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a b s t r a c t

Many researchers argue that fusing multiple cues increases the reliability and robustness of visual

tracking. However, how the multi-cue integration is realized during tracking is still an open issue. In

this work, we present a novel data fusion approach for multi-cue tracking using particle filter. Our

method differs from previous approaches in a number of ways. First, we carry out the integration of

cues both in making predictions about the target object and in verifying them through observations.

Our second and more significant contribution is that both stages of integration directly depend on the

dynamically changing reliabilities of visual cues. These two aspects of our method allow the tracker to

easily adapt itself to the changes in the context, and accordingly improve the tracking accuracy by

resolving the ambiguities.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Visual tracking is a widely studied topic in computer vision for a
wide range of application areas. These include visual surveillance,
activity analysis, man–machine interaction, augmented reality, etc.
Here we consider the task of locating an object of interest on each
frame of a given video sequence. This object of interest can be an
actual object in the scene, e.g. a person, or a specific image region of
prime importance, e.g. a face. For real-world applications, it is
generally accepted that tracking based on a single visual feature
would be likely to fail due to the complex nature of the data and the
tracking process. Thus, it has been argued in many works that
considering multi-modal data leads to an improvement in tracking.
It increases the robustness by letting complementary observations
from different sources work together. These sources are either the
visual features extracted from the same image sequence, such as
color and motion cues, or the visual cues coming from different
physical sensors, such as from a CCD or from an infrared camera.
However, how the information extracted from these sources is
combined in tracking is still an open problem.

1.1. Related work

Tracking methods generally involve two key processes: gen-
erating hypotheses through a prediction step and then verifying

these hypotheses through some measurements. Considering the
vast number of studies in tracking literature, the most general
way of performing data fusion is in the measurement step.
For example, in an early work [4], Birchfield suggested to combine
two orthogonal visual cues (color and intensity gradients) within a
hypothesize-and-test procedure. In these studies, each cue pro-
vides a likelihood or a matching score for the possible positions of
the object, and the final output is determined by taking into
account the product of individual likelihoods or the summation of
the matching scores. The main problem with this approach is that
all the modalities are given an equal reliability, which is a very
unrealistic assumption. Thus, if one of visual cues becomes
unreliable, it may result in a wrong estimate.

In tracking literature, different definitions of cue reliability
have been proposed. For example, in [2,19], the authors defined
the reliability of a single cue by means of the covariance or the
spread of the samples suggested by the cue at each tracking step,
measuring its uncertainty. On the other hand, in [10], the cue
reliability is considered as a measure specifying the success of the
cue in discriminating the object from the surrounding background.

Tracking approaches can be grouped according to the way they
employ the cue reliabilities. The first group of work [7,19,23–25]
assigns different reliability values to different visual cues, and
takes them into consideration in the measurement step. In [24,25],
the authors formulate the fusion as the weighted average of
saliency maps extracted for each cue with the weights corre-
sponding to the cues’ reliabilities. Hence, the reliabilities are
determined by considering the correlation among the visual cues.
In other words, cue reliability is defined relative to the success of

the other cues in tracking the target object. During tracking, different
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cues try to reach an agreement on a joint result and they adapt
themselves considering the result currently agreed on. Similarly,
the Sequential Monte Carlo based framework proposed in
[7,19,23] uses adaptive weights for the cues utilized in estimating
the combined likelihoods. In this approach, the overall likelihood
is more precise since the reliabilities of cues are now taken into
account in the computations. On the other hand, the weakness of
these studies is that the fusion is carried out only in verifying
object hypotheses against observations. The utilized multiple
cues are involved in neither making predictions nor generating
hypotheses in any way. In terms of robustness, however, this is an
important direction that should be pursued as well.

The second line of works [9,18,22,28], indeed, concentrates on
this issue and lets the multi-modal data interact with each other
more explicitly throughout the tracking process. The common
characteristics of these works are that the integration is also
carried out in the prediction step. For instance, the ICONDENSA-
TION algorithm [18] uses a fixed color model specific to the object
of interest to detect blobs in the current frame and uses them in
the prediction step of a shape-based particle filter tracker. In [28],
the authors suggested an approximate co-inference among the
modalities by decoupling the object state and the measurements
according to color and shape and by letting each visual cue
provide hypotheses for the other one. Thus, in their formulation,
the shape samples are drawn according to the color measure-
ments, and the color samples are drawn according to the shape
measurements. The tracker in [22], on the other hand, uses a
partitioned sampling structure which consists of two layers.
The first layer constructed considering either motion or sound
provides a coarse information on the target object, which is then
refined by the second layer by using color. The work in [9] also
suggests a two-level, but more centralized, particle filter archi-
tecture. At the lower level, the individual trackers based on
different cues perform tracking independently. At the upper level,
a fuser integrates the trackers’ outputs to construct more reliable
hypotheses, and in return provides a feedback to the individual
trackers. Although the studies that can be categorized within this
latter group introduce explicit interactions between multiple
cues, the way these interactions occur in each study is mainly
predetermined by the global scheme/architecture considered.
Furthermore, the reliabilities of the visual cues are not taken into
account in any way. In this respect, the dynamic partitioned
sampling approach in [13] is interesting as it proposes to
dynamically change the order of cues used in sampling depending
on the cue reliabilities.

1.2. Proposed framework

In this paper, we present a Sequential Monte Carlo based
tracking algorithm that combines multi-modal data in an original
way. Our main motivation is to develop a tracking algorithm that
has the properties of the two groups of works mentioned
previously. That is to say, we suggest to carry out the integration

of the multiple cues in both the prediction step and in the measure-

ment step, in estimating the likelihoods. In [20], Nickel and
Stiefelhagen suggested a work in a line similar to ours by
combining Democratic Integration [25] with two-staged layered
sampling [22]. They used a predetermined layer structure with
each layer being adaptive in its own. For instance, the first layer is
composed of stereo cues each describing a part of the target
object. However, compared to theirs, our system architecture
allows interactions between multiple cues to be more dynamic
and flexible.

For the prediction step, we associate each particle with a
specific cue and accordingly with a specific proposal function.
The crucial point is that this process is defined as an adaptive

process which is governed by the dynamically changing reliabil-
ities of the visual cues. Thus, if one cue becomes unreliable, the
tendency is to reduce the total number of particles associated
with it and to increase the total number of particles associated
with other visual cue(s). This dynamic process improves the
accuracy of the predictions since less reliable proposal functions
are utilized less in the sequential importance sampling. During
the prediction step no cue is given a preference over another, and
the interactions between the cues are directly determined by the
current context in an adaptive manner. As mentioned above, we
take into account the reliabilities of the visual cues in estimating
the confidence measures of the particles as well. We define the
overall likelihood function so that the measurements from each
cue contribute the overall likelihood according to its reliability. In
return, we obtain more precise likelihood values in the measure-
ment step as the misleading effects of the unreliable cues are
reduced.

The remainder of the paper is organized as follows: Section 2
recalls the Sequential Monte Carlo method with a focus on multi-
modal tracking. Section 3 gives the basis of our object model and
the corresponding state dynamics. Section 4 introduces the visual
cues and the proposal functions that we consider in our experi-
ments. Section 5 gives the outline of our multi-modal tracking
algorithm and our main contributions. Section 6 presents some
illustrative tracking experiments in which we analyze the perfor-
mance of the proposed algorithm. Finally, Section 7 makes a brief
summary of our work, and points out the future directions.

2. Sequential Monte Carlo and multi-modal tracking

In a classical filtering framework, the main aim is to estimate
the posterior distribution pðxk9y1:kÞ of the state vector xk through
a set of measurements y1:k up to the current time step k.
The Bayesian sequential estimation approach computes this
distribution according to a two-step recursion: a prediction step
pðxk9y1:k�1Þ ¼

R
pðxk9xk�1Þpðxk�19y1:k�1Þ dxk�1 followed by a filter-

ing step pðxk9y1:kÞppðyk9xkÞpðxk9y1:k�1Þ.
This formulation requires two models to be defined: an evolu-

tion (transition) model for the state dynamics pðxk9xk�1Þ and a
likelihood model for the observations pðyk9xkÞ. Sequential Monte
Carlo based filtering (also known as particle filter) [1,12,15,17] has
proved to be an effective method, and provides a simple yet
flexible solution to many optimal state estimation problems, such
as tracking [8,16,27] and sensor fault detection [26].

The main idea behind particle filter is to approximate the

posterior distribution pðxk9y1:kÞ by a weighted set of N particles

fxðiÞk ,wðiÞk g
N
i ¼ 1 as pðxk9y1:kÞ �

PN
i ¼ 1 wðiÞk dxðiÞ

k

ðxkÞ, with dxk
denoting the

Dirac mass centered on xk, and each particle representing a

possible state xk and its weight wðiÞk A ½0;1� describing its con-

fidence measure.
The recursive estimation is, then, characterized by two main

steps: with an approximation of pðxk�19y1:k�1Þ at hand, new

particles are generated from the old particle set fxðiÞk�1,wðiÞk�1g
N
i ¼ 1 by

using a known proposal function, xðiÞk � qðxk9x
ðiÞ
0:k�1,y1:kÞ. This pre-

diction step is followed by an update step where the weights of the

new particles wðiÞk are determined from the new observations yk

using wðiÞk pwðiÞk�1 pðyk9x
ðiÞ
k Þpðx

ðiÞ
k 9xðiÞk�1Þ=qðxk9x

ðiÞ
0:k�1,y1:kÞ with

PN
i ¼ 1

wðiÞk ¼ 1. As a further step, a resampling phase, which removes the

particles with low weights and accumulates the particles with high
weights, can be employed to avoid the degeneracy of the particles
[15]. Generally, the final tracking decision is made by taking into
account the conditional mean, the weighted average of the particles

fxðiÞk g, or the particles with the highest weights.
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For multi-modal tracking, the simplicity and the flexibility of
the particle filter offer a wide variety of solutions. One direction is
to perform data fusion in the likelihood estimation step. In this
regard, the most straightforward way of integrating multiple
measurement sources is to assume that these measurements are
conditionally independent given the state and subsequently
factorize the overall likelihood as pðy9xÞ ¼

QM
m ¼ 1 pðym9xÞ, with

M being the total number of sources. As we stated in the
introduction, it is possible to increase the accuracy of the joint
likelihood by further considering the reliabilities of the measure-
ment sources in the integration phase [7,19,24]. The studies
[9,18,22,28] consider another direction and suggest explicit inter-
actions between different modalities. In these works, the main
emphasis is on the proposal functions utilized in the prediction
step, and how the candidate state hypothesis proposed by
different modalities can be integrated.

3. Object model and state dynamics

The tracking framework that we propose in this work does not
depend on a specific object model, and any model suggested in
literature can be utilized. In this paper, we prefer to use a simple
model and represent the target object by a fixed reference
rectangular region parameterized as O¼ ðxc ,yc ,w,hÞ, where
ðxc ,ycÞ denote the coordinates of the center of the rectangular
region having a width w and a height h.

We define the object state as xk ¼ ðxk,yk,sk,tkÞAX . It describes a
new region Oxk

¼ ðxk,yk,skw,tkhÞ with sk and tk denoting the
scaling factors for the width and the height of the reference
region, respectively.

For the state evolution model, we assume mutually indepen-
dent Gaussian random walk models along with a small uniform
component as in [22]. This uniform component is used to
compensate the irregular motion behavior of the target object
and provides a kind of re-initialization. Accordingly, the state
evolution model can be written as

pðxk9xk�1Þ � bUUð0,xmaxÞþð1�bUÞN ðxk�1,LÞ, ð1Þ

where Uð0,xmaxÞ denotes the uniform distribution in ½0,xmax�, with
the vector xmax representing the maximum allowed values over
the set X ,N ðxk�1,LÞ the Gaussian distribution with mean xk�1 and
covariance matrix L¼ diagðs2

x ,s2
y ,s2

s ,s2
t Þ, and bU is the weight of

the uniform component. The initial state of the object is assumed
to be described by a uniform distribution pðx0Þ ¼ Uð0,xmaxÞ.

4. Visual cues and proposal functions

This section describes the visual cues that we utilize in
tracking an object of interest. These are simply color, motion and
infrared brightness, and are discussed in the following subsections.

In our work, while extracting these visual cues from an image
frame, we follow a conventional approach and use measurements
based on histograms. We compute the likelihoods and construct
the individual proposal functions by making use of reference
histograms which are defined for each visual cue. We manually
construct our reference histograms, and use these histograms
throughout the whole tracking sequence without updating them.

Mainly, the construction of the proposal functions and the
estimation of the likelihoods depend on the comparison between
the histograms extracted from the candidate regions and the
reference histogram. For that, we utilize the Bhattacharyya
histogram similarity measure [3].

It is important to note that, as in [22], the proposal functions
described in the subsequent subsections are defined only for

suggesting the new values for the location component of the
object state. For the scaling factors, the proposal functions are
taken as the corresponding component of the state evolution
model described in Eq. (1).

4.1. Color cue

Following [21], we adopt an observation model that is based on
Hue–Saturation–Value (HSV) color histograms with BC ¼ BhBsþBv

bins and define our color likelihood as

pðyC9xÞpexp �
D2
ðhC

x ,hC
ref Þ

2s2
C

 !
, ð2Þ

with hC
ref denoting the BC-bin normalized reference histogram, hC

x

representing the normalized color histogram which is obtained from
a candidate object region specified by the object state x, and
D2
ðhC

x ,hC
ref Þ being the Bhattacharyya histogram similarity measure

between them.
The construction of the proposal function also depends on the

color likelihood model described above. Typically, we first esti-
mate the color likelihoods on a subset of image locations over the
current frame. For this, we use a pre-defined step size of 5 pixels
through the current frame, and keep the scale factors fixed as
s¼ t¼ 1. The likelihoods estimated in this way define an approx-
imate probability distribution map for the target object. Once
these likelihoods are estimated, we define our proposal function
as follows:

qCðxk,yk9xk�1,yk�1,yC
k Þ ¼ bRWN ððxk�1,yk�1Þ,ðs2

x ,s2
y ÞÞ

þ
ð1�bRW Þ

NC

XNC

i ¼ 1

N ðpC
i ,ðs2

x ,s2
y ÞÞ: ð3Þ

In Eq. (3), the first component is the Gaussian random walk
component for the object location that we previously introduced
in our state evolution model given in Eq. (1). The points pC

i ¼

ðxi,yiÞ, i¼ 1, . . . ,NC denote the image locations having a likelihood
greater than a threshold (i.e. pðyC9xÞ4tC), and define the centers
of Gaussians in the mixture model utilized in the second compo-
nent, respectively. We fixed bRW ¼ 0:75 in our experiments, and
thus the main tendency is to preserve the smoothness of the
tracking trajectory. On the other hand, the second component
allows jumps in the state space to the image regions that are
likely to contain the target object.

4.2. Motion cue

The image locations having a motion activity at frame k can be
determined from the absolute difference of the intensity images
at frames k and k�1. In the frame difference, the pixels with large
values indicate the motion activity. If there is no motion, the
frame difference is either zero or has a very small value due to the
noise and/or due to the slight changes in the intensity.

To estimate the motion likelihood, we follow the approach
suggested in [22]. For a region of interest specified by the state x,

we associate a motion histogram hM
x ¼ ðh

M
1,x, . . . ,hM

BM ,xÞ with BM

denoting the number of bins. The reference histogram hM
ref is defined

considering a uniform distribution, i.e. hM
i,ref ¼ 1=BM , i¼ 1, . . . ,BM . In

the case of no motion activity, the Bhattacharyya histogram similarity

measure yields D2
no_mot: ¼ 1�

ffiffiffiffiffiffiffiffiffiffiffiffi
1=BM

p
. Considering this, we define the

motion likelihood as

pðyM9xÞp1�exp �
D2

no_mot:�D2
ðhM

x ,hM
ref Þ

2s2
M

 !
: ð4Þ
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As in Section 4.1, the proposal function is constructed by estimat-
ing the likelihoods on a subset of image locations over the current
frame. The locations having a likelihood greater than a threshold tM

are then used, as in [22], to define the proposal function as

qMðxk,yk9xk�1,yk�1,yM
k Þ ¼ bRWN ððxk�1,yk�1Þ,ðs2

x ,s2
y ÞÞ

þ
ð1�bRW Þ

NM

XNM

i ¼ 1

N ðpM
i ,ðs2

x ,s2
y ÞÞ: ð5Þ

4.3. Infrared brightness cue

Besides color and motion, we employ infrared brightness cue
in some of our experiments. This cue requires the tracking
sequence to be imaged from an infrared camera, and allows us
to consider different thermal characteristics of an object of
interest during tracking. In estimating the likelihoods and con-
structing the corresponding proposal function, we follow an
approach similar to the ones explained in the previous subsec-
tions. Then, we define the infrared brightness likelihood as

pðyI9xÞpexp �
D2
ðhI

x,hI
ref Þ

2s2
I

 !
, ð6Þ

where hI
ref ¼ ðh

I
1,ref , . . . ,hI

BI ,ref Þ is the BI-bin normalized reference

histogram, and hI
x ¼ ðh

I
1,x, . . . ,hI

BI ,x
Þ is the normalized brightness

histogram obtained from the candidate object region. The propo-
sal is as follows:

qIðxk,yk9xk�1,yk�1,yI
kÞ ¼ bRWN ððxk�1,yk�1Þ,ðs2

x ,s2
y ÞÞ

þ
ð1�bRW Þ

NI

XNI

i ¼ 1

N ðpI
i ,ðs

2
x ,s2

y ÞÞ, ð7Þ

where pI
i ¼ ðxi,yiÞ,i¼ 1, . . . ,NI denote the image locations where

the target object is likely to be according to the threshold tI .

5. Tracking algorithm

We propose a novel approach for integrating different visual
cues during tracking. Unlike the previous works summarized in
Section 1.1, we do not give preference to any cue, nor use a global
scheme with a predetermined structure. We mainly let the
current visual context determine how the interactions between
multiple cues are carried out. In all phases of tracking, we
emphasize the information derived from the reliable cues and
ignore the information provided by the unreliable cues. This view
certainly involves discovering and using the reliabilities of the
visual cues. We summarize the basic outline of our tracking
algorithm in Algorithm 1. As it illustrates, we nearly follow the
classic flow of a particle filter-based framework. The proposed
tracker consists of prediction, measurement, resampling phases
with an additional reliability-update step.

Algorithm 1. General algorithm.

In the initialization step, pðx0Þ ¼ UXðx0Þ. Then, from the

particle set fxðiÞk�1,wðiÞk�1g
N
i ¼ 1 at time step k�1, determine the

new particle set fxðiÞk ,wðiÞk g
N
i ¼ 1 as follows:

1. Adjust cue reliabilities fr‘kg considering current

observations yk (Algorithm 2).

2. Generate new hypotheses fxðiÞk g
N
i ¼ 1 through a prediction

step (Algorithm 3).

3. Update weights of the particles fwðiÞk g
N
i ¼ 1 (Eq. (13)).

4. Estimate the conditional mean as the solution (Eq. (14))
and perform resampling for the next time step.

5.1. Updating the reliabilities of cues

Adaptive reliabilities assigned to visual cues are key to our
formulation. In this paper, we adopt the cue reliability definition
of the Democratic Integration method [25] and follow the instruc-
tions given in Algorithm 2 to adjust them depending on the
current context. In the first frame, the cue reliabilities are
initialized with equal weights with their sum equal to 1. In the
subsequent frames, each reliability value is dynamically updated
by using Eq. (11). The new reliability value of a cue is determined
by considering both the overall success of that cue in the past,
which corresponds to the old reliability value, and its individual
success in predicting the current joint result, which corresponds
to its quality (Eq. (10)). The quality of a cue simply quantifies the
degree of agreement between the joint result and the result the
cue individually suggests. Thus, the reliabilities can be interpreted
as the qualities smoothed over time. Each quality measure
compares the importance of a cue at an approximate target
position x̂k determined by Eq. (8) with its response averaged
over the corresponding approximate cue likelihood. Then, a cue
having a quality higher than its current reliability will be given a
higher influence in the future by increasing its reliability. In a
similar manner, a cue having a quality lower than its current
reliability will be suppressed by decreasing its reliability.

Algorithm 2. Updating the reliabilities of the visual cues.

� Approximate target position x̂k using previous reliabilities
and current observations:

x̂k ¼ arg max
x
ðp̂ðyk9xÞÞ ¼ arg max

x

Y
‘A fC,I,Mg

p̂ðy‘k9xÞ
r‘

k�1

0@ 1A ð8Þ

with p̂ðy‘k9xÞ the approximate probability distribution map
estimated for the modality ‘
� Estimate the quality measures for each cue as follows:

s‘k ¼
0 if p̂ðy‘k9x̂kÞr/p̂ðy‘k9xÞS

p̂ðy‘k9x̂kÞ�/p̂ðy‘k9xÞS if p̂ðy‘k9x̂kÞ4/p̂ðy‘k9xÞS

(
ð9Þ

where / � � �S denotes the average over the approximate
probability distribution map
� Determine the normalized qualities s‘k:

s‘k ¼
s‘kP
j

sj
k

ð10Þ

� Update reliabilities considering the current quality measures
as follows:

r‘k ¼ r‘k�1þZðs
‘
k�r‘k�1Þ ð11Þ

with Z denoting a time constant which we set to 0.1 in our
experiments.

Note that since the initial reliabilities and the quality values
are normalized, the reliabilities are also normalized and their sum
is always one. Moreover, the cue reliabilities are defined through
quality values which are defined over the whole image domain.
By this way, the reliabilities are determined by considering a
global picture of the tracking scene, and thus the tracking
inaccuracies do not affect the reliability computations.

5.2. Predicting the new locations of particles

Once the updated cue reliabilities are determined, they are
used to guide the hypothesis generation phase, providing pre-
mises regarding the new locations of particles. This process is

E. Erdem et al. / Pattern Recognition 45 (2012) 1948–1959 1951
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summarized in Algorithm 3. As can be seen, in our framework,
each particle is assigned to a modality denoted by ‘ with
‘AfC,I,Mg (C for color, I for infrared brightness, M for motion)
and accordingly to a specific proposal function q‘k ðxk9xk�1,y‘k

k Þ

(Eq. (12)). This process performs sampling from a mixture model,
relying on the principle of generation of non-uniformly random
samples [5]. As the reliabilities determine the assignments, if one
cue becomes unreliable relative to other visual cues, the tendency
is to reduce the total number of particles associated with it and to
increase the total number of particles associated with more
reliable visual cue(s). As a result, the tracking accuracy increases
as less reliable proposal functions are utilized less in the sequen-
tial importance sampling in predicting the position of the target
object.

Algorithm 3. Generating the new hypotheses through prediction.

� Simulate ‘ðiÞk :
– Generate a random number aA ½0;1Þ, uniformly

distributed.
– Set

‘ðiÞk ¼

C if aorC
k

I if rC
k raorC

kþrI
k

M if aZrC
kþrI

k

8>><>>: ð12Þ

� Simulate xðiÞk � q‘
ðiÞ
k ðxk9x

ðiÞ
k�1,y

‘ðiÞ
k

k Þ

For example, consider a video sequence where all the cues
equivalently give questionable observations for some of the
tracking frames (e.g. during the time the target object gets
completely occluded and becomes visible again). In the suggested
scheme, the recovery of the lost target object can be carried out
quickly since the reliabilities can quickly adapt themselves to the
current context using the information acquired from the whole
image, and the tracker can accordingly utilize the proposals which
give more accurate predictions than the unreliable proposals.

5.3. Updating the weights of particles and estimating the joint result

The next step of our algorithm includes a measurement step
which adjusts the weights of new particles according to new
observations. This is performed by using the formula

wðiÞk pwðiÞk�1

pðyk9x
ðiÞ
k Þpðx

ðiÞ
k 9xðiÞk�1Þ

q‘
ðiÞ

k ðxðiÞk 9xðiÞk�1,y
‘ðiÞ

k

k Þ

with
XN

i ¼ 1

wðiÞk ¼ 1: ð13Þ

The key point is that the updated cue reliabilities play central
roles here as well. The overall likelihood function pðyk9xkÞ is
defined in a way that the cue likelihoods are integrated in an
adaptive manner as follows:

pðyk9xkÞ ¼
Y

‘A fC,I,Mg

pðy‘k9xkÞ
r‘

k , ð14Þ

with
P
‘A fC,I,Mgr

‘ ¼ 1. As a result, each cue contributes to the joint
tracking result according to its current reliability, and the ones
having low values have little effect on the outcome. The indivi-
dual likelihoods having a value estimated as zero make the overall
likelihood zero as we take the product, whether its reliability
score is low or not. Thus, in our experiments, we adjust all such
likelihoods values and explicitly set them to a small value like
pðy‘9xÞ ¼ 0:001.

Finally, the decision about the tracking process for the current
time step k is obtained from the particle set by estimating the

weighted average of the hypothesized states

cxk ¼
XN

i ¼ 1

wðiÞk xðiÞk : ð15Þ

5.4. Implementation details

We have implemented the proposed algorithm in MATLAB on
a PC with a 3.16 GHz Intel Core2 Duo processor. In all the
experiments, we fixed sx ¼ sy ¼ 3, ss ¼ st ¼ 0:01, bU ¼ 0:01,
sC ¼ 0:2, sM ¼ 0:4, sI ¼ 0:25, Bh ¼ Bs ¼ Bv ¼ 10, BM¼20, BI¼30,
and used detection thresholds tC ¼ tI ¼ 0:65, tM ¼ 0:2. In
Eqs. (3), (5) and (7), if respectively NC, NI or NM equals to zero,
we use only the first Gaussian random walk component for the
related proposal function.

Among these parameters, the most critical ones are the
detection thresholds tC , tM , and tI which are used to construct
the proposal functions. As the experimental analysis performed in
the next section indicates, the proposed work is robust in terms of
false positives given the current context with respect to the
values chosen for these parameters, and it generally provides
better results than those of other cue integration strategies.

As for the computational cost, the main bottleneck of the
suggested approach is the construction of the approximate prob-
ability distribution maps, which is carried out for each cue at each
frame. The important factor here is the value of the pre-defined
step size which defines the subset of image locations over the
current frame where the likelihoods are estimated. For a video
sequence containing 144�192 color image frames, our tracker
runs at approximately 2 frames per second with a step size of
5 pixels being used. It should be added that the run-time
performance could be further improved by including some MEX
Cþþ subroutines, or parallelizing the code.

6. Experimental results

In this section, we demonstrate the performance of the
proposed framework (Algorithm 3) on illustrative video
sequences. We performed two groups of experiments. The first
set is mainly about the qualitative analysis of the proposed
method in which we consider different tracking scenarios. Fol-
lowing that, in the second set of experiments, we carry out a
thorough quantitative analysis in terms of tracking accuracy by
using some sequences in which the ground truth is available.

We typically compare our results obtained considering multi-
ple cues with context-sensitive reliabilities with those obtained
using a single cue or multiple cues with fixed reliabilities. We also
provide the tracking outcomes of the two-layered partitioned
sampling (PS) and the dynamic partitioned sampling (DPS)
approaches, because these approaches are known to be robust
and well known for the tracking based on multiple cues. Our
implementation of these methods follows the architecture sug-
gested in [22]—in the first level, the object locations are sampled
from the proposal functions introduced in Section 4 and in the
second level, the state evolution model described in Section 3 is
used for the scaling factors with a resampling phase in between.
While the order of cues is fixed for the PS [22] (from motion to
color), for the DPS, following the idea suggested in [13], we
change the order of cues dynamically depending on the cue
reliabilities.

In our experiments, we use a fairly small number of particles,
N¼100. The reference color models are manually constructed in
the first frame of the sequences. For qualitative analysis, we
employ the conditional mean and the particles with the five
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highest weights to depict the outcomes. We associate different
colors for the particles, and the rectangular regions they repre-
sent, depending on the cue they are attached to: green for color,
blue for motion, and red for infrared brightness. Additionally, we
draw the rectangle represented by the conditional mean in white.
This color distribution among the particles does visually represent
the cue reliabilities. In the second set of experiments, we present
the results by using only the corresponding conditional means.
The videos showing the results of these experiments are provided
as supplementary material and available in the following link
http://perso.telecom-paristech.fr/�bloch/PR-Submission.

6.1. Qualitative analysis

We first consider a sequence from the BEHAVE Interactions
Test Case Scenarios [6] where we try to track a person with a
white shirt using color and motion information. Throughout the
sequence, first, a group of people goes after the person of interest
and attacks him. During this time, he is completely occluded.
Next, at some point, the person of interest kneels down and stops
moving. These different phenomena observed throughout the

video sequence exemplify the contextual changes that we exploit
in our tracking framework.

As Fig. 1(a) and (b) respectively demonstrate, the color-based
tracking and the motion-based tracking may lead to inaccurate
results due to the ambiguities inherent to the processing of the
video sequence considering single modalities. There are objects in
the background which have similar appearances to the object of
interest. Therefore, soon after the initialization, the framework
based on color starts tracking the wrong object and remains at
this local minimum point during nearly half of the video
sequence. However, it is eventually able to recover the actual
object of interest with the utility of the color-based proposal. The
outcomes of the motion-based tracker are much worse since the
video sequence involves several persons in motion. That is, the
motion likelihood function becomes non-discriminative with
respect to the target object and the samples are distributed all
around the moving objects. As one expects, considering color and
motion cues all together with fixed values for reliabilities gives
better tracking results than using only one modality (Fig. 1(c)).
Yet, such a scheme has some drawbacks. Since equal weights are
given for color and motion cues, if one of the sources becomes
unreliable, it directly affects the results. In the video sequence, the

Fig. 1. Seq. 1 Sample tracking results using: (a) color, (b) motion, (c) both color and motion with fixed reliabilities, (d) both color and motion with context-sensitive

reliabilities. Modifying the reliabilities of the visual cues according to the context and accordingly using them eliminate most of the ambiguities that the previous cases

cannot easily cope with. (e) PS, (f) DPS. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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person entering the scene during which the actual person of
interest is at rest distracts tracking.

As illustrated in Fig. 1(d), considering a scheme with context-
sensitive reliabilities eliminates most of the ambiguities men-
tioned and results in an improvement in the outcomes. For
instance, when the target person is occluded by the group of
people following him, the reliability of the color cue decreases,
and thus the motion cue particularly guides the tracking process
during this time interval. Similarly, when the person of interest
becomes idle, the reliability of motion decreases, making the color
cue the dominant cue. Thus, the tracking process does not get
distracted by the person entering the scene unlike in the case
with fixed reliabilities. Fig. 2(a) illustrates these changes in the
reliabilities of the cues. In Fig. 2(b), we provide color and motion
likelihoods as well as their combinations with two different
strategies for the frame where the person of interest is at rest.
As mentioned at the beginning of this section, our color encoding
scheme can be used to visually represent the cue reliabilities

through the distribution of the colored samples. In Fig. 3, we
provide such a representation for three sample frames.

In Fig. 1(e), we demonstrate the disadvantage of using PS that
results in inaccurate tracking. The tracking process relies primarily on
the motion information in the prediction step, and thus the person
entering the scene during the time the actual person of interest is at
rest distracts the tracking process as in the case with fixed reliabilities
(Fig. 1(c)). Since this approach does not attach the particles to any
particular modality, we use a different color (yellow) for the particles
representing the tracking outcomes. The tracker based on DPS, on the
other hand, successfully tracks the target like ours as the order of cues
in the partitioned sampling is updated according to the cue reliabil-
ities (Fig. 1(f)). Note that increasing the value of tM to a convenient
value makes both the framework that uses fixed reliabilities for color
and motion, and PS approach accurately track the person of interest.
This highlights that our proposed work is more robust against the
values chosen for the detection parameters in terms of false positives
given the current context.
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Fig. 2. (a) Reliabilities throughout seq. 1. (b) Likelihoods for a sample frame. A more accurate estimate is achieved using adaptive weights for the reliabilities.

Fig. 3. Seq. 1 Visual representation of the cue reliabilities at three sample frames (green for color and blue for motion). (For interpretation of the references to color in this

figure legend, the reader is referred to the web version of this article.)
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In the second experiment, we consider a tracking sequence
captured from an infrared camera along with a CCD camera
(taken from the OSU Color-Thermal Database [11]). We test our
framework under four scenarios. The first set of experiments
involves employing fixed reliabilities, and considering color and
motion cues together and additionally using infrared brightness
along with them. The second set of experiments uses the same
two different cue combinations, but with adaptive reliabilities for
the cues. We show the results of these experiments in Fig. 4. In
each figure, we provide the outcomes based on color and motion,

and color, motion and infrared brightness side by side. It can be
seen from these figures that the results of the framework built
upon color and motion are not good, whether fixed values for the
reliabilities are used or not. These cues both fail to account for the
uncertainties in the tracking sequence. Specifically, the reference
color model quickly becomes inadequate for describing the
appearance of the person of interest, leading to enlarged and
inaccurate object regions. This is mainly due to the changes in the
person’s view throughout the sequence and the nearby objects
with a similar color. The problem with the motion cue is more
severe since the sequence contains another person walking in the
scene, and more importantly, the person of interest does not
move much most of the time.

Introducing infrared brightness as a complementary cue, in
this respect, improves the performance and provides more accu-
rate tracking. It is important to note that most of the time,
refining the reliabilities with respect to the contextual informa-
tion gives more accurate results than using fixed values for
the reliabilities. As illustrated in Fig. 5, with adaptive reliabilities,
the motion cue remains the least reliable cue throughout the
sequence due to the aforementioned points. Infrared brightness
and color cues compete with each other to describe the person of
interest, and since infrared brightness values do not change much
when the tracked person changes its pose, the infrared brightness
cue is given a higher weight or importance than the color cue
most of the time. This results in a significant change for the
reliability values of color (cf. the plots in Fig. 5(a)).

Lastly, we consider the image sequence OneShopOneWait2-

cor from the CAVIAR project [14]. We again compare the tracking
outcomes obtained by using single visual cues, color and motion,
with that of obtained by combining these two. As illustrated in
Fig. 6(b), using motion data alone leads to inaccurate tracking.
The sequence contains several persons moving across the hall-
way. The tracking process cannot distinguish the actual person of
interest from the others, and the particles are distributed all over
the moving persons. On the other hand, the color-based tracking
and our framework provide nearly similar tracking results
(Fig. 6(a), (c)). They succeed in tracking the object for most part
of the sequence, but they lose the track whenever a person having
a similar appearance enters the scene. The reason behind the
similar performance is that with respect to the contextual
information, color is determined to be the main cue and is given
a much higher weight than motion during tracking (Fig. 7).
This experiment shows that combining several visual cues does
not always mean robustness. It improves the tracking results only
when at least one of the cues considered in tracking is effective in
describing the target object. For instance, in this example, color
and motion both fail to account for the uncertainties. The PS
approach produces much worse results since it uses a fixed order
in the sampling, from motion to color. As shown in Fig. 6(d), the
tracker tracks four different persons throughout the sequence.
The flexibility of the DPS approach, due to the order of visual cues
changing dynamically in accordance with their reliabilities,
mostly eliminates these false detections and tracking as illu-
strated in Fig. 6(e).

6.2. Quantitative analysis

In this section, we quantitatively evaluate our tracking algo-
rithm on two sets of video sequences. The first set involves the
sequence from the BEHAVE Interactions Test Case Scenarios [6]
that we previously presented in Section 6.1 and that consists of
949 frames. In the second set of sequences, we use several video
sequences from the CAVIAR project [14]. All these video
sequences exhibit a wide variety of challenges including changes
in the pose and scale of the target object, varying illumination

Fig. 4. Seq. 2 Sample tracking results. (a) With fixed reliabilities. (b) With adaptive

reliabilities. It results in more accurate tracking of the person of interest for the

framework in which infrared brightness is introduced as a complementary cue.

Infrared brightness cue is more reliable and is given a higher importance than the

other cues during tracking.
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conditions, and partial occlusions. We tested the trackers by
running them 5 times and by taking the average for each video
sequence since they are all particle-filter based formulations and
thus involve some randomness.

For quantitative analysis, we use two measures. We compute
the average F-measures, given by F ¼ 2pr=ðpþrÞ where p is the
precision p¼ 9E \ GT 9=9E9 and r the recall r¼ 9E \ GT 9=9GT 9 with
E the rectangular region estimated by the conditional mean and
GT the ground truth, and the percentage of frames where the
target object was successfully tracked among the frames for
which the ground truth is available. The tracking is considered
to be successful if E overlaps with GT .

Table 1 provides the quantitative tracking results for the sequence
from the BEHAVE dataset, obtained by comparing the trackers’
outcomes to the manually labeled ground truth data. As it can be
seen, the outcomes are in line with the qualitative results presented
before. The trackers based on single cues have the worst perfor-
mances; and due to the ambiguities inherent to these cues the
standard deviations of the measures are higher than those of others.
In general, the proposed method and the dynamic partitioned
sampling approach are competitive and give better results than the
others.

We have performed the second set of our experiments on nine
different video sequences from the CAVIAR project [14]. We use three
of these sequences twice; in each we track two different persons,
respectively. This makes 12 experiments in total. Table 2 shows the
summary of these experiments. The sequences used in the experi-
ments involve different scenarios with varying complexities (changes
in the appearance due to pose and illumination variations, occlusions
of the target, crowdedness in the background, etc.).

Tables 3 and 4 summarize the quantitative performance of the
tested tracking methods.1 It can be seen from these results that in

general the proposed tracker outperforms the other trackers. Mostly,
it gives either the best or the second best results with respect to the
manually labeled ground truth. In terms of the quantitative mea-
sures averaged over all experiments (Table 3), it has the best F-
measure and success rate performances and the smallest average
rank. Among the trackers that fuse multiple cues, the PS approach
[22] provides the worst performance. The reason for this mainly
stems from the fixed order (from motion to color) that is used in
[22] the sampling. It can be also observed that for nearly half of the
experiments the color-based tracker performs especially well. Since
our method adaptively estimates the reliabilities of color and
motion cues with respect to the contextual information (color is
given a much higher weight than motion during tracking) and uses
them both in the prediction and the likelihood estimation steps, our
performance is competitive to the color-based tracker in these
sequences. From all these experiments, we can conclude that for
situations where fusion is actually useful, our method outperforms
the other methods.

7. Summary and future work

We have presented a particle filter-based tracking algorithm
which integrates multiple cues in a novel way. Unlike previous
approaches, our method performs the multi-cue integration both
in making predictions about the object of interest and in verifying
them through observations. Both stages of the integration depend
on the reliabilities of the visual cues, which are adapted in a
dynamic way. Particularly, in the prediction step, the reliabilities
determine to which cues and to which proposal function the
particles are attached, forcing reliable proposal functions to be
employed more in the sequential importance sampling. Moreover,
in the measurement step, they specify the level of contribution of
each visual cue to the compound likelihood, resulting in more
precise weights for the particles.

We have demonstrated the potential of the proposed approach
on various illustrative video sequences with different tracking
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Fig. 5. (a) Reliabilities throughout seq. 2. (b) Visual representation of the cue reliabilities at two sample frames (green for color, blue for motion and red for infrared

brightness). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

1 The qualitative comparisons (videos showing the results of these experi-

ments) can be downloaded following the url http://perso.telecom-paristech.fr/

�bloch/PR-Submission.
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scenarios. As the experimental results reveal, the dynamic struc-
ture of our formulation makes tracking process easily adapt itself
to changes in the context. The proposed framework is general

Fig. 6. Seq. 3 Sample tracking results using: (a) color, (b) motion, (c) both color and motion with context-sensitive reliabilities. The proposed tracking framework succeeds

in tracking the person of interest until a person with a similar appearance appears in the video sequence. (d) PS, (e) DPS. (For interpretation of the references to color in this

figure legend, the reader is referred to the web version of this article.)
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Fig. 7. Reliabilities throughout seq. 3.

Table 1
Average F-measures and success rates (percentage of frames in which the target

object is successfully tracked) for the sequence from the BEHAVE dataset.

Tracker F-measure Success rate

Color 0.3270.18 70.58740.42
Motion 0.1570.04 46.35710.07
Fixed reliabilities 0.4670.07 94.4277.11
Proposed method 0.4670.03 99.5770.17
DPS 0.4670.02 98.5370.84
PS 0.3970.03 86.7871.77

Table 2
The sequences from the CAVIAR project used in the experiments.

Sequence ObjectId Total # of frames

OneLeaveShop2cor 0 546
OneShopOneWait1cor 2 734
OneShopOneWait2cor 7 1171
OneStopEnter1cor 1 581
OneStopEnter1cor 2 1324
OneStopEnter2cor 3 316
OneStopEnter2cor 4 834
OneStopMoveEnter1cor 7 664
OneStopMoveNoEnter2cor 0 639
OneStopNoEnter1cor 0 395
ThreePastShop2cor 2 331
ThreePastShop2cor 7 459
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enough to easily include other sources of information. Even
though in our experiments we use color, motion and infrared
brightness cues as the main sources of information for tracking an
object, we can extend this list with further visual cues (such as
feature spatial cue or histogram of gradients) and integrate them
in our framework without any difficulty. The conditional inde-
pendence of observations should then be reconsidered, depending
on the chosen cues. Moreover, the suggested approach allows
introducing new modalities, whenever available, throughout
tracking. However, it is important to note that combining several
visual cues does not always increase the tracking accuracy as our
last experiment illustrates. Intuitively, integrating various visual
cues does improve the outcomes by eliminating the ambiguities
only when at least one of the cues considered in tracking is
effective in describing the object of interest.

In updating the reliabilities of the visual cues, we adopt the
approach suggested in [25]. As a future work, it could be
interesting to develop new quality measures in updating the
cues’ reliabilities. For example, in a recent work [27], the
dynamics parameters in the particle filter are estimated via a
fuzzy model. Considering fuzzy measures instead of the hard
decision utilized in [25] may result in more accurate estimation of
cue reliabilities. Moreover, in our formulation, we fixed the

weight for the state dynamics in the proposals bRW ¼ 0:75 for all
cues in tracking the target object. In the case where all the visual
cues suggest likely target points (i.e., NC, NI and NM all 40), the
overall filter proposal can be interpreted as a mixture containing
four different proposals (one including the state dynamics with
weight and one for each cue). An interesting future work could be
defining the weight of the state dynamics in the mixture in an
adaptive way instead of fixing it to a specific value bRW . Of course,
this requires defining a reliability score for this component as
well. For this purpose the Democratic Integration is not suitable,
and a new approach should be devised.
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