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Abstract

The importance of describing relationships between objects has been highlighted in works in very di0erent areas, including
image understanding. Among these relationships, directional relative position relations are important since they provide an
important information about the spatial arrangement of objects in the scene. Such concepts are rather ambiguous, they defy
precise de2nitions, but human beings have a rather intuitive and common way of understanding and interpreting them. Therefore
in this context, fuzzy methods are appropriate to provide consistent de2nitions that integrate both quantitative and qualitative
knowledge, thus providing a computational representation and interpretation of imprecise spatial relations, expressed in a
linguistic way, and including quantitative knowledge. Several fuzzy approaches have been developed in the literature, and the
aim of this paper is to review and compare them according to their properties and according to the types of questions they
seek to answer.
? 2003 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

The interest of relationships between objects has been
highlighted in very di0erent types of works: in vision, for
identifying shapes and objects, in database management sys-
tems, for supporting spatial data and queries, in arti2cial
intelligence, for planning and reasoning about spatial prop-
erties of objects, in cognitive and perceptual psychology, in
geography, in particular for geographic information systems.
For instance, in model-based structural pattern recognition,
the aim is to recognize objects based on comparison between
the characteristics of objects in the scene and objects in the
model, and on comparison between relationships of groups
of two or more objects in the scene and in the model. Other
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applications concern spatial reasoning, answering queries,
2nding and recognizing objects, spatial indexing, informa-
tion retrieval, in various domains, such as aerial, satellite
and medical imaging, robotics, GIS, video, vision.

According to the semantical hierarchy proposed in Ref.
[1], spatial relationships can be divided into topological and
metric ones (corresponding to levels three and four of this
hierarchy). Many authors have stressed the importance of
topological relationships, e.g. Refs. [2–9]. But distances and
directional relative position (constituting the metric relation-
ships) are also important, e.g. Refs. [10,11,1,12–15]. In this
paper, we consider only directional relative position, which
provides an important information about the spatial arrange-
ment of objects in the scene. In comparison to topological
relations (set relationships, part-whole relationships, adja-
cency), directional position has received much less atten-
tion. Most non-fuzzy approaches are based on a set of basic
relations, based on Allen’s interval relations [2], for instance
Ref. [16], or based on simpli2cations of objects (e.g. Ref.
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Object A Object B

Reference object (R)Reference object (R)

Fig. 1. Two examples where the relative position of objects
with respect to the reference object is diFcult to de2ne in a
“all-or-nothing” manner.

[12]). Qualitative expressions about angular positions are
expressed as intervals in Ref. [15]. Stochastic approaches
are proposed e.g. in Refs. [17,18], for representing spatial
uncertainty in robotics.

Concepts related to directional relative position are rather
ambiguous, they defy precise de2nitions. However, human
beings have a rather intuitive and common way of under-
standing and interpreting them. From our every day experi-
ence, it is clear that any “all-or-nothing” de2nition leads to
unsatisfactory results in several situations, even of moderate
complexity such as those illustrated in Fig. 1: on the left,
the object A is to the right of R but it can also be consid-
ered to be to some extent above it; on the right, the object B
is strongly to the right of R and above it. Fuzzy set theory
appears then as an appropriate tool for such modeling.

Usually vision and image processing make use of quan-
titative representations of spatial relationships. In arti2cial
intelligence, mainly symbolic representations are developed
(see Ref. [19] for a survey). The limitations of purely qual-
itative reasoning have already been stressed in Ref. [11],
as well as the interest of adding semiquantitative extension
to qualitative value (as done in the fuzzy set theory for
linguistic variables [20,21]) for deriving useful and prac-
tical conclusions (as for recognition). On the other hand,
purely quantitative representations are limited in the case of
imprecise statements, and of knowledge expressed in lin-
guistic terms. The use of fuzzy approaches for representing
directional relative position allows to integrate both quanti-
tative and qualitative knowledge, using the semiquantitative
interpretation of fuzzy sets. As already mentioned in Ref.
[22], this allows to provide a computational representation
and interpretation of imprecise spatial relations, expressed
in a linguistic way, possibly including quantitative knowl-
edge. We concentrate in this paper on the comparison of
fuzzy approaches for de2ning and assessing such relation-
ships. They allow to cope with both the basic information
in images, which is rather numerical, and with the symbolic
information usually expressed in such relationships, leading
to image understanding systems.

In Section 2, we describe what is intuitively expected from
a de2nition of directional relative position. This will serve
as a guide for comparing di0erent approaches. In Section 3,

we review existing approaches, and mention their possible
extensions to 3D objects (if de2nitions are given in 2D),
and to fuzzy objects. The main contribution of this paper
is found in Section 4, where a comparison between these
de2nitions is proposed, according to their formal properties,
their behaviors in di0erent situations, and the types of ques-
tions they can answer.

2. Requirements

In this section, we describe what we intuitively expect
from a de2nition of relative position, and on what type of
criteria we can base the comparison between di0erent ap-
proaches.

First, from a formal point of view, the de2nitions should
be invariant with respect to geometrical transformations
(translation, rotation, scaling). For instance, this is manda-
tory for applications in pattern recognition. Some symmetry
can be expected, for example saying that A is to the left of
B should be equivalent to saying that B is to the right of A.
The domain of application of the de2nitions is also an im-
portant point. Ideally they should apply in any dimension,
for crisp objects as well as for fuzzy objects.

From a more intuitive point of view, the inMuence of
the shape of the object (what happens for instance in case
of concavities), and the inMuence of the distance between
objects is a point to be considered for various applications.

Comparison will also be provided in Section 4 in other
terms, such as the type of elements on which de2nitions rely,
the type of evaluation they provide, the computational com-
plexity, and the type of questions they can answer. These
are not really requirements, but they can guide the choice
of one speci2c de2nition for one speci2c problem. Indeed,
in the context of image understanding, or scene recogni-
tion, the speci2c goal can suggest one particular de2nition.
For instance, assessing the relative position of objects hav-
ing concavities may call for di0erent answers depending on
the application. Or assessing the position of two objects is
a di0erent problem from that of 2nding the area where an
object has to be searched in order to satisfy some relation-
ships with a previously recognized object. Another aspect
concerns whether the dominant relationship or the relation-
ship in any direction are to be assessed. This may also lead
to di0erent approaches.

3. Fuzzy de�nitions of relative position

We start with a review of existing de2nitions, and their
extensions to 3D and to fuzzy objects (either already given
in the literature, or suggested here).

To our knowledge, most of existing methods for de2n-
ing fuzzy relative spatial position rely on angle measure-
ments between points of the two objects of interest [23,24],
and concern 2D objects. A fuzzy relationship is de2ned as
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a fuzzy set (see Section 3.1), and the correspondence be-
tween the relation and the angle measurements is evaluated,
according to three methods which are described in Sections
3.2–3.4. A method based on linear cross-sections of the
objects instead of only points has been developed in Ref.
[25] (Section 3.6). Finally, methods based on whole objects
have been proposed, based either on learning from human
evaluation [26] (Section 3.5), on projections of the objects
[27] (Section 3.7), or on a morphological approach [28,29]
(Section 3.8).

In the following, we denote by S the Euclidean space
where the objects are de2ned. S is typically a 2D or 3D
discrete space (as in image processing).

3.1. Fuzzy relations describing relative position

In Refs. [23,24], the angle between the segment joining
two points a and b and the x-axis of the coordinate frame (in
2D) is computed, according to Fig. 2. This angle, denoted
by �(a; b), takes values in [ − 	; 	], which constitutes the
domain on which primitive directional relations are de2ned.

θ 

y

xa

b

Fig. 2. De2nition of angle � for two object points a and b.
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Fig. 3. De2nition of fuzzy relations representing relative position.

Fig. 3 illustrates four such relations “left”, “right”,
“above” and “below”, de2ned in Ref. [23], as cos2 �
and sin2 � functions. Other functions are possible: in
Ref. [24] trapezoidal shaped membership functions are
used, for the same relations. Whatever the equations, the
membership functions for these relations are denoted by

left ; 
right ; 
above, and 
below, and are functions from
[ − 	; 	] into [0; 1]. The equations are chosen according to
simplicity (e.g. cos or sin functions), to the fact that they
de2ne a fuzzy partition of [− 	; 	], and to their invariance
properties with respect to rotation (i.e. a rotation should
correspond to a translation of the membership functions).

In the work relying on these de2nitions, only these four
basic directions are used, other relations being expressed in
terms of these. However, we can propose a straightforward
extension to any direction. In 2D, a direction is de2ned
by an angle � with the x-axis. Using this convention, the
relationship “right” corresponds to � = 0. From 
right = 
0,
we derive 
�, representing the relationship “in direction �”,
for any � as follows:

∀�; 
�(�) = 
0(�− �) (1)

with for instance


0(�) =

{
cos2(�) if �∈ [− 	

2 ; +
	
2 ];

0 elsewhere:
(2)

This makes the de2nitions based on angle computation more
general. Moreover, as it will be seen in Section 4.4, it guar-
antees geometric invariance. Note that the relations obtained
for � = 	; � = −	=2 and � = 	=2 are consistent with the
de2nitions of 
left ; 
above, and 
below represented in Fig. 3.

Another solution for de2ning relations intermediate be-
tween the four basic ones has been proposed in Ref. [30].
This solution is based on logical combinations of these
four basic relations. For instance, “oblique right” is de2ned
by “(above and right of) or (below and right of)”. The
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membership function representing this relationship is com-
puted from 
right ; 
above, and 
below using min (for “and”)
and max (for “or”). In a more general way, any t-norm and
t-conorm could be used for that purpose. The advantage of
this approach is that only four membership functions have to
be de2ned, which is consistent with the usual way of speak-
ing about relative position. The drawback is that, contrary
to the de2nition proposed in Eq. (1), we cannot achieve a
great precision in direction using this approach. Also, the
shape of the membership function will vary depending on
the considered direction, leading to a high anisotropy and
therefore a loss of rotation invariance, while it remains the
same using Eq. (1).

Another approach to avoid this is to express Eq. (1) as a
combination of the four basic operations. The involved ag-
gregation operator is not necessarily a t-norm or a t-conorm.
Let us take the example of � = 	=4. According to Eq. (1),
we have


	=4(�) =




cos2(�− (	=4)) = 1
2

+cos(�)sin(�) if �∈ [− (	=4);

+3(	=4)];

0 elsewhere:

(3)

This can be expressed using the four basic relations as


	=4(�) =




1
2 +

√

0(�)
	=2(�) if �∈ [0; 	=2];

1
2 −

√

0(�)
−	=2(�) if �∈ [− 	=4; 0];

1
2 −

√

	(�)
	=2(�) if �∈ [	=2; 3(	=4)]:

(4)

It appears from these equations that the involved aggrega-
tion operator is rather a mean (a geometrical mean here)
than a conjunction or disjunction. Similar computations can
be carried out for other angles, but lead to more complex
expressions.

Another way to interpret the formulas is to express 
	=4(�)
as a combination of 
0(�), the degree to which � is to the
right, and of 
	=2(�), the degree to which � is above. Indeed
we have, for �∈ [0; 	=2] (the other cases can be treated
similarly)


	=4(�) = cos2 � cos2 	
4

(
1 + tan � tan

	
4

)

+ sin2 � sin2 	
4

(
1 + cot � cot

	
4

)
;

= 
0(�)
0

(	
4

)
!0 + 
	=2(�)
	=2

(	
4

)
!1; (5)

with

!0 = 1 + tan � tan
	
4
;

!1 = 1 + cot � cot
	
4

(6)

z
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Fig. 4. De2nition of a direction in 3D by two angles.

and

0(	=4)!0


	=2(	=4)!1
=

tan �
tan 	=4

: (7)

This means that the degree to which � is in the direction 	=4
is an aggregation of the degrees to which � is to the right
and above weighted by a function to which 	=4 is right and
above, respectively. The ratio between both weights is equal
to tan �=tan 	=4.

More generally for any �∈ [0; 	=2], we have, for
�∈ [0; 	=2]


�(�) = cos2 � cos2 �(1 + tan � tan �)

+ sin2 � sin2 �(1 + cot � cot �)

= 
0(�)
0(�)!0 + 
	=2(�)
	=2(�)!1 (8)

with

!0 = 1 + tan � tan �;

!1 = 1 + cot � cot �
(9)

and

0(�)!0


	=2(�)!1
=

tan �
tan �

: (10)

The extension to 3D images calls for a representation of a
direction by two angles, as illustrated in Fig. 4. They will be
denoted by �1 and �2 (with �1 ∈ [0; 2	] and �2 ∈ [−	=2; 	=2],
the 2D case corresponding to �2 = 0).

In Ref. [30], the membership functions de2ning six basic
directions in the 3D space are de2ned, again using squared
cosinus and sinus functions. For instance, the relation “right”
is de2ned as


right(�1; �2) =




cos2(�1)cos2(�2) if �1 ∈ [− 	
2 ; +

	
2 ]

and

�2 ∈ [− 	
2 ; +

	
2 ];

0 otherwise:
(11)
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Fig. 5. De2nition of fuzzy relations representing relative position in 3D. From left to right: “right”, “behind” and “above”.

The other relations are de2ned in a similar way. Three of
the six basic relations are shown in Fig. 5.

3.2. Centroid method

A 2rst simple solution to evaluate a fuzzy relationship be-
tween two objects consists in representing each object by a
characteristic point. This point is chosen as the object cen-
troid in Refs. [13,24]. Let cR and cA denote the centroids of
objects R and A. The degree of satisfaction of the proposi-
tion “A is to the right of R” is then de2ned as


R
right(A) = 
right(�(cR; cA)); (12)

where the membership function 
right is de2ned as in
Section 3.1.

Note that, although not mentioned in the original paper,
this method can be straightforward extended to 3D.

Extension to fuzzy objects can be done in two ways. One
way consists in computing a weighted centroid, where the
contribution of each object point is equal to its membership
value. The second way consists in applying the de2nition
for binary objects on each �-cut and then aggregating the
results using a summation [31], or the extension principle
[32]. However, this second method may be computation-
ally expensive, depending on the quantization of the object
membership values.

3.3. Histogram of angles: compatibility method

The method proposed in Refs. [33,23,30] consists in com-
puting the normalized histogram of angles and in de2ning
a fuzzy set in [0; 1] representing the compatibility between
this histogram and the fuzzy relation. More precisely, the
angle histogram is computed from the angle between any
two points in both objects as de2ned before, and normal-
ized by the maximum frequency. Let us denote HR(A) this
normalized histogram, where R is the reference object and
A the object the position of which with respect to R is eval-
uated. HR(A) represents the spatial directional relations of

the object A with respect to the reference object R. Issues
that arise here include expressing this in terms of the basic
relations, and extracting a global representative evaluation
of this spatial relation.

With respect to the 2rst issue, operations of compatibility
and matching of two fuzzy sets are considered. The com-
patibility set 
C(H;
�) between HR(A) and 
� is de2ned, for
any u∈ [0; 1], following the extension principle as


C(H;
�)(u) =

{
0 if 
−1

� (u) = ∅;
supv|u=
�(v) H

R(A)(v) otherwise:

(13)

With respect to the second issue, a global evaluation of the
relation can for instance be provided by the center of gravity
of the compatibility fuzzy set:


R
� (A) =

∫ 1
0 u
C(H;
�)(u) du∫ 1
0 
C(H;
�)(u) du

: (14)

Another solution for the 2rst issue is to use a fuzzy pat-
tern matching approach [34,35] (between 
� and HR(A)), as
suggested in Ref. [28]. Then the global evaluation is given
in the form of a pair necessity/possibility.

Ultimately, this global evaluation, which can be done in
many ways, has to be selected according to the type and
goals of the application at hand.

Fig. 6 presents the angle histograms for the two examples
of Fig. 1.

The compatibility fuzzy sets for two relative positions are
presented in Fig. 7 for object B with respect to reference
object R (Fig. 1). These fuzzy sets show that object B is right
and above of the reference object, and not left nor below.
The 2nal values obtained after center of gravity computation
are 0.051 for left, 0.550 for right, 0.166 for below and 0.500
for above. These results 2t the intuition.

The extension of this method to 3D objects amounts to
computing a bi-dimensional histogram, i.e. as a function of
two angles, and then applying the same principle using the
relations de2ned in 3D. The computation of the histogram
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Fig. 6. Angle histograms for the two examples of Fig. 1. Left: object A w.r.t. reference object R; right: object B w.r.t reference object R.

is heavy in 2D, and becomes even more so in 3D. Another
problem when computing bi-histograms is that the domain of
possible angle values may be under-represented, depending
on the size and the sampling of the considered objects. This
may result in a noisy and hole containing histogram. This
e0ect already appears in 2D.

A possible direction for overcoming the computational
burden would be to consider 2D restrictions of the 3D space,
depending on the direction we are interested in. For instance,
when assessing a left or right direction, it might be suFcient
to look only at projections of the objects in the horizontal
plane. This approach can be considered in particular for
almost convex objects without holes. However, for more
complex objects, too much information may be lost by this
approach.

The fuzzy extension of this method is based on a weighted
histogram [23]. Let us denote by 
R and 
A the member-
ship functions of the fuzzy objects R and A. The weighted
histogram is computed as

HR(A)(�) =
∑

a;b;�(a;b)=�

min[
R(a); 
A(b)]: (15)

This expression if equivalent to compute a histogram on
each �-cut and to combine the obtained results by summation
as in Ref. [31]. Indeed, let us consider, for instance, a dis-
cretization of the values of �, as �1; : : : �n, with �1 =0; �n=1,
and ∀i; 16 i6 n− 1; �i ¡ �i+1 (a similar reasoning holds
in the continuous case). Let us denote by 
Ri and 
Ai the
�-cuts of 
R and 
A at level �i. Then we have

min[
R(a); 
A(b)] =
n−1∑
i=1

(�i+1 − �i)min[
Ri (a); 
Ai (b)]:

(16)

From this equality, we derive

HR(A)(�) =
∑

a;b;�(a;b)=�

n−1∑
i=1

(�i+1 − �i)min[
Ri (a); 
Ai (b)]

=
n−1∑
i=1

(�i+1 − �i)
∑

a;b;�(a;b)=�

min[
Ri (a); 
Ai (b)]

=
n−1∑
i=1

(�i+1 − �i)H

Ri (
Ai )(�): (17)

This shows that the weighted histogram is equivalent to the
summation of the histograms of the �-cuts. However the 2rst
form is computationally much less expensive, and does not
involve any assumption on the quanti2cation of the values
of �.

3.4. Aggregation method

An aggregation method has been proposed in Refs.
[13,24], which uses all points of both objects instead of
only one characteristic point. For any pair of points i in
R and j in A, the angle �(i; j) is computed, and the corre-
sponding membership value for a direction � (being one of
the 4 considered relations) is computed as previously


ij = 
�(�(i; j)): (18)

All these values are then aggregated. The aggregation oper-
ator suggested in Ref. [24] is a weighted mean


R
� (A) =

[∑
i∈R

∑
j∈A

wij

p
ij

]1=p

; (19)

where wij are weights the sum of which is equal to 1.

3.5. Learning approach

In Ref. [26], a learning approach using neural networks is
proposed in order to cope with the complexity and variety
of spatial relationships. The idea is to learn membership
functions of spatial relationships for a few types of shapes,
for which it is possible to easily assign membership values.
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"left"  "right"

"below" "above" 

Fig. 7. Compatibility between each of the four relations and the angle histogram of object B with respect to reference object R (both are
de2ned on Fig. 1).

Four basic relations are considered. The angle histograms
of the training data are the inputs of neural networks (one
such network for each type of shape), the outputs of which
are then combined using Choquet fuzzy integrals.

The main problem with this approach is the 2rst assign-
ment for the training data. It does not seem easy to de2ne cri-
teria that allow to distinguish between values such as 0.002
and 0.005, 0.97 and 0.93, etc.

3.6. Histogram of forces

Instead of considering pairs of points as in angle his-
togram approaches, pairs of longitudinal sections are

considered in Ref. [25], where the concept of F-histogram is
introduced. The degree to which an object A is in the direc-
tion � with respect to a reference object R is computed using
successively points, segments, and longitudinal sections. In-
formation on points is translated by a function # acting on
the di0erence of coordinates on the �-axis between points
of A and points of R. Therefore, distance information is ex-
plicitly taken into account. A second function f integrates #
on segments of A and R in the direction �. Finally, the con-
tributions of segments constituting the longitudinal sections
of A and R in the direction � are summed. A so-called “his-
togram of forces” allows to compute the weight supporting
a proposition like “object A is in direction � from object R”.
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The de2nitions of the functions involved in this construc-
tion are done in an axiomatic way, that guarantees that
the obtained relationships have good properties. Note that
a similar axiomatic treatment can be adopted for the other
approaches without any change in the results. Basically,
this approach amounts to considering a weighted angle his-
togram

HR(A)(�) =
∑

a;b;�(a;b)=�

’(‖ãb‖); (20)

where ’ is a decreasing function. Typically, ’(x) = 1=xr .
For r = 0, the weighted histogram is equal to the angle
histogram, and for r¿ 1, it gives more importance to points
of A that are close to some points of R. This allows to deal
with situations where A and R have very di0erent partial
extents, and to account only for the closest parts of them.
Let us consider the examples in Fig. 1. The angle histograms
(or equivalently the force histograms for r = 0) are shown
in Fig. 6. They are compared in Fig. 8 to force histograms
obtained for di0erent values of r. For object A with respect
to object R, it appears that when r increases, the shape of the
histogram concentrates more and more around the value 0,
i.e. the main relation becomes “to the right”, and the part
above has less importance. For object B with respect to
object R, on the contrary the part of B which is above R
gains importance, since it is closest to the square than the
part that is to the right of R.

This approach has been extended to fuzzy objects using
their �-cuts. Extension to 3D objects could be probably done,
but with a high complexity.

3.7. Projection-based approach

The approach proposed in Ref. [27] is very di0erent from
the previous ones since it does not use any histogram. It is
based on a projection of the considered object on the axis
related to the direction to be assessed (e.g. the x-axis for
evaluating the relations “left to” and “right to”). Let us detail
the computation for the relation “A is left from R”. The
same construction applies for any direction. Let us denote by
Rf(x) the normalized projection of the set R on the x-axis.
The degree for a point x to be left to R is de2ned as

R←(x) =

∫ +∞
x Rf(y) dy∫ +∞
−∞ Rf(y) dy

: (21)

This de2nition provides a degree of 1 for points that are
completely on the left of the support of Rf and a degree of
0 for points that are completely on the right of the support
of Rf, and the degree decreases in-between.

Let us now introduce a second set A. The degree
(A ← R)f(x) to which x is in the projection of A and to
the left of R is expressed as a conjunction of Af(x) and
R←(x). The conjunction is taken as a product in Ref. [27].
The degree to which A is left from R is then deduced as the
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Fig. 8. Force histograms for the two examples of Fig. 1. Top:
object A w.r.t. reference object R; bottom: object B w.r.t reference
object R. Solid line: r = 0, dotted line: r = 2, dashed line: r = 5.

ratio of the areas below (A← R)f and Af


R
� (A) =

∫ +∞
−∞ Af(x)

∫ +∞
x Rf(y) dy dx∫ +∞

−∞ Af(y) dy
∫ +∞
−∞ Rf(y) dy

: (22)

This approach can be generalized to fuzzy sets [27] by taking
each point into account in the projection to the amount of
its membership function, leading to similar properties than
in the crisp case.
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3.8. Morphological approach

In [28,29,36] a morphological approach has been pro-
posed in order to evaluate the degree to which an object A
is in some direction with respect to a reference object R,
consisting of two steps:

(1) A fuzzy landscape is 2rst de2ned around the reference
object R as a fuzzy set such that the membership value
of each point corresponds to the degree of satisfaction
of the spatial relation under examination. This makes
use here of a spatial representation of fuzzy sets, which
already proved to be useful in image processing [37,38].
Therefore, the fuzzy landscape is directly de2ned in the
same space as the considered objects, contrary to the
projection method [27], where the fuzzy area is de2ned
on a 1D axis.

(2) Then the object A is compared to the fuzzy landscape
attached to R, in order to evaluate how well the object
matches with the areas having high membership values
(i.e. areas that are in the desired direction). This is done
using a fuzzy pattern matching approach, which pro-
vides an evaluation as an interval or a pair of numbers
instead of one number only.

3.8.1. Relative position from fuzzy pattern matching
A 3D direction is de2ned by two angles �1 and �2 as

illustrated in Fig. 4, where �1 ∈ [0; 2	] and �2 ∈ [−	=2; 	=2].
The direction in which the relative position of an object with
respect to another one is evaluated is denoted by: ũ �1 ;�2 =
(cos �2 cos �1; cos �2 sin �1; sin �2)t , and we note �=(�1; �2).
Let us denote by 
�(R) the fuzzy set de2ned in the image
such that points of areas which satisfy to a high degree the
relation “to be in the direction ũ �1 ;�2 with respect to reference
object R” have high membership values. In other words, the
membership function 
�(R) has to be an increasing function
of the degree of satisfaction of the relation. It is a spatial
fuzzy set (i.e. a function of the image S into [0; 1]) and
directly related to the shape of R. The precise de2nition of

�(R) is given below.

Let us denote by 
A the membership function of the ob-
ject A, which is a function of S into [0,1]. The evaluation
of relative position of A with respect to R is given by a func-
tion of 
�(R)(x) and 
A(x) for all x∈S. An appropriate
tool for de2ning this function is the fuzzy pattern match-
ing approach [35]. Following this approach, the evaluation
of the matching between two possibility distributions con-
sists of two numbers, a necessity degree N (a pessimistic
evaluation) and a possibility degree ( (an optimistic eval-
uation), as often used in conjunction with fuzzy sets. In our
application, they take the following forms:

(R
�1 ;�2 (A) = sup

x∈S
t[
�(R)(x); 
A(x)];

NR
�1 ;�2 (A) = inf

x∈S
T [
�(R)(x); 1− 
A(x)]; (23)

where t is a t-norm (fuzzy intersection) and T a
t-conorm (fuzzy union) [39]. In the crisp case, these
equations reduce to: (R

�1 ;�2 (A) = supx∈A 
�(R)(x), and
NR

�1 ;�2 (A) = inf x∈A 
�(R)(x).
The possibility corresponds to a degree of intersection be-

tween the fuzzy sets A and 
�(R), while the necessity cor-
responds to a degree of inclusion of A in 
�(R). They can
also be interpreted in terms of fuzzy mathematical morphol-
ogy, since the possibility (R

�1 ;�2 (A) is equal to the dilation of

A by 
�(R) at origin, while the necessity NR

�1 ;�2 (A) is equal
to the erosion, as shown in Ref. [40]. These two interpre-
tations, in terms of set theoretic operations and in terms of
morphological ones, explain how the shape of the objects is
taken into account.

Several other functions combining 
�(R) and 
A(x) can
be constructed. The extreme values provided by the fuzzy
pattern matching are interesting because of their morpho-
logical interpretation, and because they provide a pair of
extreme values and not only a single value and may better
capture the ambiguity of the relation if any. One drawback
of these measures is that they are sensitive to noise, since
they rely on in2mum and supremum computation. An av-
erage measure can also be useful from a practical point of
view (it is much less sensitive to noise), and is de2ned as

MR
�1 ;�2 (A) =

1
|A|

∑
x∈S

t[
A(x); 
�(R)(x)]; (24)

where |A| denotes the fuzzy cardinality of A: |A| =∑
x∈S 
A(x).

3.8.2. De<nition of 
�

The key point in the previous de2nition relies in the de2-
nition of 
�(R). The requirements stated above for this fuzzy
set are not strong and leave room for a large spectrum of
possibilities. This Mexibility allows the user to de2ne any
membership function according to the application at hand
and the context requirements. The following de2nition looks
precisely at the domains of space that are visible from a ref-
erence object point in the direction ũ �1 ;�2 . This applies to any
kind of objects, including those having strong concavities.

Let us denote by P any point of S, and by Q any point
of R. Let -(P; Q) be the angle between the vector Q̃P and
the direction ũ �1 ;�2 , computed in [0; 	]:

-(P; Q) = arccos
[
Q̃P · ũ �1 ;�2

‖Q̃P‖

]
and -(P; P) = 0:

(25)

We then determine for each point P the point Q of R lead-
ing to the smallest angle -, denoted by -min. In the crisp
case, Q is the reference object point from which P is visi-
ble in the direction closest to ũ �1 ;�2 (see Fig. 9): -min(P) =
minQ∈R -(P; Q). The fuzzy landscape 
�(R) at point P is
then de2ned as 
�(R)(P) = f(-min(P)), where f is a de-
creasing function of [0; 	] into [0; 1]. We can chose for
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instance a simple linear function (Fig. 9 right): 
�(R)(P) =
max(0; 1− (2-min(P)=	)).

Illustrations of the de2nition of 
�(R) are given in Fig. 10
for several reference objects. They show the consistency of
the proposed approach in case of concavities: since the aim
of the proposed de2nition is not to 2nd only the dominant
relationship, an object may satisfy several di0erent relation-
ships with high degrees. Therefore, “to be to the right of R”
does not mean that the object should be completely to the
right of the reference object, but only that at least part of
the object is to the right of part of the region. This is the
case for instance in Fig. 10, where we obtain high values of
being right inside the concavities.

In the fuzzy case, this de2nition is extended as Q∈R
and f(-min) = maxQ∈R f(-(P; Q)) (since f is decreasing),
which translates in fuzzy terms as


�(R)(P) = max
Q∈Supp(S)

t[
R(Q); f(-(P; Q))]; (26)

where t is a t-norm. Fig. 11 illustrates the obtained result on
a fuzzy object.

An advantage of this approach is its interpretation in terms
of morphological operations. It can be shown that 
�(R) is
exactly the fuzzy dilation of 
R by /, where / is a fuzzy
structuring element de2ned on S as

∀P ∈S; /(P) = max
[
0; 1− 2

	
arccos

ÕP · ũ �

‖ÕP‖

]
; (27)

where O is the center of the structuring element. This struc-
turing element is illustrated in 2D in Fig. 12. The following

u α 
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0
0  /2  π
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π
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Fig. 9. De2nition of -min (left) and of f(-min) (right).

Fig. 10. A few examples of 
�(R) for �1 = �2 = 0 corresponding to the relative position “right” (high grey values correspond to high
membership values) using the morphological (angle of visibility) method, for di0erent types of reference objects (reference objects are black).

de2nition is used for the fuzzy dilation (see Ref. [40] for
more details about fuzzy morphological operations)

∀P ∈S; D/(
)(P) = max
Q∈S

t[
(Q); /(P − Q)]; (28)

where t is a t-norm. This equivalence provides an additional
morphological interpretation of this approach.

3.8.3. Two simple examples
We illustrate this de2nition on the two simple 2D exam-

ples shown in Fig. 1, and compute the relative position of
objects A (rectangle) and B (corner) with respect to refer-
ence object R (square), for four directions: left (�1 = 	),
right (�1 = 0), above (�1 = 	=2) and below (�1 = 3	=2).
Fig. 13 provides the obtained results, using Eqs. (21)
and (22) for the possibility degree, necessity degree and
average, respectively. The interval [N;(] represents the
range between the minimal and maximal values obtained in

Fig. 11. Left: a fuzzy reference object. Right: fuzzy landscape
representing the relationship “to the left of” with the de2nition
expressed by Eq. (26).

Fig. 12. Structuring element / for �1 = 0.
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Fig. 13. Left: Results obtained for the object A of Fig. 1 with respect to reference object R. The three given values correspond to necessity
(lowest value of the bar) and possibility (highest value of the bar) degrees, and to the average value (diamond). Right: Results obtained for
the object B of Fig. 1 with respect to reference object R.

the object for the degrees of satisfaction of the relation to the
reference object. This can be interpreted as the ambiguity of
the relationship, or as the ignorance we have about a precise
value for this relation.

These results 2t well the intuition. Object A is found
mainly on the right of reference object R and to some extent
also above it. The lower part of A is not above R and there-
fore the necessity for this relation is equal to 0. Similarly,
B is found to be mainly on the right and above object R.
This last relation is even more ambiguous than in the case
of A, since a part of B is completely above R while another
is completely not above it. We obtain in this case the max-
imum ambiguity, represented by an interval [0; 1] for the
necessity and possibility.

The average values provide a summary of the satisfaction
of the relationship. Of course, it is but one possible way to
provide a global measure. Other measures could be derived
from the set of all values taken by 
�(R)(P) for P belonging
to the considered object, or from the fuzzy histogram of
these values.

A propagation algorithm has been proposed in Ref. [36],
that considerably reduces the complexity of the algorithm,
and that makes it tractable even in the 3D fuzzy case.

This kind of morphological approach is similar to the one
proposed in Ref. [41], where the fuzzy landscape is de2ned
as a dilation with a radial structuring element. The assess-
ment of a relative position is then performed by aggregating
(as in the aggregation method) the values obtained by per-
forming a conditional dilation, i.e. by taking the intersection
of the dilation of the 2rst object with the other object. This
method can be extended to fuzzy objects and to 3D objects,
in a way similar to the one proposed in Refs. [28,29].

4. Comparative study of fuzzy de�nitions

4.1. Types of basic elements

A 2rst perspective along which the various de2nitions can
be compared is the basic information on which they rely,

i.e. the geometrical elements that constitute the core of the
computation:

• in angle-based approaches, the main elements are points,
from which angles and angle histogram are computed; the
dimension of these elements is 0, whatever the dimension
of the considered space;
• in the force histogram method, the main elements are

longitudinal sections, i.e. 1D elements;
• in the projection method, they are projections of the ob-

jects in the desired direction; therefore the dimension is
1 for 2D objects, and it would be n− 1 for an extension
of the method to n-dimensional objects;
• in the morphological approach, the basic elements are the

objects themselves, and all computation is performed in
the image space, i.e. in n dimensions for n-dimensional
objects.

4.2. Types of evaluation

Another line of comparison is the type of result that each
method provides for the evaluation of a spatial relationship.
It may be a number, an interval or a fuzzy number:

• one number is provided by the centroid and the aggrega-
tion methods;
• for the angle method, the 2nal result is also one number;

however, we can consider the whole compatibility fuzzy
set as a result, which is then a fuzzy number, or apply
a fuzzy pattern matching approach instead of extension
principle to get an interval, as suggested in Ref. [28];
• the method of histogram of forces also provides a number;
• the projection method provides a number;
• the morphological method provides an interval as a result,

along with an average value; considering the whole his-
togram of 
�(R)(x), for all x∈A provides an evaluation
as a fuzzy set.

Moreover, all methods can be applied for a set of directions,
and the result can be considered as a possibility distribution
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on the space of directions, expressing the degrees to which
an object A is in various directions with respect to a refer-
ence object R. This possibility distribution is a complete de-
scription of the relative position between both objects. For
some applications, this may be more useful than consider-
ing only four basic directions, since it constitutes a richer
information.

4.3. Algebraic properties

4.3.1. Re>exivity
ReMexivity concerns the direction of an object with re-

spect to itself. A relation is reMexive if we have 
A
� (A) = 1.

For the centroid method, since �(cA; cA) is not de2ned, it
could be set to � in order to achieve reMexivity. However,
this is not meaningful since the value would depend on �.

For the aggregation method and the compatibility method,
reMexivity is not satis2ed in general. The same holds for the
method based on histogram of forces.

For the projection method, reMexivity is not satis2ed in
general.

For the morphological method, when de2ning 
�1 ;�2 (R),
we have two choices for the points of R. The 2rst one is
to take 
�1 ;�2 (R)(P) = 1 for those points. In this case, the
degree of satisfaction of a relationship is reMexive.

However it is not clear if reMexivity property is really
necessary in practice, since for most applications, such re-
lationships are assessed between di0erent objects only, and
reMexivity is then not meaningful.

4.3.2. Symmetry
Symmetry expresses that the degree to which A is in di-

rection � with respect to R should be equal to the degree to
which R is in direction � + 	 with respect to A:


R
� (A) = 
A

�+	(R): (29)

This property is certainly highly desirable for pattern recog-
nition purposes, since the conclusion should not change if
one or the other object is taken as reference.

For the centroid method, we have


	+�[�(cA; cR)] = 
�[�(cR; cA)]; (30)

which implies that symmetry is satis2ed. Note that this as-
sumes a consistent de2nition of the 
�’s, as the one sug-
gested in Eq. (1).

For the aggregation method, symmetry holds if and only
if the weights wxy are chosen in a symmetrical way (i.e.
∀x; y; wxy = wyx).

For the angle and compatibility method, we have

HR(A)(�) = HA(R)(� + 	); (31)

which expresses a symmetry property for the angle his-
togram, from which the symmetry of the relative position
follows.

For the histogram of forces method, the longitudinal sec-
tions of both objects are the same for � and for � + 	, but
their roles are reversed in the computation. Therefore, the
symmetry property holds for this de2nition.

For the projection method, symmetry holds.
For the morphological approach, the following symmetry

property holds for the possibility:

∀�1 ∈ [0; 2	]; ∀�2 ∈
[
−	

2
;
	
2

]
;

(R
�1 ;�2 (A) = (A

	+�1 ;−�2 (R); (32)

which reduces in 2D to

∀�∈ [0; 2	]; (R
� (A) = (A

	+�(R): (33)

Other properties related to symmetry are stated in Ref. [27]
and relate the degree to which A is to the left of B and
the degree to which A is to the right of B. Here we con-
sider extensions of these properties, by considering, for any
direction �, 
R

� (A) and 
R
�+	(A). Of course, because of the

possible shape complexity, no strong links can be expected
between these two values. The properties stated in Ref. [27]
are:

• S1: 
R
� (A) = 1⇒ 
R

�+	(A) = 0;
• S2: 
R

� (A) = 0⇒ 
R
�+	(A) = 1;

• S3: 
R
� (A) ¿ 0⇒ 
R

�+	(A) ¡ 1;
• S4: 
R

� (A) ¡ 1⇒ 
R
�+	(A) ¿ 0.

The idea behind these properties is that an object A cannot
be said to be completely on the right of R if it has parts that
are to the left of R.

For the centroid method, property S1 holds. For S2, a
weaker property holds, since we just have 
R

� (A) = 0 ⇒

R

�+	(A) ¿ 0 (but not necessarily 
R
�+	(A) = 1). For S3,

a stronger property holds, since we have 
R
� (A) ¿ 0 ⇒


R
�+	(A) = 0. The implication of property S4 does not hold

in general.
For the aggregation method, S1 and S3 hold, S2 and S4

do not hold in general.
For the compatibility method, none of these properties

hold in general. Similar results are obtained for the histogram
of forces method.

For the projection method, all properties S1–S4 holds, as
shown in Ref. [27].

For the morphological approach, we have slightly
di0erent properties, that may involve both necessity and
possibility:

• (R
� (A) = 1⇒ NR

�+	(A) = 0 if R is convex;
• (R

� (A) = 0⇒ NR
�+	(A) ¿ 0;

• NR
� (A) = 1⇒ NR

�+	(A) = 0 if R is convex;
• NR

� (A) = 0⇒ (R
�+	(A) ¿ 0.
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4.4. Geometrical properties

4.4.1. Invariance with respect to geometric
transformations

Invariance with respect to geometric transformations
expresses that the relative position between two objects
should not change if both objects are translated by the same
translation vector, if they are scaled by the same factor or if
they are rotated by the same rotation (the direction in which
the relative position is assessed being rotated as well).

Since angles are invariant by translation, scaling and rota-
tion (up to a rotation of �), these invariance properties hold
for all de2nitions based on angle computation (centroid, ag-
gregation, compatibility methods).

These invariance properties are satis2ed also by the
method based on histogram of forces.

For the projection method, invariance by translation and
rotation is satis2ed.

For the morphological method, the de2nition is invariant
with respect to translation, rotation and scaling, for 2D and
3D objects (crisp and fuzzy). This property holds for neces-
sity, possibility, and average value as well.

4.4.2. Characterization of extreme situations
This section aims at characterizing extreme situations,

which include two types of problems. The 2rst one con-
sists in determining the situations for A and R for which we
have 
R

� (A) = 1 and 
R
� (A) = 0, respectively. The second

one concerns the evaluation provided by the di0erent meth-
ods for objects that have separated supports in the direc-
tion �, i.e. for which there exists an hyperplane orthogonal
to the considered direction, that separates the space in two
half-spaces, each of the objects being completely included
in di0erent half-space. For instance, A is “completely” to
the right of “R” (i.e. the supports of A and R are separated
in the x-direction) if the x-coordinates of the points of A are
all greater than the x-coordinates of the points of R. In the
example shown in Fig. 1, the supports of A and R are sep-
arated in the x-direction, while the supports of B and R are
not.

Let us consider the 2rst problem. For the centroid method,
we have the following results:


R
� (A) = 0 ⇔ �(cR; cA) ∈

[
−	 + �;−	

2
+ �

]

∪
[	

2
+ �; 	 + �

]
; (34)


R
� (A) = 1 ⇔ �(cR; cA) = �: (35)

For the aggregation method, 
R
� (A)=0 if and only if A and R

have separated supports in the direction �, and 
R
� (A) = 1 if

and only if A and R are alignated (and separated) segments
in the direction �. Note that this condition is severe since it
imposes a strict condition on the shape of the objects.

For the histogram of angles with the compatibility
method, 
R

� (A) = 0 if and only if A and R have separated
supports in the direction �, and 
R

� (A) = 1 if and only if
HR(A)(�) = 1 and HR(A)(�) = 0 for � �= � and � belonging
to the support of 
�. This means that A and R are composed
of separated segments in the direction � but A may also
have parts that are opposite to � with respect to � (i.e. parts
that contribute to the angle histogram outside of the support
of 
�).

Let us now consider the second problem, where A and R
have separated supports in the direction �.

Due to the previous characterizations of extreme cases,
we do not have in general 
R

� (A) = 1 if A and R have sepa-
rated supports in the direction �, for any of the angle based
methods (centroid, aggregation and compatibility).

Both problems are addressed together in Ref. [27] for
the projection approach, and the following properties hold:

R

� (A) = 0 if and only if the support of A is completely
in the direction � + 	 with respect to R. In the same way,

R

� (A) = 1 if and only if the support of A is completely in
the direction � with respect to R. This strong result is due to
the projection, that summarizes all information on only one
axis.

For the morphological method, we have the following
results:

• (R
� (A) = 0 if and only if A is completely in the direction

opposite to � with respect to R.
• NR

� (A) = 0 if and only if there exists at least one point of
A that is completely in the direction opposite to � with
respect to R.
• NR

� (A) = 1 if and only if A is included in a band limited
by two parallel lines in the direction � that limit R.
• (R

� (A) = 1 if and only if there exists at least one point of
A in this band.
• If A and R have separated supports, we do not necessarily

obtain 1.

4.4.3. In>uence of the distance between objects
Let us assume here that object A is moving in the di-

rection - with respect to R. The question addressed in this
section is the following: what is the behavior of 
R

� (A) when
the distance between the objects increases? We show that,
in general, the limit value can be predicted from the dis-
placement angle.

In 2D, we assume that each point of A undergoes a transla-
tion by the vector 3ũ-. The generalization to 3D is straight-
forward. The limit value of 
R

� (A + 3ũ-) is obtained when
3 goes towards +∞.

For the centroid and the aggregation methods, we have

lim
3→+∞


R
� (A + 3ũ-) = 
�(- − �): (36)

This means that, at the limit, the objects are seen as points.
For the compatibility method, when the distance in-

creases, HR(A) becomes concentrated around the value
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-− � and is a Dirac function at -− � at the limit. Then the
centroid of the compatibility fuzzy set is again 
�(- − �).

Exactly the same result is obtained for the method based
on histogram of forces.

For the projection method, a completely di0erent behavior
can be observed. If - = � + 	=2 or - = � − 	=2, then the
distance has no inMuence since the projections do not change.
On the contrary, if - takes any other value, then the supports
are going farther from each other. Two cases have to be
considered:

(1) If -∈ ]� − 	=2; � + 	=2[, then A is more and more
in the direction � with respect to R. At the limit, the
projections have disjoint supports and 
R

� (A) = 1.
(2) If -∈ ]� + 	=2; � + 3	=2[, then A is less and less in the

direction � with respect to R. At the limit, the projec-
tions have disjoint supports and 
R

� (A) = 0.

For the morphological approach, the limit of 
�(R) when
the point goes to in2nity in the direction - is equal to

f(- − �) = 1− 2(- − �)
	

: (37)

This limit does not depend on the considered point. There-
fore all three values (R

� (A); NR
� (A), and MR

� (A) have the
same limit when A is at in2nite distance of R in the direction
-. This result is equivalent to the value 
�(- − �) obtained
with the other approaches. In 3D, we obtain similar results.
For instance, when the x coordinate of a point goes to in-
2nity (i.e. the point moves in the horizontal direction away
from the reference object), then the limit of 
�(R) is equal to

1− 2
	

arccos(cos �1 cos �2): (38)

Again the three values de2ning the relative position have an
equal limit.

These results show that when the distance between the
objects increases, the objects are seen as points. The value
of their relative position can be predicted only from the
direction of interest and the direction in which one object
goes far away from the reference object. Therefore, the shape
of the objects no longer plays a role in the assessment of
their relative position.

4.5. Implementation issues

Let us consider now the computation complexity of the
di0erent approaches presented above. We assume here that
both objects have numbers of points of the same order, say
N , which is also of the same order as the number of points
in the image (it is enough to restrict the image to the support
of the objects to achieve this condition). 1

1 A more precise complexity evaluation for the morphological
approach is provided in Refs. [29,36].

For the centroid method, the computation of the center
of gravity has a linear complexity, and therefore the whole
computation is O(N ).

For angle based methods (aggregation and compatibil-
ity), the complexity is O(N 2) for the computation of the
histogram. For the compatibility method, considerable com-
putation time comes also from the computation of the com-
patibility fuzzy set (say C), and is directly related to the
discretization of angles that is used. Therefore the global
complexity is O(N 2 + C). Note than in general C is small
in comparison to N 2.

For the method based on histogram of forces, the algo-
rithm proposed in Ref. [25] is O(N

√
N ).

For the projection based approach, the computation of
the projection is O(N ). If we assume that the average num-
ber of points in the projection is

√
N , then the computation

of A← is O(
√

N ). However, in the worst case (very elon-
gated structure in the direction �), it is O(N ). Therefore, the
double integration involved in the computation of 
R

� (A) is
O(N 2), which makes a global computation of the order of
O(N 2).

For the morphological approach, the complexity is
O(N (1 + 2nV )) where nV denotes the size of the neighbor-
hood used for the propagation (typically only a few points).
Therefore the complexity is of the order of N . One advan-
tage of this approach is that the fuzzy landscape 
R

� can be
computed only once if the position of several objects has
to be assessed with respect to the same reference object
R. Once 
R

� is computed, the complexity is strictly linear
for each object. Moreover, with the propagation algorithm
described in Ref. [36], the complexity is in general much
lower than this worst-case complexity. This computation
time gain is not possible with the other approaches, since
the histogram of angles or of forces has to be re-computed
for any pair of objects.

Let us now look at the extension to 3D objects and to
fuzzy objects, and at its complexity.

Although not always stated in the original papers present-
ing the de2nitions, all de2nitions can be potentially extended
to 3D. A detailed description of these extensions is provided
for the compatibility method in Ref. [30] and for the mor-
phological approach in Refs. [29,36]. The computation time
becomes rather important for angle based methods. For the
morphological approach, experiments on various types of
volumes have shown reasonable computation time with the
propagation algorithm.

Extensions to fuzzy objects can be obtained by integrating
results of the method performed on each �-cut [13]. However
this becomes very heavy. For instance for a O(N 2) method,
if n �-cuts are taken, then the complexity becomes O(N 2n).
One advantage of the morphological approach is that it is
directly applicable to fuzzy objects, without increase of the
complexity [36]. Histogram-based approaches can also be
applied without additional complexity, just by taking each
point into account in the histogram to the amount of its
membership to the considered fuzzy set [23]. An extension to
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fuzzy objects is also proposed in Ref. [27] for the projection
method, that seems to be rather expensive.

4.6. Comparison on some examples

In this section, we give some numerical results, on a few
simple examples. Five pairs of objects are studied, illustrated
in Figs. 1 and 14. The 2rst two examples (A with respect to R
and B with respect to R) already served to illustrate the main
de2nitions. The three other examples are constituted by three
rectangles for which the relative position with respect to a
concave object is assessed. This aims to show the inMuence
of concavities and of distance to the reference object.

Fig. 14. An example of a concave reference object and a rectangle
having an increasing distance to it.

Table 1
Relative position of object A (rectangle) with respect to object R
(square) of Fig. 1, using centroid, aggregation and compatibility
methods. Angle or force histograms are computed using r = 0; 2
and 5 (the angle histogram method corresponds to r = 0)

Object A with respect to object R

Relation Centroid Aggregation Compatibility

r = 0 r = 2 r = 5 r = 0 r = 2 r = 5

Left 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Right 0.76 0.73 0.79 0.86 0.62 0.67 0.75
Below 0.00 0.00 0.01 0.01 0.05 0.06 0.06
Above 0.24 0.27 0.20 0.13 0.38 0.33 0.25

Table 2
Relative position of object A (rectangle) with respect to object R (square) of Fig. 1, using fuzzy pattern matching approach (FPM) between
relationships and angle or force histograms computed using r = 0; 2 and 5, and using the morphological approach (the [N;(] intervals are
given, as well as the average value)

Object A with respect to object R

Relation FPM Morphological approach

r = 0 r = 2 r = 5

Left [0.00, 0.00] [0.00, 0.00] [0.00, 0.00] [0.00, 0.00] M = 0:00
Right [0.37, 0.68] [0.39, 0.98] [0.58, 1.00] [0.50, 1.00] M = 0:81
Below [0.00, 0.10] [0.00, 0.12] [0.00, 0.13] [0.00, 0.35] M = 0:05
Above [0.32, 0.63] [0.02, 0.61] [0.00, 0.42] [0.00, 0.73] M = 0:44

Tables 1 and 2 show the results for object A with respect
to object R, according to various methods. They all agree to
say that A is mainly to the right of R. The degree of being
to the right increases with the value of r, since the part of
A which is to the right of R is the closest one to R. On
the contrary, the degree of being above decreases with r.
The values are somewhat di0erent for all approaches, but
since the ranking and the general behavior is the same, no
conclusion concerning a more favorable approach can be
derived from this example.

Tables 3 and 4 show the results for object B with respect to
object R. For these objects, two main relations are satis2ed:
right and above. The centroid method does not account well
for the above relation, for which it gives a very low value.
This shows one of the limitations of this approach which
is too simple in that it reduces the data too much. Since
the part of B which is above R is closer than the one to its
right, the values of being right decrease with r while the
values of being above increase. The morphological approach
highlights the ambiguity of the relations for these objects.
Parts of B satisfy completely the above relation for instance,
while other parts do not satisfy it at all. The non zero degrees
obtained for the relation below for instance are due to some
points of B that are indeed partially below R.

Table 3
Relative position of object B with respect to object R of Fig. 1,
using centroid, aggregation and compatibility methods. Angle or
force histograms are computed using r = 0; 2 and 5

Object B with respect to object R

Relation Centroid Aggregation Compatibility

r = 0 r = 2 r = 5 r = 0 r = 2 r = 5

Left 0.00 0.00 0.00 0.01 0.05 0.06 0.08
Right 0.83 0.63 0.54 0.33 0.55 0.49 0.35
Below 0.00 0.03 0.02 0.01 0.17 0.16 0.15
Above 0.17 0.34 0.43 0.66 0.45 0.51 0.65
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Table 4
Relative position of object B with respect to object R of Fig. 1, using fuzzy pattern matching approach (FPM) between relationships and
angle or force histograms computed using r = 0; 2 and 5, and using the morphological approach (the [N;(] intervals are given, as well as
the average value)

Object B with respect to object R

Relation FPM Morphological approach

r = 0 r = 2 r = 5

Left [0.00, 0.06] [0.00, 0.10] [0.00, 0.11] [0.00, 0.44] M = 0:02
Right [0.34, 0.81] [0.10, 0.75] [0.00, 0.39] [0.29, 1.00] M = 0:81
Below [0.00, 0.28] [0.00, 0.26] [0.00, 0.11] [0.00, 0.60] M = 0:11
Above [0.19, 0.66] [0.25, 0.91] [0.61, 1.00] [0.00, 1.00] M = 0:52

Table 5
Relative position of the 2rst rectangle with respect to the concave
object of Fig. 14, using centroid, aggregation and compatibility
methods. Angle or force histograms are computed using r = 0; 2
and 5

Rectangle 1 with respect to concave object

Relation Centroid Aggregation Compatibility

r = 0 r = 2 r = 5 r = 0 r = 2 r = 5

Left 0.00 0.14 0.16 0.12 0.44 0.46 0.37
Right 0.50 0.36 0.36 0.23 0.50 0.50 0.38
Below 0.00 0.14 0.13 0.15 0.47 0.45 0.55
Above 0.50 0.36 0.36 0.50 0.50 0.51 0.63

Tables 5 and 6 show the results for the 2rst rectangle
with respect to the concave object of Fig. 14. This rectan-
gle is well inside the concavity, and therefore is expected
to satisfy several relations. Again the centroid approach is
too restrictive and does not give any positive value for left
and below, while the other measures do. The part that is the
closest to the concave object is the bottom part of the rect-
angle, that is just above the bottom part of the reference ob-
ject. This explains why the evaluation for the relation above
increases with r. In general, the compatibility method gives
higher values than the aggregation method, and thus better

Table 6
Relative position of the 2rst rectangle with respect to the concave object of Fig. 14, using fuzzy pattern matching approach (FPM) between
relationships and angle or force histograms computed using r = 0; 2 and 5, and using the morphological approach (the [N;(] intervals are
given, as well as the average value)

Rectangle 1 with respect to concave object

Relation FPM Morphological approach

r = 0 r = 2 r = 5

Left [0.00, 0.58] [0.00, 0.51] [0.00, 0.33] [0.44, 1.00] M = 0:85
Right [0.08, 1.00] [0.00, 0.71] [0.00, 0.33] [1.00, 1.00] M = 1:00
Below [0.00, 0.63] [0.00, 0.50] [0.00, 0.30] [0.39, 1.00] M = 0:89
Above [0.00, 0.92] [0.29, 1.00] [0.67, 1.00] [1.00, 1.00] M = 1:00

Table 7
Relative position of the second rectangle with respect to the concave
object of Fig. 14, using centroid, aggregation and compatibility
methods. Angle or force histograms are computed using r = 0; 2
and 5

Rectangle 2 with respect to concave object

Relation Centroid Aggregation Compatibility

r = 0 r = 2 r = 5 r = 0 r = 2 r = 5

Left 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Right 0.98 0.81 0.78 0.84 0.69 0.67 0.73
Below 0.00 0.03 0.03 0.04 0.16 0.16 0.16
Above 0.02 0.15 0.20 0.12 0.31 0.33 0.27

represents the ambiguity of the relative position between
these objects and the fact that the concave object almost
surrounds the rectangle. Concerning pattern matching ap-
proaches, the morphological one (working in the spatial
domain) provides better results than the one working on
histograms. For instance, the relation right is completely
satis2ed since every point of the rectangle is visible in this
direction from the reference object.

Tables 7 and 8 show the results for the second rectan-
gle with respect to the concave object of Fig. 14. This rect-
angle is now completely outside the concavity. So the left
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Table 8
Relative position of the second rectangle with respect to the concave object of Fig. 14, using fuzzy pattern matching approach (FPM)
between relationships and angle or force histograms computed using r = 0; 2 and 5, and using the morphological approach (the [N;(]
intervals are given, as well as the average value)

Rectangle 2 with respect to concave object

Relation FPM Morphological approach

r = 0 r = 2 r = 5

Left [0.00, 0.00] [0.00, 0.00] [0.00, 0.00] [0.00, 0.00] M = 0:00
Right [0.46, 0.97] [0.42, 1.00] [0.74, 1.00] [1.00, 1.00] M = 1:00
Below [0.00, 0.29] [0.00, 0.24] [0.00, 0.20] [0.11, 0.61] M = 0:32
Above [0.03, 0.54] [0.00, 0.58] [0.00, 0.26] [0.15, 0.83] M = 0:48

relation should not be satis2ed anymore. This is indeed what
is obtained by all methods. Also the relation below has now
a very low degree, and the main relation is right. Again
this relation is found to be completely satis2ed, without any
ambiguity, by the morphological approach.

Tables 9 and 10 show the results for the third rectangle
with respect to the concave object of Fig. 14. The rectan-
gle is still completely outside the concavity, but now it is

Table 9
Relative position of the third rectangle with respect to the concave
object of Fig. 14, using centroid, aggregation and compatibility
methods. Angle or force histograms are computed using r = 0; 2
and 5

Rectangle 3 with respect to concave object

Relation Centroid Aggregation Compatibility

r = 0 r = 2 r = 5 r = 0 r = 2 r = 5

Left 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Right 0.99 0.94 0.94 0.94 0.90 0.89 0.89
Below 0.00 0.01 0.01 0.00 0.06 0.06 0.05
Above 0.01 0.05 0.05 0.06 0.10 0.11 0.11

Table 10
Relative position of the third rectangle with respect to the concave object of Fig. 14, using fuzzy pattern matching approach (FPM) between
relationships and angle or force histograms computed using r = 0; 2 and 5, and using the morphological approach (the [N;(] intervals are
given, as well as the average value)

Rectangle 3 with respect to concave object

Relation FPM Morphological approach

r = 0 r = 2 r = 5

Left [0.00, 0.00] [0.00, 0.00] [0.00, 0.00] [0.00, 0.00] M = 0:00
Right [0.76, 0.98] [0.76, 0.98] [0.76, 0.98] [1.00, 1.00] M = 1:00
Below [0.00, 0.14] [0.00, 0.13] [0.00, 0.08] [0.06, 0.31] M = 0:19
Above [0.02, 0.24] [0.02, 0.24] [0.02, 0.24] [0.08, 0.38] M = 0:23

farther from the reference object. This leads to results that
become more and more binary in favor of the relation right,
the other ones having very low values. This 2ts well the in-
tuition. From this example, it can be observed than when the
relation becomes less ambiguous, all methods work quite
similarly. Again the morphological approach gives a com-
pletely non-ambiguous result for the relation right.

5. Summary and conclusion

A summary of the main properties discussed in the pre-
vious section is provided in Table 11.

Another aspect that is very important is the type of ques-
tions each de2nition is able to answer, or dedicated to. These
questions can take di0erent forms, e.g.:

• What are the spatial relationships between two given
objects?
• To which degree a given spatial relation holds between

two objects?
• What are the regions of the space where a spatial rela-

tionship is satis2ed (to some degree) with respect to a
reference object?
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Table 11
Comparison table. The sign

√
means that the property is satis2ed. The sign—means that it is not satis2ed in general

Method Basic elements Evaluation as a

Centroid Points Number
Aggregation Points number
Compatibility Points Number/fuzzy number
Hist. of Forces Segments Number
Projection Projections Number
Morphology Whole objects interval/fuzzy set

Method ReMexivity Symmetry Geom. invariance Distance

Centroid —
√ √


�(- − �)
Aggregation —

√ √

�(- − �)

Compatibility —
√ √


�(- − �)
Hist. of Forces —

√ √

�(- − �)

Projection —
√ √

0, 1 or no inMuence
Morphology

√ √
(for ()

√
1 − 2(-−�)

	 (=
�(- − �))

Method Complexity 3D objects Fuzzy objects

Centroid O(N )
√ √

Aggregation O(N 2)
√ √

Compatibility O(N 2 + C)
√ √

Hist. of Forces O(N
√

N ) Could be extended
√

Projection O(N 2) Could be extended
√

Morphology O(N 2)
√ √

(applies directly)

An important feature of angle histogram and force histogram
is that they provide a general description of the directional
relationships. From this general information, several ones
can be deduced, as the degree of satisfaction of one spe-
ci2c relationship (for a particular direction), or the dominant
relationship. This is not easy to obtain with the morphologi-
cal approach, that needs one computation for each direction
of interest. This approach is more dedicated to cases where
we are interested in speci2ed relations.

For problems where we have to assess the relative po-
sition of several objects with one reference object, the
morphological approach may be more appropriate if the
computation time is a strong requirement.

Most works in spatial reasoning aim at de2ning and
assessing spatial relationships between objects, given these
objects. But we may take another point of view, and ad-
dress the problem of the representation of knowledge about
expected relationships, in order to guide the reasoning
process in the space, for exploring the space and search
for the object that satis2es some relationships with re-
spect to already known objects [42,43]. For the example of
model-based pattern recognition, this leads to progressive
recognition, where each object is detected and recognized
by gathering constraints given by the model expressing
relationships that this object has to satisfy with respect to
previously recognized objects [44]. For this problem where
the relationships are considered as constraints with respect

to one object (rather than a relation between two objects),
we can make use of a spatial representation, as fuzzy sets in
the space. Each relationship is expressed as one fuzzy set,
corresponding to a spatial constraint, restricting the space
to the only regions where the relationship is satis2ed [42].
This can be directly obtained using the morphological ap-
proach (it is the result of the 2rst step), but is more diFcult
to obtain with other approaches, that do not work directly
in the image space.

Applications can be anticipated for structural pattern
recognition, image content description and spatial reason-
ing, inference of more complex relationships, reasoning
with relationships.
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