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Abstract

Based on the observation that rough sets and mathematical morphology are both using dual operators sharing similar
properties, we investigate more closely the links existing between both the domains. We establish the equivalence
between some morphological operators and rough sets de"ned from either a relation, or a pair of dual operators or
a neighborhood system. Then we suggest some extensions using morphological thinning and thickening, and using
algebraic operators. We propose to de"ne rough functions and fuzzy rough sets using mathematical morphology on
functions and fuzzy mathematical morphology. ( 2000 Pattern Recognition Society. Published by Elsevier Science
Ltd. All rights reserved.
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1. Introduction

Rough set theory has been introduced in 1982 [1], as
an extension of set theory, mainly in the domain of
intelligent systems. The objective was to deal with incom-
plete information, leading to the idea of indistinguisha-
bility of objects in a set. It is therefore related to the
concept of approximation, and of granularity of informa-
tion (in the sense of Zadeh [2]). This theory was applied
successfully in several applications, e.g. information anal-
ysis, data analysis and data mining, knowledge discovery
(for instance, discovery of which features are relevant for
data description), i.e. all those applications in which
a need arises for intelligent decision support.

Mathematical morphology is originally also based on
set theory. It has been introduced in 1964 by Matheron
[3,4], in order to study porous media. But this theory
evolved rapidly to a general theory of shape and its
transformations, and was applied in particular to image
processing and pattern recognition [5]. In addition to its
set theoretical foundations, it relies on topology on sets, on

random sets, on topological algebra, on integral ge-
ometry, on lattice theory. The basic idea in mathematical
morphology is to study shapes by transforming them
using some interaction with a set called structuring ele-
ment and which is chosen by the user (the observer).

Rough set theory [1] is an extension of set theory for
dealing with coarse information. In this framework, a
set X is approximated by two sets, called upper and
lower approximations, and denoted by AM (X) and A(X),
such that A(X)LXLAM (X). On the other hand, math-
ematical morphology [5,6] provides operators that are
either extensive or anti-extensive, such as dilation D

B
and

erosion E
B

(if the origin of the space belongs to the
chosen structuring element B), or closing C

B
and opening

O
B
. We have: E

B
(X)LXLD

B
(X) and O

B
(X)LXL

C
B
(X), i.e. similar relations as the one for rough sets. One

of the basic properties of upper and lower set approxima-
tions is duality. A similar property holds for mathemat-
ical morphology between dilation and erosion, and be-
tween opening and closing. In fact, most of the mor-
phological operators go by pairs of dual operators.

Based on these elementary observations, it is tempting
to look at closer links between both domains. To our
knowledge, the only work that puts together both do-
mains is the one of Polkowski [7], where a hit-or-miss
topology is de"ned on rough sets, similar to what is used
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in mathematical morphology. Here we take another
point of view and try to link lower and upper approxima-
tions directly to morphological operators. To our knowl-
edge, it is the "rst time that such links are established,

We "rst recall in Section 2 the basic de"nitions of
rough sets, in particular those based on a similarity
relation, and of mathematical morphology, in particular
its four basic operators. Then we compare both theories
in light of a list of properties that are commonly used
in rough set theory (Section 3). Then we establish in
Section 4 formal links between upper and lower approxi-
mations on the one hand, and dilation and erosion
(respectively opening and closing) on the other hand. In
Section 5 we take a closer look on some topological
aspects. Then we propose in Section 6 some extensions of
these links, using other operators like thinning and thick-
ening, or algebraic operators. We also extend this work
to functions and to fuzzy sets, and show how mathemat-
ical morphology on functions and on fuzzy sets can be
used for de"ning rough functions and rough fuzzy sets.
This brings together three di!erent aspects of the in-
formation: vagueness (through fuzzy sets), coarseness
(through rough sets) and shape (through mathematical
morphology). Finally, we conclude with some insights on
the respective contributions of each domain to the other,
those that can be anticipated from this work.

2. De5nitions of rough sets and basic morphological
operators

2.1. Rough sets from relations

In rough set theory [1], the two sets AM (X) and A(X)
such that A(X)LXLAM (X) are de"ned from an equiva-
lence relation. Let U denote the universe of discourse,
X being a subset of U. Each element of U is known
through its attributes a. The set of attributes A is a set of
functions de"ned on U. Let Inf (x) be the information
vector of x:

Inf (x)"Ma(x)Da3AN. (1)

An equivalence relation R
A

is de"ned with respect to the
set of attributes on U as

xR
A
yQInf (x)"Inf (y). (2)

This relation characterizes the elements that are indistin-
guishable from each other based on the available in-
formation. The pair (U, R

A
) is called an approximation

space. Let [x]
A

denote the class of x. Then lower and
upper approximations of a subset X of U are de"ned as

A(X)"Mx3UD[x]
A
LXN, (3)

AM (X)"Mx3UD[x]
A
WXO0N. (4)

A rough set is the pair (A(X), AM (X)). Obviously, we have

A(X)LXLAM (X). (5)

The lower approximation of X contains the elements
x such that all the elements that are indistinguishable
from x (according to the considered attributes) are in X.
The upper approximation of X contains the elements
x such that at least one element that is indistinguishable
from x belongs to X.

This de"nition can be extended to any relation R,
leading to the notion of generalized approximate space
(see e.g. Ref. [8]). Let r(x) be the set de"ned as

r(x)"My3UDxRyN. (6)

The lower and upper approximations of X according to
R are then de"ned as

R(X)"Mx3UDr(x)LXN, (7)

RM (X)"Mx3UDr(x)WXO0N. (8)

Conversely r(x) can be obtained from the upper approxi-
mation of X as

r(x)"My3UDx3RM (MyN)N. (9)

Obviously, if R is an equivalence relation, r(x)"[x]
R

and these de"nitions are equivalent to the original Paw-
lak's de"nitions. If R is a tolerance relation (i.e. re#exive
and symmetrical), these equations de"ne tolerance rough
sets. The properties of RM (X) and R(X) depend on the
properties of R, as will be seen in Section 3.

2.2. Mathematical morphology: basic operators

Mathematical morphology is basically a set theory
[5], that has extensions to functions [5], vectors, fuzzy
sets [9]. We just recall here the de"nitions of the four
basic operations for sets. Let X be a set of U, and B a set
called structuring element. The morphological dilation of
X by B is de"ned as

D
B
(X)"Mx3UDB

x
WXO0N, (10)

where B
x

denotes the translation of the structuring ele-
ment at point x. The morphological erosion of X by B
is de"ned as

E
B
(X)"Mx3UDB

x
LXN. (11)

Morphological opening and closing are de"ned, respec-
tively, by

O
B
(X)"D

B
[ [E

B
(X)], (12)

C
B
(X)"E

B
[ [D

B
(X)], (13)
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where B[ denotes the symmetrical of B with respect to the
origin of the space. Opening and closing can be re-
written as

O
B
(X)"Mx3UD&y3UDx3B

y
and B

y
LXN, (14)

C
B
(X)"Mx3UD∀y3U, x3B

y
NB

y
WXO0N. (15)

For any structuring element that contains the origin of
the space, the following property holds:

E
B
(X)LXLD

B
(X). (16)

For any structuring element (without restriction), the
following property holds:

O
B
(X)LXLC

B
(X). (17)

In the following, we assume that the origin of U belongs
to the structuring element B.

2.3. First conclusion

A "rst conclusion that can be drawn from these de"ni-
tions is the similarity between the operators involved
in both the domains. Lower approximations involve
subsethood, as do erosion and opening, while upper
approximations involve set intersection, as do dilation
and closing.

Moreover, the inclusion properties are similar.
These remarks lead to a "rst parallelism between lower

approximation and erosion or opening on the one hand,
and between upper approximation and dilation or clos-
ing on the other hand. Further similarities call for a
closer look at the properties satis"ed by the operators in
both the domains.

3. Comparison of basic properties

3.1. A list of properties of interest

In this section, we list the properties that are of interest
in the theory of rough sets. We follow here the presenta-
tion provided in Ref. [8]. The satisfaction of these prop-
erties depending on the chosen de"nition is detailed in
the next subsection.

L1. R(X)"[RM (XC)]C, where XC denotes the comple-
mentation of X in U.

L2. R(U)";.
L3. R(XW>)"R(X)WR(>).
L4. R(XX>)MR(X)XR(>).
L5. XL>NR(X)LR(>).
L6. R(0)"0.
L7. R(X)LX.
L8. XLR(RM (X)).

L9. R(X)LR(R(X)).
L10. RM (X)LR(RM (X)).
U1. RM (X)"[R(XC)]C.
U2. RM (0)"0.
U3. RM (XX>)"RM (X)XRM (>).
U4. RM (XW>)LRM (X)WRM (>).
U5. XL>NRM (X)LRM (>).
U6. RM (U)"U.
U7. XLRM (X).
U8. RM (R(X))LX.
U9. RM (RM (X))LRM (X).
U10. RM (R(X))LR(X).
K. R(XCX>)LR(X)CXR(>).
LU. R(X)LRM (X).

Properties L1 and U1 express the duality between lower
and upper approximations. These properties allow to
derive relations U1}U10 from relations L1}L10. Proper-
ties L2, L6, U2 and U6 express limit conditions for the
empty set and the whole space. Compatibility with union
and intersection is expressed by L3, L4, U3 and U4.
Properties L5 and U5 express the increasingness with
respect to set inclusion. The basic notions of lower and
upper approximations can be found in properties L7, U7
and LU. Properties L8}L10 and U8}U10 concern the
composition of approximations. Note that if L7 and L9
are simultaneously satis"ed, we have, due to L5

R(X)"R(R(X)),

i.e. lower approximation is idempotent. In the same way,
if U7 and U9 are simultaneously satis"ed, then upper
approximation is idempotent. If L7 and L10 are simulta-
neously satis"ed, then we have

R(X)"R(RM (X))

and a similar expression for the upper approximation.

3.2. Which properties do the rough sets and mathematical
morphology have in common?

In Table 1 we compare the properties that are satis"ed
by the di!erent de"nitions of rough sets with those satis-
"ed by the four basic morphological operators.

3.3. Second conclusion

From the results in Table 1, it appears clearly that
lower approximations share many properties with ero-
sion and with opening, while upper approximations
share many properties with dilation and closing. These
algebraic properties make rough set algebra similar to
mathematical morphology algebra.

Having made these observations, we can now establish
formal links between set approximations and mor-
phological operators.
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Table 1
Comparison between the properties of rough sets depending on the properties of R with those of mathematical morphology operators.
A cross (]) indicates that the property is satis"ed. The "rst column contains the list of properties, according to the notations given in
Section 3.1. The next four columns are for rough sets, de"ned from any relation, a tolerance relation, a relation that is re#exive and
transitive, and an equivalence relation, respectively. The two last columns are for morphological operators, erosion and opening in the
upper part (corresponding to the properties of lower approximation) and dilation and closing in the lower part (corresponding to the
properties of upper approximation)

Property Any R Tolerance rel. R re#ex. and trans. Equivalence rel. Erosion/Dilation Opening/Closing

L1 ] ] ] ] ] ]
L2 ] ] ] ] ] ]
L3 ] ] ] ] ] only L

L4 ] ] ] ] ] ]
L5 ] ] ] ] ] ]
L6 ] ] ] ] ]
L7 ] ] ] ] ]
L8 ] ] ]
L9 ] ] ]
L10 ]

U1 ] ] ] ] ] ]
U2 ] ] ] ] ] ]
U3 ] ] ] ] ] only L

U4 ] ] ] ] ] ]
U5 ] ] ] ] ] ]
U6 ] ] ] ] ]
U7 ] ] ] ] ]
U8 ] ] ]
U9 ] ] ]
U10 ]

K ] ] ] ] ] ]
LU ] ] ] ] ]

4. Formal links between rough sets and mathematical
morphology

Lower and upper approximations can be obtained
from erosion and dilation. For a given structuring ele-
ment, the corresponding relation is then as follows:

xRy Q y3B
x
. (18)

From R, we derive r(x) as

∀x3U, r(x)"My3UDy3B
x
N"B

x
. (19)

We always assume that the origin of U belongs to the
structuring element B. It follows that:

∀x3U, x3B
x

(20)

and therefore,

∀x3U, xRx, (21)

i.e. R is re#exive. Moreover, if B is symmetrical (i.e.
B"B[ ), we have

∀(x, y)3U2, xRy Q y3B
x
, (22)

Q y!x3B, (23)

Q x!y3B[ ("B), (24)

Q x3B
y
, (25)

Q yRx (26)

which proves that R is symmetrical. If follows that R is
a tolerance relation.

Let us show that for this relation, erosion and lower
approximation coincide:

∀XLU, R(X)"Mx3UDr(x)LXN, (27)

"Mx3UDB
x
LXN, (28)

"E
B
(X). (29)

In a similar way, dilation and upper approximation co-
incide, since we have

∀XLU, RM (X)"Mx3UDr(x)WXO0N (30)

"Mx3UDB
x
WXO0N (31)

"D
B
(X). (32)
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These results are com"rmed by the properties shown in
Table 1, that are the same for lower and upper approxi-
mations derived from a tolerance relation, and for ero-
sion and dilation.

These equivalences are in accordance with the oper-
ator-oriented view of rough sets [10,8]. Let ¸ and H be
two dual operators, such that

∀XLU, ¸(X)"H(XC)C (33)

and satisfy the following properties:

(1) H(0)"0,
(2) H commutes with union: ∀XLU, ∀>LU,

H(XX>)"H(X)XH(>).

Then there exists a relation R such that ¸(X)"R(X) and
H(X)"RM (X). This relation is de"ned by

xRy Q x3H(MyN). (34)

The results proved in this section provide concrete exam-
ples of operators ¸ and H, which are morphological
erosions and dilations. Actually, a family of operators is
obtained, indexed by the structuring element. The de-
rived relation R is exactly the one introduced in Eq. (18),
since we have for a symmetrical structuring element B:

xRy Q x3H(MyN) Q x3D
B
(MyN) Q x3B

y
Q y3B

x
. (35)

Let us now consider opening and closing. Using the
operator-oriented point of view, they can be used, respec-
tively, as lower and upper approximations, since they
have most of the required properties as shown in Table 1.
However, since closing does not commute in general with
union (only a inclusion holds for property U3), the direct
derivation of R as in Eq. (34) cannot be applied. Even if
it is not as obvious as for dilation and erosion to "nd an
expression for opening and closing based on a relation,
these operators have interesting properties that deserve
to consider them as good operators for constructing
rough sets. In particular, they are idempotent, which is
particularly useful if we take the topology-oriented point
of view. This is the scope of the next section.

5. Topological aspects

Important notions in topology are interior and closure
operators. More local information is the notion of neigh-
borhood. These two aspects will be dealt within the two
parts of this section.

5.1. Topology and pre-topology

The idea is that lower and upper approximations can
be interpreted as interior and closure. Morphological
operators also receive similar interpretations.

Let us consider again two dual operators ¸ and H, but
satisfying some more axioms:

(1) H(0)"0,
(2) H commutes with union: ∀XLU, ∀>LU,

H(XX>)"H(X)XH(>).
(3) H is extensive: ∀XLU, XLH(X).
(4) H is idempotent: ∀XLU, H(H(X)"H(X).
(5) ∀XLU, XL¸(H(X)).

If properties (1)}(4) are satis"ed, then the relation R that
is derived from H using Eq. (34) is re#exive and transitive,
and this de"nes a topological approximation space. In-
deed, properties (1)}(4) are the properties of a common
closure operator.

Except for property (2) where we generally have only
an inclusion, properties (1)}(4) are also satis"ed by clos-
ing (and the dual operator opening). Therefore, these
morphological operators de"ne a topological approxi-
mation space.

If properties (1)}(5) are satis"ed, then R is an equiva-
lence relation. Property (5) is in general not satis"ed by
opening and closing. If the set of considered objects is
restricted to the objects that are opened by B (i.e. they do
not contain details smaller than B), then property (5)
holds. However, in such a case, the lower approximation
does not modify the set.

Let us now consider erosion and dilation. They do not
satisfy property (4), but satisfy all others. The loss of
idempotence for the closure operator corresponds to a
pre-topology [11]. Therefore, using erosion and dilation
introduces the notion of pretopological approximation
space. This may be of interest for pattern recognition
purposes, since non-idempotent closure allows to aggreg-
ate patterns using iterated closure operations.

The basic topology on sets in mathematical morpho-
logy is the hit-or-miss topology, that is based on the
intersection of a closed set with some open sets (the `hita
part) and on the non-intersection of a closed set with
some compact sets (the `missa part) [5]. It appears that
the relations that de"ne this topology are the same as the
ones de"ning lower and upper approximations. This
leads as given in Ref. [7], to a construction of hit-or-miss
topology on rough sets.

5.2. Neighborhood systems

Let us now consider a topology de"ned through a
neighborhood system. Let n(x) be a neighborhood of x
and N(x) be a neighborhood system for x. Lower and
upper approximations are then de"ned as [12]:

N(X)"Mx3UD&n(x)3N(X)Dn(x)LXN, (36)

NM (X)"Mx3UD∀n(x)3N(X)Dn(x)WXO0N. (37)
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The de"nitions presented in Section 2 correspond to the
case where only one neighborhood is considered, i.e.
N(x)"Mn(x)N.

The analogy with mathematical morphology is
straightforward, if we consider that the structuring ele-
ment translated at a point x of U is nothing but a neigh-
borhood of x. If we set N(x)"MB

x
N, we obtain

N(X)"E
B
(X), (38)

NM (X)"D
B
(X). (39)

Moreover, if we consider a family of structuring elements
B1, 2, Bk, and if we set N(x)"MB1

x
,2, Bk

x
N, the Bi

x
being

considered as di!erent neighborhoods of x whose union
builds the neighborhood system, we obtain

N(X)" Z
i/1...k

E
B

i (X), (40)

NM (X)" Z
i/1...k

D
B

i (X). (41)

Let us now consider opening and closing. Similar rela-
tions are obtained, by setting this time N(x)"MB

y
Dy3U

and x3B
y
N. Then we obtain

N(X)"O
B
(X), (42)

NM (X)"C
B
(X). (43)

The proof of these results comes from the writing of an
opening as

O
B
(X)"Mx3UD&y3UDx3B

y
and B

y
LXN. (44)

As for erosion and dilation, we can consider a family of
structuring elements for opening and closing.

This view is particularly interesting for shape recogni-
tion, since in morphological recognition, an object has
often to be tested or matched with a set of patterns, like
directional structuring elements. This set of patterns is
interpreted as a neighborhood system.

6. Extensions

In this section, we give some hints on possible exten-
sions of the results we obtained in this paper. These
extensions concern the choice of the dual operators and
the objects on which they are applied.

6.1. Thinning and thickening

Among the dual operators used in mathematical mor-
phology, thinning and thickening are of particular inter-
est, since they allow to perform operations depending on
various local con"gurations. The main di!erence with
erosion, dilation, opening and closing, is that the struc-
turing element is not only tested against object points

(B
x
LX,B

x
WXO0, etc.), but it is also tested against

background points (i.e. points of XC). Let us "rst recall
the de"nitions of these operations (the reader may refer
to Refs. [5,6] for more details). The structuring element
is divided into two disjoint parts (¹

1
, ¹

2
), where ¹

1
is

tested against points of X, while ¹
2

is tested against
points of XC. The hit-or-miss transformation is de"ned as

HM¹
(T1, T2)

(X)"E
T1

(X)WE
T2

(XC). (45)

From this operation, thinning and thickening are de"ned
as

¹hin
(T1, T2)

(X)"X!HM¹
(T1, T2)

(X), (46)

¹hick
(T1, T2)

(X)"XXHM¹
(T1, T2)

(X). (47)

Since ¹
1
W¹

2
"0, the origin of the space belongs either

to ¹
1

or to ¹
2
. In the "rst case, the hit-or-miss trans-

formation provides a subset of X and it is meaningful
to perform thinning. In the second case, the hit-or-miss
transformation provides a subset of XC and it is meaning-
ful to perform thickening.

The duality that holds between thinning and thicken-
ing takes the following form:

¹hin
(T1, T2)

(X)"[¹hick
(T2, T1)

(XC)]C. (48)

Therefore, the possible pairs that can be de"ned from
these operators as lower and upper approximations can
be of the following types:

(1) (¹hin
(T1, T2)

(X), ¹hick
(T2, T1)

(X)) if the origin of U

belongs to ¹
1
,

(2) (¹hin
(T2,T1)

(X), ¹hick
(T1,T2)

(X)) if the origin of U

belongs to ¹
2
,

(3) (¹hin
(T1, T2)

(X), X) if the origin of U belongs to¹
1
,

(4) (X, ¹hick
(T1, T2)

(X)) if the origin of U belongs to ¹
2
.

In the following, we restrict our study to the "rst case,
where the origin of U belongs to ¹

1
. The second case is

similar.
Taking the operator-oriented point of view, the rough

sets that can be built from thinning and thickening ac-
cording to the "rst pair are obtained for the following
operators:

¸"¹hin
(T1, T2)

, H"¹hick
(T2, T1)

. (49)

Since thickening generally does not commute with union
(except for particular structuring elements where it is
equivalent to dilation), it is not possible to derive directly
a relation according to which the rough sets are de"ned.

Among the properties listed in Table 1, L1, L2, L6, L7,
U1, U2, U6, U7 and LU are always satis"ed. This shows
that several properties are lost, and therefore we call
`generalized rough setsa the pairs obtained from thinning
and thickening. The ones obtained using erosion and
dilation by a structuring element B are particular cases,
corresponding to ¹

1
de"ned as the family of structuring
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elements containing the origin and at least another point
of B, and ¹

2
"B!¹

1
.

Let us consider now the third and fourth possible pairs
of approximations. They bring an original aspect which
is a kind of assymetry between lower and upper approxi-
mations. Taking the operator-oriented point of view, we
have for the third pair:

¸(X)"¹hin
(T1, T2)

(X), H(X)"X, (50)

¸@(X)"X, H@(X)"¹hick
(T2, T1)

(X). (51)

Here the duality is not directly between ¸ and H, or
between ¸@ and H@, but between ¸ and H@ and between ¸@
and H, since we have

¸(XC)"¹hin
(T1, T2)

(XC)"[¹hick
(T2, T1)

(X)]C

"[H@(X)]C, (52)

¸@(XC)"XC"[H(X)]C. (53)

The topological interpretation is particularly interesting
when using thinning and thickening. Indeed, the pair
(¹

1
, ¹

2
) de"nes a neighborhood around a point, describ-

ing which points of the neighborhood should belong to
the set X and which ones should belong to its comp-
lement. For instance, taking just the origin for ¹

1
and

B!¹
1

for ¹
2

(B being any structuring element, or
neighborhood), the hit-or-miss transformation using
(¹

1
, ¹

2
) selects the points that are isolated in the back-

ground. The thinning by (¹
1
, ¹

2
) removes such points,

leading to a lower approximation of X that has no
isolated points, while the thickening by (¹

2
, ¹

1
) "lls up

isolated points of the background, leading to an upper
approximation that has no holes constituted by only one
point. This shows that very "ne operations can be ob-
tained using these operators.

Another interesting point is that these operations can
be iterated by using families of structuring elements [5]
(for instance, rotations of a generic structuring element).
In this way, we can use for instance the skeleton as the
lower approximation, the convex hull as the upper ap-
proximation, etc., which are useful tools in shape repres-
entation and recognition. Moreover, several thinnings
and thickenings are homotopic operators, i.e. that de-
form shapes while preserving their homotopy. This leads
to homotopic rough sets, that deserve probably a deeper
study.

6.2. Algebraic rough sets using algebraic operations

Another possible extension may be derived from alge-
braic operators. Algebraic erosions and dilations are
de"ned on complete lattices as operators that commute
with intersection and union, respectively [5,6]. Therefore
L3 and U3 are directly satis"ed. Properties L2, L5, L6,
U2, U5 and U6 are also satis"ed by these operators. Note

that morphological erosions and dilations are particular
cases of algebraic operators, if translation invariance
holds.

Algebraic openings and closings are de"ned as increas-
ing, anti-extensive (respectively extensive) and idem-
potent operators [5,6]. Therefore properties L5, L7, L9
and U5, U7, U9 are automatically satis"ed.

The use of algebraic erosion/dilation or opening/clos-
ing for de"ning lower and upper approximations lead to
what we call `algebraic rough setsa.

6.3. Rough functions

Since mathematical morphology also applies to func-
tions [5,6], we can use the de"nitions of dilation, erosion,
opening and closing on functions to de"ne lower and
upper approximations of functions. This seems to be a
natural extension of rough sets.

Let f be a function de"ned on U, and let B be a set of
U (structuring element), that we consider here symmetri-
cal, containing the origin of U. Using erosion and dila-
tion, we de"ne lower and upper approximations of f as

∀x3U, B( f )(x)"E
B
( f )(x)" inf

y|Bx

f (y), (54)

∀x3U, BM ( f )(x)"D
B
( f )(x)"sup

y|Bx

f (y). (55)

Using opening and closing, we de"ne lower and upper
approximations of f as

∀x3U, B( f )(x)"O
B
( f )(x)"D

B
[E

B
( f )](x), (56)

∀x3U, BM ( f )(x)"C
B
( f )(x)"E

B
[D

B
( f )](x). (57)

The properties of these rough functions are direct trans-
positions of the ones of rough sets:

L@1. B( f )"![BM (!f )].
L@2. B( f

c
)"f

c
, where f

c
is any constant function.

L@3. B(min( f, g))"min[B( f ),B(g)].
L@4. B(max( f, g))*max[B( f ), B(g)].
L@5. f)gNB( f ))B(g).
L@6. B(f

0
)"f

0
, where f

0
is identically zero.

L@7. B( f ))f.
L@8. f)B(BM ( f )).
L@9. B( f ))B(B( f )).
L@10. BM ( f ))B(BM ( f )).
U@1. BM ( f )"![B(!f )].
U@2. BM ( f

0
)"f

0
.

U@3. BM (max( f, g))"max[BM ( f ),BM (g)].
U@4. BM (min( f, g)))min[BM ( f ),BM (g)].
U@5. f)gNBM ( f ))BM (g).
U@6. BM ( f

c
)"f

c
.

U@7. f)BM ( f ).
U@8. BM (B( f )))f.
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U@9. BM (BM ( f )))BM ( f ).
U@10. BM (B( f )))B( f ).
K@. B(max(!f, g)))max[!B( f ),B(g)].
LU@. B( f ))BM ( f ).

Using erosion and dilation, properties L@1}L@8, U@1}U@8,
K@ and LU@ hold, as for the case of sets. Using opening
and closing, we usually have an inequality only for L@3
and U@3, properties L@8, L@10, U@8 and U@10 being gener-
ally not satis"ed, but L@9 and U@9 are always satis"ed.

This construction can be further extended using a func-
tion g as structuring element:

∀x3U, g( f )(x)"E
g
( f )(x)"infMf (y)!g(y!x), y3UN,

(58)

∀x3U, g6 ( f )(x)"D
g
( f )(x)"supM f (y)#g(y!x), y3UN.

(59)

Similar properties are obtained.

6.4. Fuzzy rough sets

In Ref. [9], we de"ned erosion and dilation of a fuzzy
set k by a fuzzy structuring element l as follows:

∀x3U, El(k)(x)"inf
y|U

¹[c(l(y!x)), k(y)], (60)

∀x3U, Dl(k)(x)"sup
y|U

t[l(y!x), k(y)], (61)

where t is a t-norm (fuzzy intersection), ¹ a t-conorm
(fuzzy union) and c a fuzzy complementation. The reader
may refer to Ref. [13] for more details about fuzzy
connectives.

Fuzzy opening and closing are de"ned for crisp sets as
combinations of erosion and dilation.

Fuzzy morphological operations have the same prop-
erties as that of crisp ones, as shown in Ref. [9]. Most of
the properties hold for any t-norm and t-conorm. Only
idempotence and extensivity (respectively, anti-extensiv-
ity) of closing (respectively opening) are satis"ed for
particular t-norms and t-conorms only, as for instance
Lukasiewicz operators, de"ned as: t(a, b)"max(0,
a#b!1) and ¹(a, b)"min(1, a#b).

Therefore, fuzzy rough sets de"ned from these mor-
phological operators have exactly the same properties
as crisp rough sets, at least for particular t-norms and
t-conorms.

It turns out that these de"nitions using fuzzy erosion
and dilation are generalizations of the ones proposed
in Ref. [14], for t"min and ¹"max in a completely
di!erent context, using a fuzzy relation k

R
. The equiva-

lence is obtained as in the crisp case by setting

k
R
(x, y)"l(y!x). (62)

The interpretation is similar to that in the crisp case: the
degree of relation between x and y is equal to the degree
to which y!x belongs to the structuring element, i.e. to
the degree to which y belongs to the structuring element
translated at x.

This extension brings together three di!erent aspects
of the information: rough sets represent coarseness, fuzzy
sets represent vagueness and mathematical morphology
brings a geometrical, topological and morphological as-
pect. The conjunction of vagueness and coarseness had
already been pointed out in Ref. [14]. In this paper, we
bring an additional morphological point of view, by
de"ning fuzzy rough sets using fuzzy mathematical mor-
phology.

7. Discussion

The main results established in this paper are that
morphological operators happen to be good tools for
de"ning lower and upper approximations of sets, in the
theory of rough sets, with the appropriate properties.
Moreover, these operators lead to a generalization of
rough sets to functions and to fuzzy sets. Several math-
ematical aspects are common to both theory, as set
theoretical, algebraic and topological aspects. From an
information point of view, several aspects are merged:
coarseness, morphology, and vagueness for the extension
to fuzzy sets.

In addition to the formal similarities between both
domains, contributions can be brought from each do-
main to the other.

Mathematical morphology brings tools for analyzing
shapes, the approximations it provides contain a regular-
ization and "ltering aspect (in particular using opening
and closing, or their combinations). Some formulations
are particular cases of general lower and upper approxi-
mations, but others may bring some generalizations (for
instance in the framework of pre-topology instead of
topology, or using thinning and thickening). The use of
fuzzy morphology for de"ning fuzzy rough sets provide
formulations that are more general than the ones origin-
ally proposed in Ref. [14] using fuzzy relations. Math-
ematical morphology operators have a lot of properties
that can from now on be used also in the theory of rough
sets. One example of useful property is iterativity and
combination (for instance dilating a set n times by a ball
of radius 1 is equivalent to dilating the set once with
a ball of radius n). Such properties allow to perform
successive approximations, using the same operator or
di!erent ones, in a controlled way, leading to di!erent
levels of representation, or of precision. In the same way,
compatibility with geometric transformations is useful
for spatial applications. Also the choice of the structuring
element B has a direct impact on the approximations that
can be more or less strong depending on the size of B.
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Since mathematical morphology is issued from a com-
pletely di!erent domain from the theory of rough sets,
it also brings a large variety of applications, particularly
in image processing. Until now, very few attempts have
been done to use rough sets in image processing (see
Refs. [15,16]). The results shown in this paper might
provide a bridge to "ll this gap.

Conversely, since the theory of rough sets has been
mainly developed in the domain of arti"cial intelligence,
it brings a new look to mathematical morphology, in
particular for approximate reasoning and logics. What
seems to deserve further study is for instance to build
a possibilistic modal logic based on morphological oper-
ators. A modal logic based on rough sets is described e.g.
in Ref. [8], where the connectives used are in a classical
way negation, conjunction, disjunction, implication and
equivalence, but also two modal operators, necessity
h and possibility e, that are de"ned from lower and
upper approximations. The properties of Table 1 have
equivalents in logical terms using these connectives, lead-
ing to reasoning rules like hpPep, hpPp and several
others. If we use morphological operators for de"ning
lower and upper approximations, we have for instance:
hX"E

B
(X), eX"D

B
(X). A set X may correspond to

a proposition like `this object is Xa, or `this object is in
Xa. Then hX and eX represent, respectively, the area
where it is necessary that such a proposition holds, and
the area where it is just possible. These two areas repres-
ent approximations of the location of X for instance, due
to imprecision, incomplete knowledge, etc. The logic de-
rived from rough sets provides then some tools for rea-
soning under imprecision in a morphological context.

8. Summary

Rough set theory has been introduced in 1982, as an
extension of set theory, mainly in the domain of intelli-
gent systems. The objective was to deal with incomplete
information, leading to the idea of indistinguishability
of objects in a set. It is therefore related to the concept of
approximation. In this framework, a set is approximated
by two sets, called upper and lower approximations, that
respectively contains and is included in the initial set.
Mathematical morphology is originally also based on set
theory. It has been introduced in 1964 by Matheron, in
order to study porous media. But this theory evolved
rapidly to a general theory of shape and its transforma-
tions, and was applied particularly in image processing
and pattern recognition. Mathematical morphology pro-
vides operators that are extensive or anti-extensive, such
as dilation and erosion (if the origin of the space belongs
to the chosen structuring element), or closing and open-
ing. One of the basic properties of upper and lower set
approximations is duality. A similar property holds for
mathematical morphology between dilation and erosion,

and between opening and closing. In fact, most of the
morphological operators go by pairs of dual operators.

Based on these elementary observations, it is tempting
to look at closer links between both domains. Here we try
to link lower and uper approximations directly to mor-
phological operators. To our knowledge, this is the "rst
time that such links are established.

We "rst start from the basic de"nitions of rough sets,
in particular those based on a similarity relations, and of
mathematical morphology, in particular its four basic
operators. Then we compare both the theories in the light
of a list of properties that are commonly used in rough
set theory. Then we establish formal links between upper
and lower approximations on the one hand, and dilation
and erosion (respectively opening and closing) on the other
hand. We then look more closely on some topological
aspects (topology and pre-topology de"ned from a closure
operator, and neighbourood systems). Then, we propose
some extensions of these links, using other operators like
thinning and thickening, or algebraic operators. We also
extend this work to funtions and on fuzzy sets, and show
how mathematical morphology on functions and on
fuzzy sets can be used for de"ning rough functions and
rough fuzzy sets. This brings together three di!erent
aspects of the information: vagueness (through fuzzy
sets), coarseness (through rough sets) and shape (through
mathematical morphology). Finally we provide some
insights on the respective contributions of each domain to
the other, those that can be anticipated from this work.
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