretical than a practical value and it

is presented here just to demonstrate another pa-

rameterization for computing symmetry measures.
4. Symmetry plane computation

The computation of symmetry measure given

by Eq. (1) is a time consuming non-convex opti-

mization problem. Therefore it seems useful to

check first the most appropriate positions of
symmetry planes. These positions can be used as

initial points for the further optimization. In this

section we first give the details concerning the

computation of initial points. Then we discuss the

optimization method used and, finally, formulate

an algorithm proposed for the computation of

symmetry measure and plane.

The initial positions can be interpreted, for ex-
ample, in terms of ellipsoid of inertia (Goldstein,

1950). In this case we consider an image f as a 3D
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dimensional body F with a mass distribution

f ðx; y; zÞ at every point ðx; y; zÞ 2 F .

The axes of the ellipsoid of inertia for a 3D

body are defined by the eigenvectors of the cor-

responding covariance matrix:

m200 m110 m101

m110 m020 m011

m101 m011 m002

1
A

Here mpqr defines a central moment of the order

p þ qþ r:

mpqrðf Þ ¼
ZZZ

F
f ðx; y; zÞðx� xcÞpðy � ycÞq

�ðz� zcÞr dxdy dz;

where the integral is taken for the volume of the

body and ðxc; yc; zcÞ are the coordinates of the
center of mass.

It is known that if a body possesses a plane

symmetry then the symmetry plane passes through

its center of mass orthogonal to some ellipsoid

axis. Therefore, for the computation of a sym-

metry measure in this case it is sufficient to check

three planes only. However, this is true when the

eigenvectors are different. Otherwise, one gets an
ellipsoid of revolution and its axes are not uni-

quely defined.

Suppose that the center of mass of the ellipsoid

of inertia of image f is bc ¼ ðxc; yc; zcÞ and that u1,

u2, u3 are unit eigenvectors taken in each of the

three distinct eigenspaces. Then by computing the

symmetry measure for the three major planes of

the ellipsoid of inertia one gets the following value
l0ðf Þ which is a lower bound for the symmetry

measure lðf Þ:

l0ðf Þ ¼ maxflu1;u1�bcðf Þ; lu2;u2�bcðf Þ; lu3;u3�bcðf Þg;
ð7Þ

where u � b denotes the inner product of vectors u
and b.

The plane passing through bc and orthogonal to

one ui, i 2 f1; 2; 3g, such that l0ðf Þ ¼ lui ;ui �bcðf Þ is

chosen as an initial symmetry plane. Its position

and orientation are further improved using the

optimization in the 3D space of symmetry plane
parameters. In our implementation we used the
downhill simplex method (Press et al., 1992). The

method is convenient in cases when one does not

have the function derivatives. It requires only

function evaluations. As it is reported in the liter-

ature (Bernon et al., 2001) the method is quite

accurate and robust under good starting points.
For the optimization in a 3D space the method

needs 4 non-coplanar points as an input. We used

four points that define a tetrahedron with one

vertex at the initial point. Since the downhill sim-

plex method is a local optimization method there

is no guarantee in general of finding the global

maximum. However, in Section 5 we demonstrate

experimentally that one can obtain good solutions
for MR brain images using this approach.

The proposed algorithm consists of two steps.

Algorithm for symmetry plane and measure com-
putation:

(1) Computation of the initial symmetry plane

from the ellipsoid of inertia.

(2) Improving the orientation and translation of
the symmetry plane and the symmetry measure

computation using the optimization technique.
5. Experiments and discussion

5.1. Evaluation of the initialization

We investigated the graphs of lu;dðf Þ for dif-

ferent values of u and d for five real MR normal

brain images. These graphs have a similar form

and one of them is shown in Fig. 3. Fig. 3(a) shows

the profile of lu;dðf Þ for the image presented in

Fig. 5 for symmetry planes passing through the

image center of mass. It is assumed that the co-

ordinate origin is in the image center of mass.
However, we do not align this coordinate system

with the principal axes of ellipsoid of inertia, it is

only a translation of the original one. Parameters

a, b, d defining the orientation and position of the

symmetry plane are given in this coordinate sys-

tem. The function values are computed for angles

a; b 2 ½�p=2; p=2Þ with an incremental step 0.05.

The function graph has a regular form with a
maximum in the neighborhood of the initial point.

One can see in Fig. 3(c) that the initial position is



Fig. 3. The graphs of function lu;dðf Þ computed for different values of u and d for the image shown in Fig. 5: (a) symmetry planes pass

through the image center of mass (d ¼ 0) and a; b 2 ½�p=2;p=2Þ with an incremental step 0.05; (b) symmetry planes pass in the

neighborhood of 5 voxels of the image center of mass and a;b 2 ½�0:05; 0:05� with an incremental step 0.005, i.e. in our case a and b are

in the neighborhood of the global maximum; to simplify the visualization every pair ða;bÞ is shown as one point on the axis and for

every fixed a values of b are running from )0.05 to 0.05; (c) Isolevels of the graph plotted in (a); + and � indicate the initial and final

orientation (position in the a;b space) of the symmetry plane obtained after the optimization step, respectively.
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in the neighborhood of this maximum. Fig. 3(b)

shows the profile of lu;dðf Þ for angles a; b 2 ½0; 0:1�
and a neighborhood of the center of mass d 2
½dc � 5; dc þ 5�. One can see that the maximum of

the symmetry measure is in a neighborhood of the
image center of mass. Summarizing we can con-

clude that in the tested MR brain images the initial

position of the plane obtained from the ellipsoid

of inertia belongs to the region of the global
maximum of the symmetry measure. It allows us

to go up to the function global maximum using the

local optimization technique.

5.2. Evaluation on simulated MRI

The algorithm was tested on a public available

3D simulated brain database from the McConnell

Brain Imaging Center at McGill University (http://

http://www.bic.mni.mcgill.ca/brainweb/
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www.bic.mni.mcgill.ca/brainweb/). The normal

brain database contains simulated brain MR

images for three modalities (T1-, T2-, and PD

(proton-density)-weighted) and a variety of slice

thicknesses, noise levels, and levels of intensity

non-uniformity (Collins et al., 1998; Kwan et al.,
1996, 1999). We tested the algorithm on 54 images
Fig. 4. Symmetry planes found for 3D simulated brain images

from the McGill data base (coronal and axial slices): (a,b) im-

age T1-1-3-20; (c,d) image T2-1-7-40; (e,f) image PD-3-1-0.
for each modality (with 3 slice thicknesses 1, 3, 5

mm, 6 levels of noise 0%, 1%, 3%, 5%, 7%, 9% and

3 levels of intensity non-uniformity 0%, 20%,

40%). An additional advantage of using this dat-

abase for symmetry analysis is that the images are

aligned in the stereotactic space and the mid-sag-
ittal plane coincides with the yz plane. For all these

images the orientation and position of the best

symmetry plane found by the algorithm coincide

with the yz plane. Under the assumption that for

these images the mid-sagittal plane and the sym-

metry plane coincide, this shows the success of the

algorithm in finding the symmetry plane. The

maximal absolute difference mdðjajÞ for a is 0.42
deg, the mean absolute value mvðjajÞ ¼ 0:16 deg

and the standard deviation stdðjajÞ ¼ 0:13 deg.

The values for b equal mdðjbjÞ ¼ 0:58,

mvðjbjÞ ¼ 0:16 and stdðjbjÞ ¼ 0:08 deg, respec-

tively. This confirms that the proposed algorithm

is stable in the presence of noise and image non-

uniformity. In Fig. 4 we demonstrate as an ex-

ample the best symmetry planes found for images
T1-1-3-20, T2-1-7-40 and PD-3-1-0. Here the first

part of the notation denotes the image modality,

the second one––the slice thickness, the third

one––the level of noise and the last one––the level

of intensity non-uniformity.

5.3. Evaluation on real images

The algorithm was also tested on 24 real MR

normal brain images (in T1 modality) and for all

of them we got visually good final results (see Figs.

5 and 6). We applied the procedure directly on the

original image (without any preprocessing or seg-

mentation) and obtained visually good final results

(see one of them in Fig. 7). For five images we

compared the position of the symmetry plane
found for the original image and for the corre-

sponding segmented brain. The segmentation of

the brain from outer layers was obtained by a 3D

mathematical morphology algorithm (Mangin

et al., 1995). The final results were similar. The

mean value and the standard deviation of absolute

differences for a and b were mvðja1 � a2jÞ ¼ 0:5,

stdðja1 � a2jÞ ¼ 0:39 and mvðjb1 � b2jÞ ¼ 0:76,
stdðjb1 � b2jÞ ¼ 0:73 deg respectively. Here indices

1 and 2 correspond to original and segmented

http://www.bic.mni.mcgill.ca/brainweb/


Fig. 6. Best symmetry plane found by the algorithm for a

segmented brain image. 3D images have been visualized on

the Anatomist software (www.anatomist.info), developed at

S.H.F.J., Orsay.

Fig. 5. Comparison of the best symmetry plane found for segmented and non-segmented brains: (a,b) the initial symmetry plane of the

segmented brain image computed from the ellipsoid of inertia; (c,d) the best symmetry plane of the segmented brain image computed

by the algorithm; (e,f) the initial symmetry plane of the original image computed from the ellipsoid of inertia; (g,h) the best symmetry

plane of the original image computed by the algorithm.
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brain images. Therefore, it seems that the algo-
rithm can be applied successfully for original MR

images. For six images we compared the results

obtained for a binary mask of the segmented brain
and for the gray-level image itself. The final

results were also similar (mvðja2 � a3jÞ ¼ 0:59,

stdðja2 � a3jÞ ¼ 0:46 and mvðjb2 � b3jÞ ¼ 0:61,

stdðjb2 � b3jÞ ¼ 0:58 deg assuming that index 3

corresponds to a brain mask image). It means that

the brain shape defines the orientation of the

symmetry plane with a high precision. In routine
applications of the algorithm, we used directly the

gray-level images without any preprocessing.

However, one can use a binary mask for finding

the symmetry plane for brain images with a

pathology when there is a substantial asymmetry

in gray-level values.
5.4. Evaluation on pathological MR images and on

images from other modalities

Additionally, we tested our procedure on 7 MR

images with different kinds of pathologies. Four of

them are presented in Fig. 8. The results are

visually good. It would be interesting to perform

additional tests with pathologies of increasing

size in order to evaluate the robustness of the



Fig. 7. Several coronal and axial slices of the best symmetry plane found by the algorithm for a non-segmented brain image.

Fig. 8. Results on pathological MR images. (a) Thalamic haematoma, (b) eesection of the anterior pole of the temporal lobe, (c)

paramedian frontal meningioma and (d) paramedian tumoral lesion.
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algorithm with respect to asymmetries. On the first

image (Fig. 8(a)), the automatic initialization

failed and the result was obtained thanks to a
manual initialization using the middle plane of

the image. We also tested the algorithm for

other modalities than MRI. Fig. 9 presents results



Fig. 9. Results on images from other modalities. (a) CT. (b) DaTSCAN SPECT of a patient with Parkinson�s disease. (c) 99m-Tc-

Bicisate Perfusion SPECT of a patient with a paramedian frontal meningioma. (d) 99m-Tc-HMPAO Perfusion SPECT of a patient with

a right parietal ischemia. (e) Thallium-201 SPECT of a patient with a paramedian tumoral lesion.
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obtained on a CT scan and on four SPECT im-

ages. Good results were obtained in both cases.

5.5. Study of the optimization procedure

We investigated the influence of the optimiza-
tion procedure control parameters on the speed of

the algorithm and the final result precision. The

precision is defined by the symmetry measure value

and the speed by the number of iterations in the

optimization procedure. The control parameters of

the downhill simplex algorithm include its stop-

ping condition and the size of the input simplex

(tetrahedron) defined in ða; b; dÞ space (Press et al.,
1992). Our experiments were performed on 24 real

images.

Let us denote by l1 P l2 P l3 P l4 the sym-

metry measure values corresponding to the sim-

plex vertices. Every simplex vertex defines a

symmetry plane and the symmetry measure is
computed for this plane. The following termina-

tion criterion was used: the symmetry measure

value for the final output simplex is fractionally

smaller than some tolerance ftol, i.e. 2ðl1 � l4Þ=
ðjl1j þ jl4jÞ < ftol. It is a standard criterion for the

downhill simplex algorithm.

Let us denote the size parameters of the input

simplex by Da, Db, Dd which define the possible
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absolute difference in the simplex vertex coordi-

nates and denote ða1; b1; d1Þ the parameters cor-

responding to the initial plane. We investigated

three different inputs:

• a single simplex with the initial position at
one of its vertices (its vertices have the following

coordinates M1ða1; b1; d1Þ, M2ða1 þ Da; b1; d1Þ,
M3ða1; b1 þ Db; d1Þ and M4ða1; b1; d1 þ DdÞ);

• a single simplex covering the neighborhood

of the initial position (its vertices have the

following coordinates M1ða1 þ Da; b1; d1 � DdÞ,
M2ða1 �Da;b1 þDb;d1 �DdÞ, M3ða1 �Da;b1�
Db; d1 � DdÞ and M4ða1; b1; d1 þ DdÞ);

• 8 simplexes covering the neighborhood of the

initial position (the simplexes contain the initial

position in one common vertex, one simplex is

from the first input and the others are generated

in a symmetrical way).

We have not observed substantial differences

between the first and the second types of input
simplexes, but we prefer to use the first one, since

in this case one has a guarantee to obtain a solu-

tion that is not worse than the initial plane. The

third type of input is naturally more time-con-

suming, and in our experiments it did not result in

a significant improvement of the symmetry mea-

sure in comparison to the first one. The experiment

results were compared for all images with the ref-
erences computed with parameters ftol ¼ 10�4,

Da ¼ Db ¼ 17:2 deg and Dd ¼ 10 voxels that were
Table 1

Influence of ftol on the number of iterations and result precision

ftol 10�4 5� 10�4 10�3

Mean number

of iterations

100.3 78.5 68.5

jl � l0j Mean 0 0.00001 0.000

Max 0 0.0002 0.000

ja � a0j (deg) Mean 0 0.0088 0.017

Max 0 0.0394 0.074

jb � b0j (deg) Mean 0 0.0042 0.019

Max 0 0.0159 0.195

Here 0 corresponds to the reference symmetry plane obtained for ftol

symmetry measures computed for the reference plane and planes obta

displayed in the table for the dataset of 24 images.
visually good. We obtained, as it was expected,

that the number of iterations decreases with in-

creasing ftol. Table 1 and Fig. 10 show that, even in

the worst case, the use of ftol ¼ 10�2 instead of

10�4 leads to no significant difference for the final

symmetry plane (the maximal difference in this
case is 0.5 deg for angles a and b and 0.0026 for the

symmetry measure value). Therefore, our default

value ftol ¼ 10�2 is a compromise between the

number of iterations and final result precision.

The absolute difference for angles a and b be-

tween the initial and final planes was in our ex-

periments always smaller than 5 deg and the

difference for d was always smaller than 1. The
mean values were respectively 1.4 for a, 1.8 for b
and 0.45 for d. Therefore, the best symmetry

planes found by the algorithm are close to the

initial plane. We tested the algorithm for the fol-

lowing values Da ¼ Db ¼ 17:2, 11.5, 5.7, 2.9, 1.7,

0.6, 0.3 deg, Dd ¼ 10, 5, 2, 1 and ftol ¼ 10�4. The

mean number of iterations for different sizes of the

input simplex is shown in Fig. 11. The minimal
number of iterations is obtained for Da ¼
Db ¼ 2:9 deg and Dd ¼ 1. For smaller or higher

values, the number of iterations increases. It is

likely that the downhill simplex algorithm has an

optimal number of iterations for a given size of

the input simplex which should be related to the

difference between the initial point and the posi-

tion of the global maximum. This means that the
previous values approximately correspond to the

distance between the symmetry plane and the ini-
5� 10�3 10�2 5� 10�2 10�1

50.8 46.2 31.2 26

1 0.0006 0.0009 0.0052 0.0099

7 0.0026 0.0026 0.0177 0.0416

0 0.0716 0.0980 0.4547 0.4719

1 0.3403 0.3403 1.6210 2.0016

8 0.0925 0.1271 0.4534 0.7843

1 0.2624 0.5327 1.7288 1.7288

¼ 10�4 and jl � l0j denotes the absolute difference between the

ined for other values of ftol. Mean and maximal differences are



Fig. 10. Results of the optimization procedure for different values of ftol (other parameters are Da ¼ Db ¼ 0:3 radians, Dd ¼ 10 and

index 0 corresponds to the reference symmetry plane): (a) mean number of iterations; (b) mean and maximum values of the difference

for symmetry measure with respect to the reference; (c,d) mean and maximum values of the absolute difference for a and b.
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tial plane. For these parameters, the symmetry
measure value is close to the reference experiment

(the maximal difference is 0.004).

Therefore, we decided to use the following

control parameters: ftol ¼ 10�2, Da ¼ Db ¼ 0:05

radians (about 2.9 deg) and Dd ¼ 1. For these

parameters the symmetry measure never decreased

of more than 0.0054 from the reference result. The

results were visually as good as those for the ref-
erences. The complete procedure performs about
30 iterations and takes about 3 min for a
128� 128� 62 image on a SUN Ultra5 350 MHz

workstation.
6. Conclusion

We proposed an algorithm for computing the

best symmetry plane and the plane symmetry
measure for 3D images. The initial position of the



Fig. 11. The mean number of iterations in the optimization

procedure for ftol ¼ 10�4 and different values of Da, Db, Dd.
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plane is computed from the ellipsoid of inertia of

the image. This position is further improved using

the downhill simplex method. This algorithm can

be applied for MR brain images. We demonstrated

on several simulated and real MR brain images

that the initial position is in the neighborhood of
the symmetry measure global maximum. There-

fore, a local optimization method allows to find

efficiently the global maximum.

It was shown on synthetic MR brain images

that the algorithm is stable with respect to noise

and intensity non-uniformity. However, it is sen-

sitive to the position of the initial plane used in the

optimization procedure.
An obvious limit of the proposed approach,

shared with the other approaches of the literature,

is that if the head is only partially contained in the

volume (in particular if a large part of one hemi-

sphere is missing), then the method will not pro-

vide good results, since there is no more symmetry

in the image.

The algorithm achieved good results on all real
MR images of our experiments. We also per-

formed some tests on pathological MR images

which were satisfying. However, it is likely that the

symmetry plane will deviate from the mid-sagittal

plane in case of highly asymmetrical pathologies

and it would be interesting to test quantitatively

the robustness with respect to asymmetrical
lesions. Although no extensive experiments have

been performed, preliminary results obtained on

CT and SPECT images suggest that the method

can be extended to other modalities. We also in-

vestigated the control parameters of the optimi-

zation procedure to get a compromise between the
algorithm speed and the result precision.

Further extensions of this work may include the

evaluation of the influence of various similarity

measures on the position of the best symmetry

plane. We also plan to use this plane as a feature

for structure recognition in MR images, for ex-

ample, using its orientation to define directional

relationships between objects (Bloch, 1999; Colliot
et al., 2002).
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