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a b s t r a c t

A model-based graph matching approach is proposed for interactive image segmentation. It starts from

an over-segmentation of the input image, exploiting color and spatial information among regions to

propagate the labels from the regions marked by the user-provided seeds to the entire image. The

region merging procedure is performed by matching two graphs: the input graph, representing the

entire image; and the model graph, representing only the marked regions. The optimization is based on

discrete search using deformed graphs to efficiently evaluate the spatial information. Note that by using

a model-based approach, different interactive segmentation problems can be tackled: binary and multi-

label segmentation of single images as well as of multiple similar images. Successful results for all these

cases are presented, in addition to a comparison between our binary segmentation results and those

obtained with state-of-the-art approaches. An implementation is available at http://structuralsegm.

sourceforge.net/.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

The goal of the image segmentation problem is to divide the
input image into different meaningful regions, e.g. to extract the
object of interest from the original background. User intervention
is often required, encoding prior information into the process
through seeds, such as scribbles that the user draws over an
image to identify the regions of interest. Ideally, after roughly
placing the scribbles, the remainder of the image is automatically
segmented. In practice, the user should be allowed to add/remove
scribbles to make corrections on the segmentation process and
achieve the desired result. The system must be easy to use and
the segmentation algorithm should be fast enough to interact
with the user, producing accurate results with minimal effort.

A non-interactive model-based image segmentation method
has been introduced in [10], where models were obtained from
pre-selected images with their respective manual segmentations.
The goal was to propagate these manual segmentations to other
similar images, by matching model regions with those from the
input images (see Fig. 1), for segmentation and recognition of
image structures.
ll rights reserved.
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a),
The present paper focuses on interactive image segmentation,
where the user provides scribbles which are used as input to segment
the image (either the same, or a set of similar ones). Therefore, it is
natural to think about how to represent the information provided by
the user through the scribbles. Most traditional approaches represent
them as markers (watershed), seeds (region growing methods) or
graph nodes (graph-cut-like methods). However, we are interested in
explicitly representing both the image information (grey-level, color,
texture) and the structural information (spatial relations) provided by
the scribbles. This is useful in a number of situations where the
structure of the scene is important to recognize individual objects. For
instance, for disambiguating objects having similar appearance in an
image, their spatial arrangement is very useful. In this sense, graphs
are a natural choice, since we may represent both types of informa-
tion in a single structure. Inspired by the model-based approach
described in [10], the proposed framework is based on over-segmen-
tation, e.g. produced by the watershed transform [34], to build both
input and model graphs. Note that, differently from [10], the
proposed method follows an interactive model generation approach.
In order to be more user-friendly, instead of using manual segmenta-
tions for the models, the new method takes advantage of the scribbles
provided by the user in order to propagate the segmentations, in
which the model graphs can be interactively updated according to the
changes on the scribbles. Moreover, the introduced approach allows
segmenting both cases, single and multiple similar images, by using
model and input graphs encoding information from the same image
or from two different images.

Following a preliminary version of this work, described in [11],
we focus on the usual version of the interactive image
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Fig. 1. Our method was inspired by the graph matching approach described in [10]. In that paper, a model graph represented a manual segmentation, while an input

graph represented an over-segmentation of another image. The goal was to propagate manual information to other input images for segmentation and recognition of

image structures.

Fig. 2. Method overview. Initially, the user scribbles over the image to indicate what the objects of interest are. Next, an over-segmentation is computed from the input

image. This over-segmentation originates two graphs: an input graph and a model one. In the model graph, the label of each vertex corresponds to the color of the scribble

intercepting its respective region. Finally, a segmentation may be found by matching these graphs to propagate the labels from the marked regions to all non-marked ones,

producing a labeling of the whole input image.
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segmentation problem, involving single images, by formulating it
as a matching task between (attributed relational) graphs. In this
case, the input image is over-segmented to produce two attrib-
uted relational graphs (ARG), i.e., graphs in which vertices and/or
edges are associated to feature vectors: the input ARG, represent-
ing all regions1 (corresponding to the entire image), and the
model ARG, representing only the regions intercepted by the
scribbles (Fig. 2).

The goal is to map each input vertex to a model vertex,
resulting in a many-to-one correspondence, in which the
1 Regions offer many advantages over pixel features: regions are more noise-

tolerant and make constraints, such as contiguity/smoothness and adjacency,

easier to formulate, as observed in [31,32].
segmentation is achieved by propagating the labels given by the
model vertices, as shown in Fig. 3.

To compute a match between these graphs, a cost function
must be optimized in order to evaluate and choose a proper
mapping among the exponential number of possible solutions.
This cost function may consider appearance (e.g. average inten-
sities/color of each region) and structural features of the image
regions (e.g. relative positions among region centroids), encoded
as vertex and edge attributes respectively.

In general, the evaluation of the similarity between input and
model graphs can be too costly due to the presence of noise or
distortions between input and model patterns, which directly
affects vertex and edge attributes. Note that the interdependences
represented by the graph edges turn the general graph matching
problem into a challenging task, especially when we need to
locate a ‘small’ graph within a ‘large’ one.



Fig. 3. Label propagation. Each scribble is characterized by a color. Each model

vertex is associated to a label corresponding to the color of the scribble

intercepting its respective region. During the matching step, these labels are

propagated from the model Gm to the input graph Gi. This defines a complete

segmentation for the image represented by Gi, by painting each pixel with

the respective color assigned to the input region. (For interpretation of the

references to color in this figure legend, the reader is referred to the web version

of this article.)
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Nevertheless, when we have a ‘good’ initialization to align
both graphs, these interdependences can be ignored and we can
efficiently evaluate the spatial configurations of vertices by using
deformed graphs (DG) [25], where each candidate pair of vertices
(input, model) can be examined independently of the already
mapped vertices. This is the key idea in the graph matching step
adopted in this paper.

In our experiments, by replacing the previous tree search-
based optimization algorithm [11] by the DG technique [25], we
observed good matching results which were comparable to the
tree search algorithm using complete model graphs, speeding up
the segmentation process and allowing more interactivity with
the user to produce more accurate segmentations. Moreover, we
combined the DG algorithm with two post-processing steps.
Firstly, by imposing a simple connectivity constraint between
the segmented regions and the scribbles, we noticed that the user
effort can be significantly reduced in the sense that few scribbles
can produce the desired segmentation. For instance, the connec-
tivity constraint is also present on segmentation approaches
based on geodesic distance [5,26,27], random walks [12,14,17],
and in the maximal similarity based region merging technique
[24] by merging adjacent regions. In order to improve the
boundaries of the extracted objects, the second step consisted in
a pixel-based refinement, producing results which are compar-
able to the current state-of-the-art algorithms.

The remainder of this paper follows in Section 2 with a brief
description about related works. Section 3 describes the proposed
framework to match attributed relational graphs, and the opti-
mization algorithm based on deformed graphs [25]. Section 4
presents successful results using simple scribbles, and quantita-
tive comparison with some of the main current graph-based
methods. Besides successful results for binary and multi-label
segmentation for the usual case, examples illustrating the addi-
tional feature, involving multiple similar images segmentation
with a single set of user seeds, are also provided. Finally, some
conclusions are drawn in Section 5, besides a brief discussion
about future work.
2. Related work

This section describes the main classes of methods designed for
interactive segmentation relying on graphs (e.g. for applications
such as photo-editing), taking into account the user intention,
typically through interactions at the beginning of the segmenta-
tion process. This overview does not aim to be exhaustive, being
provided to exhibit the main trends in current research.

A pioneering work involving seeds for image segmentation
was due to Beucher and Meyer [6], in which the authors
combined watershed with markers. Instead of using local
minima to produce the regions/basins in the watershed, seeds
may be provided (or found automatically) to produce the
segmentation, dividing the image into the desired regions. Dif-
ferently from the watersheds with markers [6], in the present
work, the provided seeds are used to collect color information
from the regions produced by the local minima, and structural
information represented by the spatial relations, which are used
to disambiguate regions having similar colors and belonging to
different objects.

Currently, the main techniques using graphs for interactive
segmentation are based on watershed, graph cuts, shortest paths
(geodesic) and random walker.

The method based on interactive graph cuts (IGC) [7] was the
first work involving graph cuts (GC) for interactive image seg-
mentation, proposed by Boykov and Jolly. The segmentation is
performed by the min-cut/max-flow algorithm. The user scribbles
extract color information and are used as hard constraints. It has
become very popular due to its strong mathematical foundation
provided by the MAP-MRF framework. The GrabCut [28] algo-
rithm extended the IGC method by simplifying user interaction.

A very useful segmentation benchmark, with a platform
implementing important algorithms, has recently been proposed
by McGuinness and Connor [23]. The authors compared impor-
tant algorithms such as IGC [7], seeded region growing (SRG) [2],
simple interactive object extraction (SIOX) [15] and binary parti-
tion tree (BPT) [1,29], in order to provide a good coverage of the
various techniques currently available for foreground extraction,
as stated in [23].

The SRG [2] method, proposed by Adams and Bischof, is
very popular due to its simplicity and speed, assuming that
regions of interest are characterized by connected pixels with
similar colors. The SIOX [15] algorithm is also based on color
information and has recently been integrated into the popular
imaging program GIMP as the ’’Foreground Selection Tool’’. The
BPT [1,29] algorithm is based on hierarchical region segmenta-
tion, exploiting the user interaction to split and merge regions in
the tree.

Bai and Sapiro [5] proposed a method based on fast kernel
density estimation [37] for the color statistics, improving the
geodesic distance-based approach described in [27]. Combining
the improved color statistics and the connectivity constraint
imposed by the geodesic distance (between the segmented
regions and the scribbles), the authors of [5] illustrate accurate
segmentations using simple scribbles. Here, we also exploit the
connectivity restriction in a separate post-processing step.

Grady [17] proposed random walks (RW), where each pixel is
labeled based on the probability that a random walker reaches
the pixel, starting from a scribble.

Variants of IGC, geodesic segmentation and RW have recently
been proposed in the literature. An example is [14], where the
authors formulated the interactive image segmentation problem
as a statistical transductive inference, combining GC and RW.
Another example is the geodesic GC [26], which uses geodesic
distance information combined with edge information in a GC
optimization framework.

An important work unifying GC, RW and shortest paths
(geodesic) optimization techniques has recently been proposed
by Couprie et al. [12], in which the authors introduced the power
watershed technique, representing a new family of segmentation
algorithms.
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Excluding the BPT [1,29] method, all other approaches
described above are based on pixels. Another important class of
algorithms is represented by region merging techniques. Li et al.
[21] presented a region merging method combining GC and
watershed regions. Ning et al. [24] have recently proposed
a novel maximal similarity based region merging (MSRM)
mechanism for interactive image segmentation. The key idea of
MSRM is to perform region merging between adjacent regions
by exploiting an effective representation for the color statistics
based on (quantized) color histograms computed from the
regions. Compared to pixel-based approaches, region merging
strategies aggregate robustness to noise and pixel variation in
general.

Regarding the related literature, the relevance of the proposed
technique has the following advantages. (1) It has been imple-
mented as an open-source software. (2) It is trivially extensible
from binary to multi-label, and from single to multiple images
segmentation. (3) Good results were achieved when segmenting
complex images, in which both foreground and background
regions have similar colors, being comparable to the main current
graph-based algorithms. (4) The graph matching step can be
easily combined with the connectivity constraint between the
segmented regions and the scribbles in order to reduce user
effort. (5) By including a pixel-based refinement to improve
the boundaries of the extracted objects, the proposed method
produced accurate segmentations for a wide range of natural
images.
3. Proposed framework

3.1. Segmentation by matching attributed relational graphs

Interactive segmentation relies on user hints (markers or
scribbles) to segment objects in an image. In the case of binary
segmentation, there are two types of scribbles, one for the
foreground and the other for the background. In multi-label
segmentation, the user defines as many scribbles as there are
objects of interest in the image. In both cases, we consider each
scribble to have a distinct color, which will also identify the
referenced object during object segmentation. This prior informa-
tion/labeling introduced by the user must be propagated to the
non-marked regions in order to achieve a complete segmentation
of the input.

In order to propagate the labels, we represent the input image
data and the information encoded by the scribbles by means of
attributed relational graphs (ARG) [33]. This data structure is a
directed graph, in which we associate attribute vectors to vertices
and edges. In the remainder of the text, all references to graphs
imply a reference to an ARG.

We denote an ARG by G¼ ðV ,E,m,nÞ, in which V is a set of
vertices, E is a set of (directed) edges, m represents the vertex
attributes, and n represents the edge attributes. Cardinalities of
the vertex and edge sets are denoted by 9V9 and 9E9 respectively.

In this paper, vertices represent image regions and edges
represent spatial configurations among these regions. Also, region
appearance information is encoded as vertex attributes, and
the structural constraints as edge attributes. To obtain these
graphs from an image, we first obtain an over-segmentation of
the input image in which the contours of each object are expected
to be present. In this paper, this is achieved by the watershed
algorithm [34]. The resulting over-segmented image can then
be used to create an input ARG and/or a model ARG, as
explained next.

Input graph: We shall denote this graph by Gi ¼ ðVi,Ei,mi,niÞ and
similar subscripts will be adopted for its individual vertices and
edges. It can be obtained from the input image as follows. The
input vertex set Vi is defined by the watershed regions, in which
there is a vertex representing each region. For the edge set Ei,
there are different possibilities to represent the relations between
vertices. For instance, an edge can be created to link vertices
corresponding to adjacent regions. Then, vertices and edges can
be attributed, as described in the next section.

Model graph: The model graph is denoted by Gm ¼ ðVm,Em,m,nÞ,
and similar subscripts will be adopted for its individual vertices
and edges. Differently from the input graph, this graph represents
only specific regions of an over-segmented image: those which
are intercepted by a scribble. For each of such regions, a vertex is
created. If more than one scribble fall upon a single region issued
from the watershed, then the dominant one (i.e. the one which
intercepts more pixels from the region) can be chosen as the
region label. Note that, in general, the marked regions may not
induce a connected graph if edges are created based on region
adjacency. By computing a Delaunay triangulation based on the
considered region centroids to build the set Em, close regions can
be linked by an edge while keeping Gm connected. Finally, the
attributes are computed.
3.2. ARG attributes

The choice of ARG attributes depends on the application. In our
interactive segmentation experiments, we compute the same
types of vertex and edge attributes for both Gi and Gm as follows:

Appearance information: The appearance information of a
vertex v, denoted by mðvÞ, corresponds to the following attributes:
�
 the average intensity mðvÞðintensityÞ of its respective image
region. Here, we focus on color images, in which we use three
such values, one for each channel in the CIELAB color space,
which is appropriate for computing distances between colors.
This approach is significantly simpler than the color histograms
used by the maximal similarity based region merging technique
described in [24], each one having 16�16�16¼4096 bins and
corresponding to a different region in the over-segmentation;

�
 a label mðvÞðlabelÞ identifying the class/scribble of the vertex.

For vertices in Gm, this is precisely the color of the respective
scribble, whereas for vertices in Vi, the label is initially
undefined, being assigned later during the matching process.

Structural information: Besides the appearance information,
structure is used to minimize the ambiguities caused by regions
with similar intensities belonging to both foreground and back-
ground components (or distinct classes, in the case of multi-label
segmentation). The structural information is represented by the
spatial relations among the centroids of the regions issued from
the over-segmentation. These relations are encoded by vectors in
the 2D space, as shown in Fig. 4. The basic idea is that each
directed edge holds a corresponding vector as its attribute.
Inspired by the work described in [10], the relative positions are
evaluated by the following equation, which compares two given
vectors, ~v1 and ~v2 , in terms of the angle between them and their
lengths:

cvecð~v1 , ~v2 Þ ¼ l2
9cosy�19

2
þð1�l2Þ

��~v1 9�9~v2

��
CS

, ð1Þ

where y is the angle between ~v1 and ~v2 , 9~v1 9 and 9~v2 9 denote the
vector modulus/lengths.

The first term in Eq. (1) represents the angular cost, which
assigns higher values to opposite vectors. The second term
represents the modular cost, which assigns a value proportional
to the difference of the vector lengths, normalized by a constant



Fig. 4. For the edge attributes, we used vectors to encode spatial relations among

vertices. The highlighted vertices (in red) have different coordinates, producing

different vectors in terms of size and orientation. (For interpretation of the

references to color in this figure legend, the reader is referred to the web version

of this article.)
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CS, representing the maximum distance, to keep the computed
values between 0 and 1.2 The parameter l2 ranges from 0 to 1.3

3.3. Segmentation by matching attributed relational graphs

With these two representations at hand, the goal is to find a
mapping from input to model vertices to label each input image
region with a scribble color. However, by construction, the model
and the input graphs present distinct topologies. Also, since it is
desirable that the user inputs little effort when segmenting an
image, only a few scribbles are expected over the image, which
causes 9Vm9 to be much smaller than 9Vi9.

This mapping qualifies as an inexact homomorphism between
input and model graphs (Fig. 3), a problem which has been dealt
within the literature of inexact graph matching [8,10,36]. One
way to solve this many-to-one mapping is by optimizing a cost
function which evaluates the similarities between attributes (of
vertices and edges). For instance, one can use the following
general form of the cost function:

E¼ l1

X

vertices

dAþð1�l1Þ
X

edges

dS, ð2Þ

where the term dA evaluates the dissimilarities between appear-
ance attributes of pairs of vertices ðvi,vmÞ, the term dS evaluates
the structural dissimilarities between pairs of edges ðei,emÞ, and
the parameter l1 ranges between 0 and 1, weighing the influence
of each term over the result.

In the general case, by considering structural information to
map input to model vertices, the direct comparison between
input and model edge attributes can be too costly due to a
combinatorial number of all possible edge interconnections. In
our method, we try to overcome this problem by using deformed
graphs [25].

Matching by deformed graphs: Instead of evaluating all the
interdependences represented by the edges in Gi, we propose an
alternative approach which evaluates individual input vertex
mappings against the model graph.

In our particular problem, because an initial correspondence is
available to align both graphs (regions intercepted by the scrib-
bles), we can use it to evaluate local deformations among attri-
butes, without compromising the existing interdependences. This
2 In our experiments, we used CS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2þh2
p

, where w is the image width and

h is the image height.
3 As in the original algorithm described in [25], we used l2 ¼ 0:5 in all

experiments to give the same importance to both angular and modular terms of

Eq. (1).
simplification is achieved by successively matching deformed
graphs with the model graph, and obtaining a label for each
viAVi (Fig. 5). Note that, differently from the tree search technique
described in [10], the classification of each input vertex vi is done
independently of the already mapped input vertices v0i, v0iavi.

A deformed graph (DG) [25] represents a deformation of the
model graph by a vertex issued from Gi, as if its corresponding
region had fallen under a scribble during user interaction. The
(local) deformation occurs in Gm with respect to the attributes of a
single vertex vm and its neighboring edge attributes, caused when
simulating a change in the coordinates of vm. Given a pair ðvi,vmÞ,
viAVi, vmAVm, the induced deformed graph, denoted by Gdðvi,vmÞ,
is computed as follows: Gdðvi,vmÞ starts as a copy of the model Gm,
with the same number of vertices and edges, and the same
attributes for the vertices and edges, except for the copy of model
vertex vm and its adjacent edges. The centroid coordinates and
intensity attributes of the copy of vm are replaced by that of vi,
leading to the deformed vertex vd. Similarly, a deformed edge ed

corresponds to the edges with an endpoint at vd, as shown in
Fig. 6(c) and their attributes are recomputed to take into account
the new coordinates in vd.

By ignoring the adjacency information in Ei, the matching
technique based on DG always performs comparisons among
similar graphs, in the sense that both graphs have the same
topology, with the same number of vertices and edges, differing
only on the attributes. Moreover, only the attributes from the
deformed vertex and its neighboring edges in Gdðvi,vmÞmay differ
from the (original) model graph Gm. Therefore, when evaluating
the structural dissimilarities between Gdðvi,vmÞ and the model Gm,
only the deformed edges (and their corresponding model edges)
have to be examined. Thus, for the evaluation of this isomorph-
ism, Eq. (2) simplifies to

Eðvi,vmÞ ¼ l1dAþð1�l1Þ
X

deformed_edges

dS, ð3Þ

where the term dA evaluates the dissimilarities between the
attributes of the deformed vertex vd and the original model
vertex vm (Eq. (4)), the term dS evaluates the structural dissim-
ilarities between the deformed edges and their respective origi-
nals (Eq. (5)), and the other parameters remain the same as
before. The appearance term of Eq. (3) compares vertex attributes
from a pair (vd, vm), with vd corresponding to an input vertex
represented in Gd, as follows:

dAðvd,vmÞ ¼
Euclidean distance ðmðvdÞðintensityÞ,mðvmÞðintensityÞÞ

CA
,

ð4Þ

where the Euclidean distance, between the intensity attributes of
vd and vm, is normalized by a constant CA, representing the
maximum distance among intensity values, to keep the computed
results between 0 and 1.4 The structural term of Eq. (3) is
evaluated by:

dSðGdðvi,vmÞ,GmÞ ¼
1

9EðvdÞ9

X

ed AEðvdÞ

cvecðnðedÞ,nðemÞÞ, ð5Þ

in which cvecð:Þ is given by Eq. (1), EðvdÞ denotes the set of
deformed edges originating from vd, 9EðvdÞ9 denotes the cardin-
ality, and em is the model edge corresponding to the deformed
edge ed. Eq. (5) is the average cost between deformed edges and
their corresponding model edges.5
4 In our experiments, we used CA¼100.
5 Unless stated otherwise, we used l1 ¼ 0:5 in all experiments to give the

same importance to both appearance and structural terms in Eq. (3).



Fig. 5. Matching using deformed graphs. Because the input and model graphs can have very distinct topologies, deformed graphs are used to reduce the many-to-one

mapping problem to a set of simpler inexact isomorphism problems between deformed and model graphs. The final image labeling is then given by evaluating these

isomorphisms according to a greedy strategy, encoding color information and spatial configuration. (For interpretation of the references to color in this figure legend, the

reader is referred to the web version of this article.)

Fig. 6. (a) The model vertices (in green) are superposed to the input vertices (in red). For instance, vm is a model vertex and vi is an input vertex. (b) The edges denote a

triangulation using the model vertices. (c) vd is a deformed vertex, with the same coordinates as vi, and the resulting deformed edges correspond to all (highlighted) edges

with an endpoint at vd. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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3.4. Optimization

Since the aim is to map all input vertices, a set of deformed
graphs must be evaluated for each viAVi, as shown in the pseudo-
code given in algorithm MatchingByDG.6
MATCHINGBYDG ðGi,GmÞ

1 P’|
2 for each vertex viAVi

3 do
6 The proposed algorithm does not depend on the number of scribbles to map

each input vertex to a model vertex. The same pseudo-code can be used to treat

the binary (foreground/background) or the multi-label segmentation problem.
4 cmin’1;
5 vmin’NULL

6 for each vertex vmAVm

7 do
8 create Gdðvi,vmÞ

9 c’Eðvi,vmÞ x compares Gdðvi,vmÞ

with Gm

10 if cocmin

11 do
12 cmin’c;
13 vmin’vm

14 mðviÞðlabelÞ’mðvminÞðlabelÞ

15 P’P [ fðvi,vminÞg

16 return P



Fig. 7. Example of a coarse over-segmentation which produced an incorrect segmentation of the nose of the toucan. A correction can be achieved by manually dividing the

highlighted coarse region. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Let P be a set of pairs representing a match from input to
Fig. 8. (P1) Merging of regions to keep the connectivity constraint between the

segmented regions and the scribbles provided by the user. In the image on the left,

there is a small (solid) region, which is not connected with its corresponding (red)

scribble. In the image on the right, this disconnected region is merged into the

dashed region. (For interpretation of the references to color in this figure legend,

the reader is referred to the web version of this article.)

7 The examples presented in the previous work [11] required complex

scribbles, which were placed near the object boundaries.
model vertices. Then the total cost of solution P is given by

EðPÞ ¼
X

ðvi ,vmÞAP

Eðvi,vmÞ: ð6Þ

In order to minimize Eq. (6), the algorithm uses a greedy strategy
that relies on the individual matches between input and model
vertices. The label to be assigned to each vi should be that
of the model vertex which corresponds to the DG Gdðvi,vmÞ

that minimizes Eq. (3), i.e., which minimizes the deformations
induced in the model. Hence, we must evaluate 9Vm9 isomorph-
isms between an induced DG Gdðvi,vmÞ and the model graph Gm

(lines 6–13).
In the end, the algorithm produces the set of pairs P and

mðviÞðlabelÞ ¼ mðvmÞðlabelÞ, 8ðvi,vmÞAP, corresponding to a com-
plete segmentation of the input image by coloring all the pixels
from each input region with the respective vertex label, corre-
sponding to a scribble color.

3.5. Computational complexity

The matching algorithm presented in the previous section
has complexity in Oð9Vi99Em9Þ, which is basically determined by
the number of deformed edges. Note that, for an efficient
implementation, it is not necessary to rebuild Gdðvi,vmÞ for each
iteration. Instead, for each input vertex, the structural evalua-
tion can be performed by traversing each (directed) model
edge and each corresponding deformed edge only once. For
planar model graphs, such as those generated by Delaunay
triangulation, the number of traversed deformed edges is in
Oð9Em9Þ ¼ Oð9Vm9Þ during the classification of each input vertex,
resulting in Oð9Vi99Vm9Þ edge comparisons to classify all the
input vertices.

In the general tree search strategy, described in [10], an
incremental solution is computed by expanding the nodes in
the search tree. Each expanded node represents a pair which was
included in the mapping, and its children represent all the
possibilities of mapping the next input vertex. The key idea is to
progressively consider more structural information, where the
number of direct comparisons between input and model edges
depends on the depth of the expanded node. At depth k, in order
to select the cheapest model vertex for the current input vertex,
9Vm9ðk�1Þ edge comparisons are performed.

The previous optimization technique [11] maintained the
computational complexity in Oð9Vi99Vm9Þ by limiting the number
of edge comparisons in Oð9Vm9Þ at each depth/level. During our
experiments, we noticed that this modified version of the tree
search [11] presented difficulties to compute the segmentations,
especially when considering simple scribbles.7 For the tested
images, the original tree search technique presented a better
performance when compared to the modified version [11], in
which there is a total of 9Vm9ð0þ1þ2þ � � � þ9Vi9�1Þ edge com-
parisons, resulting in an algorithm with computational complex-
ity in Oð9Vi9

29Vm9Þ. Therefore, in practice, the deformed graph-
based algorithm decreased the computational complexity from
Oð9Vi9

29Vm9Þ to Oð9Vi99Vm9Þ.
3.6. Post-processing

For single images, the scribbles can be imposed as hard
constraints, hence each scribbled pixel keeps its label in the final
segmentation. We assume that the scribbles are correctly placed,
i.e. each scribbled pixel corresponds to its correct region of
interest. In our experiments, this constraint was useful to improve
the results, especially for coarse over-segmentation, providing a
way to manually divide a region (Fig. 7).

In order to provide ease of scribbling with minimal effort by
the user and to compute accurate segmentation for object
extraction, the proposed DG approach can include two post-
processing steps:
(P1)
 Removal of spurious regions by keeping the connec-
tivity constraint between the segmented regions and the
scribbles.



Fig. 9. Segmentation produced by the proposed DG-based approach, without and with the connectivity constraint (P1), respectively. From left to right, the two first

columns represent the first case: (P1) is not imposed and the DG method requires more scribbles to remove all the spurious components from the solution (especially

when considering l1 ¼ 0:5).
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(P2)
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Pixel-level refinement to improve the boundaries of the
extracted objects.
Fig. 10. (P2) Re-classification of pixels on a narrow band on the object boundaries.

For each pixel p in the narrow band, p is re-classified according to the most similar

pixel (in terms of color information), considering only the classified pixels that fall

in a circumference with a fixed size.
In step (P1), after performing the matching algorithm (Section
3.4), the initial segmentation can be post-processed in order to
guarantee that each segmented region is connected to a scribble.
For instance, foreground components in the initial segmentation
that are not connected to a foreground scribble are merged into
the background components. Similarly, the background compo-
nents that are not connected to a background scribble are merged
into the foreground (Fig. 8). This simple step can significantly
reduce the user effort, in the sense that less scribbles are necessary
for the desired segmentation, as illustrated in Figs. 9(DGþP1) and
11(DGþP1). By considering scribbles as hard constraints, step (P1)
can be used to divide coarse regions. As shown in Fig. 7, by adding
scribbles, part of the (highlighted) coarse region was separated
from the foreground (red) scribble to produce the correct result.

Methods combining both region merging and pixel-based
approaches have been proposed in the literature (e.g. [21]),
aggregating robustness (to noise and pixel variation) and accuracy
(especially on the object boundaries). Following this idea, for the
experiments involving binary segmentation for object extraction,
we also applied the post-processing step (P2) for re-classification
of pixels on a narrow band on the object boundaries, e.g. to
circumvent possible imprecision in the initial over-segmentation,
by performing the following heuristic. First, all pixels in a narrow
band are marked as unknown pixels to indicate that they need to
be re-classified (Fig. 10). In our case, the narrow band consisted of
the internal and external borders of the foreground components.
Then, each pixel p from the band is examined and labeled with the
most similar pixel (by evaluating their colors using Eq. (4)) from
all pixels at distance d from p. This step is repeated K times.8 The
improvements are illustrated in Fig. 11(DGþP1þP2).

Note that both steps, (P1) and (P2), can be executed in linear
time, without affecting the computational complexity of the
proposed method.

3.7. Model update

In order to achieve the desired segmentation, the user can add/
remove scribbles to make corrections on the segmentation
In our case, we set d¼10 pixels and repeated this refinement K¼10 times.
process, resulting in updates in the model graph. Fig. 12 is an
example of binary segmentation, illustrating the results com-
puted from the initial scribbles and after an additional scribble to
eliminate the initial misclassified regions. After adding/removing
a scribble, the model graph is rebuilt and the matching algorithm
is executed using the new updated model. Then, the post-
processing steps described in the previous section can be per-
formed to improve the solution.
4. Experiments

In order to show the benefits of the proposed approach, we
tested it with different databases and real natural images,
including the Berkeley Segmentation Dataset and Benchmark
[22], the Microsoft GrabCut database [28], images from Ning
et al. [24], Bai and Sapiro [3–5] and Levin et al. [20]. Some
examples using simple scribbles are illustrated in Fig. 13.

In general, region merging approaches do not require thick
scribbles to mark a large number of pixels, since regions from
the initial over-segmentation can be marked by using thin
scribbles. Thus, compared to pixel-based methods, more color
statistics can be collected by region merging techniques when
considering thin scribbles. In our implementation, we used
scribbles which are 2 pixels wide to provide a clean and elegant
fashion of scribbling. The results are presented with dilated
scribbles for better visualization. Also, the colors of the scribbles
were modified to facilitate the reading when printing in grey
scale.



Fig. 11. Our results using images from the Grabcut database [28], Bai and Sapiro [3], and the toucan image, similar to the one used in [24], but with higher resolution

(1024�768), respectively. The first column on the left shows the original images with scribbles. (DG) Computed labels by the matching algorithm described in Section 3.4.

(DGþP1) Improved results after applying the post-processing step (P1) by imposing the connectivity constraint. (DGþP1þP2) Results after applying the post-processing

step (P2) by improving the object boundaries.

Fig. 12. Flowers from the Berkeley database [22]. The misclassified regions (in the middle column) are corrected by adding a new scribble (in the right column). The

extracted objects are highlighted.
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Fig. 14 shows examples of image compositions with new
backgrounds, computed by the proposed method. Fig. 15 illus-
trates similar segmentations using different fashions of scribbling,
indicating the robustness of our method, especially when the
color information is discriminative enough to separate the differ-
ent components in the image.

4.1. Analysis of parameter l1

The parameter l1 weighs the influence between the appearance
and the structural terms in Eq. (2). For instance, for l1 ¼ 0, only
structural information is used for the matching step (Section 3.4).
Similarly, for l1 ¼ 1, only appearance information is used to compute
the segmentation. Intermediate values of l1 are used to combine both
appearance and structural information for classification.

Additional natural images are illustrated in Fig. 16, presen-
ting a significant variability of colors, resulting in several
regions with similar colors on both foreground and background
components. For these examples, the segmentation task is ambig-
uous, especially when using only the average colors from each
region, as illustrated in Fig. 16(c). When considering only
color information, these examples require more elaborated repre-
sentations, such as the quantized color histograms used by
the maximal similarity region merging (MSRM) technique [24].
Here, we exploit the structural information to decrease the
ambiguities among similar foreground/background regions,
while keeping the simplicity and the efficiency of the proposed
method.
The behavior of the parameter l1 is illustrated in Fig. 17, in
which the Jaccard index [16] was computed for different values of
l1. As pointed out in [23], the Jaccard index is an important
measure for object extraction accuracy, which can be computed
by the following expression:

9GF \RF 9
9GF [RF 9

, ð7Þ

where GF is the set of foreground pixels belonging to the ground-
truth, while RF is the set of foreground pixels in the segmenta-
tion result. 9GF \RF 9 and 9GF [RF 9 represent the cardinalities of
the intersection and the union, respectively. In Fig. 17, by testing
three examples with ambiguous foreground/background regions,
the best results were robust in a neighborhood around 0.5,
indicating the importance of the structural information to
improve the segmentations.

For a deeper evaluation, we tested the Microsoft GrabCut
database [28], which is commonly used for quantitative compar-
isons involving different methods. This database provides the
labeling-Lasso, where the unknown pixels corresponds to a
roughly symmetric narrow band along the boundaries of the
foreground object, as shown in Fig. 18 (middle column). For this
particular type of seeds, algorithms such as those based on
adaptive thresholding [14,18] can exploit the same effect of the
skeleton of the unknown regions to improve the segmentations.
In order to avoid any bias, instead of using the labeling-Lasso,
Couprie et al. [12] proposed the use of asymmetrically eroded
seeds, such as the one shown in Fig. 18 (right column).



Fig. 13. Our results using images from Berkeley Image Segmentation and Benchmark [22], GrabCut [28], and MSRM database [24]. For each example, the image on the left

shows the original image with scribbles, and the image on the right shows the computed labels by DGþP1þP2.

Fig. 14. Examples of background replacement using images from different databases: Berkeley [22], GrabCut [28], and Bai and Sapiro [3,5], respectively. Left column:

original images with scribbles. Middle column: labels computed by the proposed approach (DGþP1þP2). Right column: compositions using new backgrounds.



Fig. 15. Flowers from the Berkeley database [22] and three different ways of placing the scribbles. The respective segmented regions (outlined in white) were computed by

DGþP1þP2.

Fig. 16. Additional segmentation examples. (a) Input images: bird, bears and jaguar. (b) Scribbles over the input images. (c) Computed labels using only the appearance

information ðl1 ¼ 1:0Þ. (d) Computed labels using both the appearance and the structural information ðl1 ¼ 0:5Þ. The above results illustrate the importance of the

structural component in Eq. (2). The segmentations were computed by DGþP1þP2.

Fig. 17. Pyramid from the Berkeley database [22]; cross and sheep from the Grabcut database [28]. For each example, we tested the same scribbles for different values of

l1, by using DGþP1þP2. The segmentations are outlined in white. (a) Segmentations by using both the appearance and the structural information ðl1 ¼ 0:5Þ. (b) Using

only the appearance information ðl1 ¼ 1:0Þ. (c) Jaccard indices for different values of l1.



Fig. 18. Left column: flowers from the Berkeley database [22]. Middle column: respective labeling-Lasso provided by the GrabCut database [28]; the unknown

pixels correspond to a symmetric narrow band (in grey) along the boundaries of the flowers. Right column: the corresponding asymmetrically eroded seeds from Couprie

et al. [12].

Fig. 19. The average Jaccard indices and the respective standard deviations for the fifty images from the GrabCut database [28], using the eroded seeds provided by

Couprie et al. [12].
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Fig. 19 shows the average Jaccard indices, for l1 ¼ 0:0,0:1, . . . ,
1:0, using the asymmetrically eroded seeds provided by Couprie
et al. [12], and considering the three cases: (DG) the matching
algorithm (Section 3.4) without any post-processing step;
(DGþP1) combined only with post-processing step (P1); and
(DGþP1þP2) combined with both (P1) and (P2). The largest
averages were: (DG) 0.9033 for l1 ¼ 0:6; (DGþP1) 0.9066 for
l1 ¼ 0:6; and (DGþP1þP2) 0.9250 for l1 ¼ 0:8. Nevertheless, all
three cases resulted in good average object accuracy when using
l1 ¼ 0:5 (0.9005, 0.9049 and 0.9204, respectively). Thus, for the
comparison with the current state-of-the-art techniques, we test
our approach with the fixed parameter l1 ¼ 0:5.
9 When considering IGC [7] with fixed parameter in the segmentation tool

provided by [23], s¼ 3:5 produced the largest average Jaccard indices in our

experiments with the GrabCut database [28].
4.2. Multi-label segmentation and image matting

The proposed formulation can also be applied to the multi-
label segmentation problem in a straightforward manner.
As shown in Fig. 20, the proposed approach has a good perfor-
mance, even in the presence of multiple objects with similar
colors, since the initial over-segmentation included the important
boundaries in these examples.

In order to extract objects with complex boundaries, such as
hair strands and animal fur, image matting [20,35] is suitable to
reconstruct the foreground/background components and the
alpha value (transparency) of each pixel. In the image matting
problem, the interaction can be performed by using trimaps
which divide the image into three regions: foreground, back-
ground and unknown regions. Our approach can also be used to
automatically generate such trimaps, in which a narrow band is
automatically spanned across the current foreground/background
boundaries to define the unknown regions. Following the same
idea of the fixed width band described in [5], Fig. 21 shows
examples in which our approach can minimize the effort by
avoiding the need to track all the object boundaries when
building the complete trimaps manually.

As observed in [20], for complex cases, especially when the
objects have too many holes, image matting can also be per-
formed by using scribbles, which can require a significant effort,
as suggested by the examples presented in [20]. For the cases in
which the trimaps are preferable, such as Fig. 22, our approach
can simplify the scribbles used for image matting.

In all matting experiments, we used the Robust Matting [35]
binaries provided by the authors, which produced accurate
matting results.

4.3. Comparison with current state-of-the-art

For a quantitative comparison with other methods, we used
the 50 images from the Microsoft GrabCut database [28]. We
considered different techniques, including pixel-based and
region-based methods, for a good coverage of the literature. More
specifically, we used the source codes provided by the authors of
the power watershed (PW) [12], the maximal similarity based
region merging technique (MSRM) [24], and random walker (RW)
[17]. For the interactive graph cuts (IGC) [7], seeded region
growing (SRG) [2], simple interactive object extraction (SIOX)
[15] and binary partition tree (BPT) [1,29], we used the segmen-
tation tool due to McGuinness and Connor [23], combined with a
context creator utility provided by the authors of [23] to load the
seeds from pre-existing image files. All these implementations are
freely available, corresponding to recent important works
[12,17,23,24].

In order to better exploit the capabilities of the well-known
IGC method [7], we tested it with fixed parameter s¼ 3:5,9 and
with the best s for each individual image (considering
s¼ 0:5,1:0,3:5,7:0,10:0,15:0 in the segmentation tool provided
by McGuinness and Connor [23]), corresponding to the largest
object accuracy (Jaccard index). The parameter s is used in the
boundary penalty function described in the IGC paper [7],
corresponding to the distribution of noise among neighboring
pixels. For the remaining competing approaches, we did not set
any parameter.

Table 1 shows the results for the symmetrically and asymme-
trically eroded seeds: the Lasso form [28] and the ones provided



Fig. 20. Examples from the Berkeley database [22] for multi-label segmentation, including multiple objects with similar colors. The results were computed by DGþP1,

using only the connectivity constraint (P1). Left column: original images. Middle column: scribbles and segmented regions outlined in black. Right column: computed

labels. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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by Couprie et al. [12], respectively. When compared to the Lasso
form, the asymmetrically eroded seeds from Couprie et al. [12]
correspond to smaller markers for the foreground, as shown
previously in Fig. 18.

The quantitative results produced by the tree search algorithm
[10], considering complete (TSC) and triangulated (TST) model
graphs, were also included in Table 1. For both TSC and TST, we
considered a fixed parameter a (corresponding to the largest
average Jaccard index) and the best a (corresponding to the
largest Jaccard index for each image) for Eq. (1) of the previous
work described in [11].10
10 The parameter a in Eq. (1) of [11] has the same role as our parameter l1,

where lower values for a correspond to larger weights to the structural term.
In Table 1, our approach DGþP1þP2 with l1 ¼ 0:5 (Eq. (2))
produced the largest average Jaccard index among all the con-
sidered methods for both types of seeds. Moreover, for the
smallest set of seeds [12], the performance of DG (using triangu-
lated model graphs, without any post-processing step) was
comparable to TSC (using complete model graphs), but within a
lower complexity time, indicating the robustness of the proposed
method according to seed quantity. Differently from the DG
technique, the TST method presented a poor performance (com-
parable to SRG), indicating insufficient structural information by
the triangulated model graphs when considering the tree search
technique [10] and ‘small’ seeds. For TST, the largest average
Jaccard index was achieved when using a¼ 0:1, indicating that
increasing the influence of the structural term was not enough to
produce good results. Moreover, by choosing the best a, the



Fig. 21. Input images from Bai and Sapiro [4,5]. Left column: original images with scribbles. Middle column: automatically computed trimaps by DGþP1þP2. Right

column: alpha mattes computed by Robust Matting [35] using the trimaps from the middle column.

Fig. 22. (a) Original image with scribbles and the corresponding alpha matte, both images were extracted from the paper due to Levin et al. [20]. (b) Original image with

scribbles and the respective alpha matte computed by the Robust Matting [35] using the automatically computed trimap by DGþP1þP2.

11 As described in [23], we used s¼ 4 for the fuzzification.
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stability of TST was not improved, which presented large standard
deviations for the object accuracy.

In the ground-truth provided by the Grabcut database [28],
grey level 255 corresponds to the foreground objects, 0 to
the background components, and 128 to the mixed foreground-
background pixels. In all experiments, we discarded the mixed
pixels from the (binary) Jaccard index computations for the
object accuracy analysis, since this binary index considers
only full foreground/background pixels. Moreover, based on the
binary Jaccard index used for object accuracy, the authors
of [23] proposed the fuzzy boundary accuracy to evaluate
the segmentation results. One way to use it on the Grabcut
database is to interpret the mixed/unknown pixels in the
ground-truth as part of the boundary, which may increase the
degree of ‘uncertainty’ in the boundary. Following this idea, we
also present the respective fuzzy boundary accuracies in Table 1,
in which we considered (besides the internal boundaries of
the ground truth) the mixed regions for the corresponding
fuzzification.11 Note that, by considering this boundary accuracy



Table 1
Quantitative comparison using the Microsoft GrabCut database [28], with the

symmetrically (the Lasso form [28]) and the asymmetrically eroded seeds

(provided by Couprie et al. [12]). For the object and boundary accuracy measures,

we used the Jaccard index [16] and the fuzzy boundary accuracy [23], respectively.

Method Object accuracy (Jaccard) (Fuzzy) Boundary accuracy

Average Standard

deviation

Average Standard

deviation

Symmetric seeds (Lasso)

SIOX [15] 0.8852 0.1718 0.6338 0.1935

SRG [2] 0.8881 0.0860 0.5409 0.1797

MSRM [24] 0.9017 0.0856 0.6082 0.1467

IGC [7], s¼ 3:5 0.9275 0.0651 0.6376 0.1454

RW [17] 0.9324 0.0659 0.6547 0.1432

PW [12] 0.9341 0.0636 0.6653 0.1384

IGC [7],best s 0.9366 0.0621 0.6661 0.1452

BPT [1,29] 0.9533 0.0531 0.7266 0.1230

DG, l1 ¼ 0:5 0.9102 0.0835 0.6366 0.1264

DGþP1, l1 ¼ 0:5 0.9429 0.0508 0.6898 0.1075

DGþP1þP2,

l1 ¼ 0:5

0.9536 0.0501 0.7239 0.1137

TSC, a¼ 0:5 0.9444 0.0471 0.6999 0.1012

TSC, best a 0.9525 0.0430 0.7305 0.0781

TST, a¼ 0:1 0.9415 0.0440 0.6888 0.0949

TST, best a 0.9438 0.0429 0.6975 0.0966

Asymmetric seeds (Couprie et al. [12])

SRG [2] 0.8378 0.1272 0.4948 0.2010

RW [17] 0.8752 0.0986 0.5471 0.1936

IGC [7], s¼ 3:5 0.8784 0.0946 0.5613 0.1834

SIOX [15] 0.8830 0.1232 0.5863 0.1956

PW [12] 0.8891 0.0881 0.5842 0.1705

IGC [7], best s 0.8955 0.0889 0.5948 0.1831

MSRM [24] 0.9017 0.0856 0.6082 0.1467

BPT [1,29] 0.9188 0.0688 0.6368 0.1717

DG, l1 ¼ 0:5 0.9005 0.0687 0.5747 0.1422

DGþP1, l1 ¼ 0:5 0.9049 0.0672 0.5846 0.1371

DGþP1þP2,

l1 ¼ 0:5

0.9204 0.0644 0.6255 0.1494

TSC, a¼ 0:5 0.9080 0.0635 0.5927 0.1274

TSC, best a 0.9195 0.0593 0.6142 0.1318

TST, a¼ 0:1 0.8485 0.1040 0.4879 0.1516

TST, best a 0.8546 0.1056 0.4985 0.1526

Table 2
Quantitative comparison using the Microsoft GrabCut database [28], testing both

symmetrically and asymmetrically eroded seeds, with the same accuracy indices

used in [12]: Rand Index (RI), Global Consistency Error (GCE), Variation of

Information (VoI), and Boundary Error (BE). Good segmentations correspond to

high RI, low GCE, low VoI and low BE.

RI GCE VoI BE

Symmetric seeds (Lasso)

SIOX [15] 0.9451 0.0378 0.2928 5.1512

SRG [2] 0.9523 0.0404 0.3022 4.0483

IGC [7], s¼ 3:5 0.9680 0.0265 0.2235 3.3025

RW [17] 0.9704 0.0241 0.2090 3.1617

PW [12] 0.9706 0.0247 0.2102 2.8888

MSRM [24] 0.9719 0.0235 0.2099 2.4678

BPT [1,29] 0.9781 0.0176 0.1695 1.7780

DGþP1þP2, l1 ¼ 0:5 0.9784 0.0175 0.1692 1.9124

Asymmetric seeds (Couprie et al. [12])

SRG [2] 0.9342 0.0527 0.3692 5.9340

RW [17] 0.9457 0.0430 0.3113 5.8707

IGC [7], s¼ 3:5 0.9483 0.0420 0.3059 5.3369

PW [12] 0.9518 0.0400 0.2930 4.8480

SIOX [15] 0.9543 0.0369 0.2852 4.7063

MSRM [24] 0.9594 0.0338 0.2666 3.6166

BPT [1,29] 0.9634 0.0299 0.2395 3.2795

DGþP1þP2, l1 ¼ 0:5 0.9653 0.0282 0.2331 3.1799

12 In our implementation, we merged small regions with area o25 pixels.
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measure, the BPT technique [1,29] presented the highest fuzzy
boundary accuracy. Table 2 presents additional measures, which
are the same indices used in [12], in which our method presented
the best performance for the smallest set of seeds from Couprie
et al. [12].

For the tree search algorithms (TST and TSC), the input edges
were created between adjacent regions in the over-segmentation.
For all the experiments involving the MSRM approach, we used
watershed for the initial segmentation for a fair comparison,
which significantly increased its computational time (see
Table 5 in next section).

The region-merging techniques, MSRM [24], BPT [1,29] and
DGþP1þP2 with l1 ¼ 0:5, produced the largest average accuracy
indices for the eroded seeds from Couprie et al. [12]. By using
‘small’ sets of seeds, besides the robustness to noise and color
variability, a larger number of pixels can be marked by the region
merging methods, when compared to the pixel-based approaches,
providing more information for the classification.

Fig. 23 illustrates a qualitative comparison, in which SRG and
SIOX failed for all the three additional examples. Although RW
produced a good result for the jaguar example, BPT, TSCþP1 and
DGþP1 provided more consistent results for the other two
examples with the given scribbles, by producing less leaking
effects and less missing regions. Excluding SRG and SIOX, the
remaining competing methods basically required more scribbles
to achieve good results, such as those shown in Fig. 16(d), which
were produced by DGþP1þP2 with l1 ¼ 0:5.
4.4. Running time

The experiments were carried out in a computer with an Intel
Core i3 2.13 GHz processor and 4 GB of RAM. Table 3 illustrates
the running times for object extraction. For each entry, we
present the image dimensions (width and height), the number
of input and model vertices (9Vi9 and 9Vm9, respectively), and the
computational times for: building the input and model graphs (Gi

and Gm, respectively), the graph matching algorithm (Section 3.4)
and the post-processing steps (Section 3.6). Note that the largest
computational times are required for building Gi, mainly due
to a pre-processing step which was performed to reduce the
number of watershed regions, by merging small12 regions with
its most similar adjacent region (in terms of appearance/color).
This may slow down the launching of the interactive segmenta-
tion program, but it was very important to reduce the computa-
tional times for the proposed approach, which considerably
reduced the sizes of the input and model graphs, as shown in
Table 4, without affecting the interactivity with the user during
the segmentation process. In Table 3, although our code was
implemented in Java, which is often slower than a Cþþ imple-
mentation, note that the model graph update and the graph
matching algorithm presented fast performances, justifying the
fact that our method can be used for the interactive image
segmentation problem.

Table 5 compares the running times of different approaches.
SRG [2], IGC [7] and PW [12] were the fastest implementations (in
Cþþ), while the tree search methods [11] TST and TSC were the
slowest ones. Note that only the BPT running time included the
pre-processing time, required to compute the binary trees. In our
experiments, the user interaction of BPT was very fast, being
comparable to the other Cþþ implementations like IGC [7] and



Fig. 23. Qualitative comparison using the additional images and the respective scribbles from Fig. 16. The matching techniques TST, TSC and DG were combined only with

the post-processing step (P1).
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PW [12]. DG, TS [11] and MSRM [24] did not include the over-
segmentation computation time.
4.5. Segmentation of multiple similar images

The proposed approach can also segment multiple similar
images. In this case, an important question arises: ‘‘Would it be
possible to take advantage of the same user scribbles applied to
one specific image in order to segment another similar image?’’.13

Specifically, given two similar images A and B (e.g. corresponding
to different frames from a video sequence), and seeds marking the
regions of interest in A, the goal is to segment B by using the same
prior information represented by the scribbles drawn over A. In
general, direct use of scribbles from A on B does not result in good
segmentation due to possible deformations between A and B,
especially when dealing with articulated objects (Fig. 24). Thus, a
13 Note that, differently from [13], which relied on manual segmentations, our

goal is to take advantage of the scribbles to propagate the segmentation to other

similar images.
flexible representation for the scribbles is necessary in order to
produce a successful segmentation for B.

By using attributed relational graphs as described in Section 3,
the proposed approach represents scribbles from A and image B

as a model graph and an input graph, respectively (Fig. 25).
Then, for instance, by performing the algorithm MatchingByDG

(Section 3.4) to obtain a solution for the graph matching problem,
encouraging segmentation results were achieved for roughly
aligned graphs.

In Fig. 26, we considered five different frames (63–67) from
the video sequence of a person walking straight from [30],
assuming frame 65 as the model graph to segment all five given
frames. In this example, the results from our approach out-
performed the ones achieved by directly applying the scribbles
with usual methods to segment each frame. For the third row in
Fig. 26, we tested DGþP1þP2, l1 ¼ 0:5 and PW [12] for the usual
single image segmentation by directly applying the scribbles on
each frame. Both methods produced similar leaking effects,
especially on the legs.

Fig. 27 illustrates our results on the Tsukuba images, which
are very popular for stereo benchmarking. Differently from most



Table 3
Running times for initial segmentation computed by graph matching and for post-processing using Figs. 13–16, 20–22.

Image Size 9Vi9 9Vm9 Computational times (in ms)

Gi Gm Matching P1þP2 Total

Binary segmentation

berk-anemone 480�320 1752 170 3588 78 1863 2599 8128

berk-flowers 480�320 1780 30 3341 42 365 2604 6352

berk-dog 480�320 1431 185 3768 72 1638 2071 7549

berk-horses 480�320 1015 63 3835 46 485 3503 7869

berk-insect 480�320 2144 244 3541 87 3135 2463 9226

berk-boy 480�320 1976 186 3599 77 2200 2175 8051

grab-person1 600�450 1963 181 6585 80 2208 2851 11724

grab-person2 600�450 2350 117 6355 139 1663 3702 11859

grab-doll 462�549 2836 128 5612 129 2175 3234 11150

grab-child 1024�768 6214 314 19 340 252 11 032 8224 38 848

grab-statue 768�1024 5175 315 20 322 236 9892 13 412 43 862

msrm-tiger 264�192 314 72 1203 69 211 1709 3192

msrm-dogs 335�295 1135 102 2092 79 757 1936 4864

msrm-girl 303�397 982 196 2922 107 1208 2053 6290

msrm-monkey 360�414 1136 145 3317 105 1013 3724 8159

add-bird 640�480 2659 389 7471 142 5956 6526 20 095

add-bears 800�600 5557 386 10 810 186 11 823 9838 32 657

add-jaguar 640�480 2019 182 7583 83 2300 7394 17 360

bai-boy 255�308 743 78 1840 31 421 2075 4367

bai-cat3 535�412 2465 67 4384 156 967 3026 8533

bai-toy 338�450 1344 73 3650 62 671 2325 6708

bai-bear 450�344 1863 107 3573 47 1263 2278 7161

bai-lion 400�300 1013 92 2636 47 593 2090 5366

levin-teddy 486�416 1716 191 4527 109 2028 4508 11 172

Multi-label segmentation

berk-anemone 480�320 1752 249 3597 193 2606 2988 9384

berk-astronauts 480�320 1256 269 3410 196 1988 3607 9201

berk-horses 480�320 1015 106 3835 161 697 3682 8375

berk-flowers 480�320 1780 63 3355 148 581 4113 8197

berk-boy 480�320 1976 241 3589 193 2755 3222 9759

berk-bears 480�320 1109 161 3804 171 1116 3306 8397

Table 4
Number of original watershed regions and the corresponding reduced amount

after the pre-processing step.

Image Number of watershed regions

Original Pre-proc

berk-dog 14,420 1431

berk-horse 17,471 1015

berk-insect 9620 2144

berk-boy 11,205 1976

berk-flowers 11,324 1780

grab-person1 27,796 1963

grab-person2 27,705 2350

grab-doll 15,446 2836

grab-child 84,025 6214

grab-statue 90,294 5175

msrm-tiger 6052 314

msrm-dogs 7603 1135

msrm-girl 12,296 982

msrm-monkey 16,258 1136

add-bird 29,117 2659

add-bears 34,591 5557

add-jaguar 34,603 2019

bai-cat3 14,580 2465

bai-toy 14,767 1344

bai-bear 9938 1863

bai-lion 10,993 1013

levin-teddy 20,396 1716

Table 5
Average running times by using the grabcut data-

base [28] with the asymmetric seeds by Couprie

et al. [12].

Method Mean time (s)

IGC [7], s¼ 3:5 0.4259

SRG [2] 0.4593

PW [12] 1.2759

SIOX [15] 1.4072

RW [17] 1.8866

BPT [1,29] 2.9126

DG, l1 ¼ 0:5 11.4762

DGþP1, l1 ¼ 0:5 12.7314

DGþP1þP2, l1 ¼ 0:5 16.5837

MSRM [24] 153.7778

TST [11], a¼ 0:1 187.2444

TSC [11], a¼ 0:5 386.1613
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of the usual interactive segmentation approaches, by using a
model graph, we produced encouraging results by avoiding most
of the segmentation errors due to incorrect placement of the
seeds. More challenging results are shown in Figs. 28 and 29,
illustrating large object displacements, camera position and color
variability. Despite the differences among the images, the model
created for the first one is successfully used to segment the
others.
5. Conclusions

In this paper, we have proposed an interactive algorithm for
image segmentation, which produced accurate results for a wide
range of natural images. The core of the technique corresponds to



Fig. 24. Motivation: ‘‘Could we use the scribbles drawn over A to segment a similar image B?’’. In general, given two similar images A and B and scribbles marking the

regions of interest in A, their direct application to the segmentation of B does not produce good results. This is because markers may fall over wrong regions in B. Results

shown were both produced by our DGþP1þP2 algorithm for segmenting single images.

Fig. 25. Model and input graphs representing similar images, A and B, respectively. The corresponding over-segmentations are A0 and B0 . The scribbles are placed over A0 ,

indicating the regions of interest, resulting in the model graph Gm. The input graph Gi represents all the regions in B0 .
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a framework to match attributed relational graphs by exploiting
the spatial relations among vertices.

For the optimization, we exploited deformed graphs [25],
which can be applied to multi-label segmentation (representing
multiple objects or multiple object parts) without any change in
the core algorithm, in contrast to the GC-based algorithms (e.g.
[7,28]), which are not trivially extensible from binary to multi-
label segmentation.

In our experiments, besides quantitative analysis invol-
ving current state-of-the-art techniques, we have also illu-



Fig. 26. First row: input images from the video sequence of a person walking straight [30], frames 63–67. Second row: segmentations by matching the corresponding

attributed relational graphs by using frame 65 and its scribbles as the model graph. Third row: segmentations by using the usual interactive image segmentation and the

same scribbles specifically designed for frame 65.

Fig. 27. First row: images provided by Dr. Y. Ohta and Dr. Y. Nakamura from University of Tsukuba. A single set of scribbles was specifically designed for the middle image,

chosen as the model. No scribbles were defined on the other images of the sequence. Second row: for each image, the segmentation was obtained by matching the input

attributed relational graph, built from this image, and the model graph. The single set of scribbles was placed over each segmentation result just to emphasize the object

displacements.
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strated the importance of the structural information by showing
how l1 affects the performance when segmenting single
images. The parameter l1 was used to balance the influence
between color and spatial information on the segmentation
result.

Moreover, we explored the re-usability of model graphs to
segment multiple similar images, which can be applied to, for
example, multi-label video segmentation based on models from
key frames.

As a future step, further studies involving other graph matching
techniques are necessary for more challenging instances involving
segmentation of multiple similar images. In particular, the pro-
posed algorithm is not suitable for very large displacements. For
instance, in our experiments, good results were achieved when the
objects were not very far from the single set of scribbles. More
specifically, when each object was at least intersected by its
correct scribble, limiting the displacements of the objects.

Another step would be to verify the possibility of automati-
cally tuning l1 by using training data.
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