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Abstract
Numerical dosimetry studies require the development of accurate numerical 
3D models of the human body. This paper proposes a novel method for 
building 3D heterogeneous young children models combining results obtained 
from a semi-automatic multi-organ segmentation algorithm and an anatomy 
deformation method. The data consist of 3D magnetic resonance images, 
which are first segmented to obtain a set of initial tissues. A deformation 
procedure guided by the segmentation results is then developed in order to 
obtain five young children models ranging from the age of 5 to 37 months. By 
constraining the deformation of an older child model toward a younger one 
using segmentation results, we assure the anatomical realism of the models. 
Using the proposed framework, five models, containing thirteen tissues, are 
built. Three of these models are used in a prospective dosimetry study to 
analyze young child exposure to radiofrequency electromagnetic fields. The 
results lean to show the existence of a relationship between age and whole 
body exposure. The results also highlight the necessity to specifically study 
and develop measurements of child tissues dielectric properties.

Keywords: infants modeling, anatomy transfer, numerical dosimetry,  
plane wave exposure
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1. Introduction

The rise of new technologies for mobile communication such as bluetooth, WiFi or LTE and 
the advent of smartphones have raised the need to further study the impact of radiofrequency 
(RF) electromagnetic fields on the human body. These developments are changing com-
mon practices, and very young children, without necessarily being directly users of wireless 
systems, are now placed in configurations (e.g. in the arms of calling parents) where they 
are exposed to radio frequency electromagnetic fields (RF-EMF). To assess the exposure of 
infants and young children, RF-EMF simulations on realistic numerical models of the young 
child are used to compute the specific absorption rate (SAR) (Wiart et al 2008).

While adult modeling has been intensively studied (Wiart et al 2008, Xu and Eckerman 
2009) using either mathematical, voxelized or synthetic methods, and fetal and pregnant 
woman modeling has been the focus of several studies such as Dahdouh et al (2014), few 
authors have addressed the problem of infants and really young children modeling. Most of 
the studies on the young children are concentrated on the exposure for children above the age 
of four years (Wiart et al 2008), and very few have addressed the issue of infants modeling 
and exposure assessment. To the best of our knowledge, this paper presents the first study that 
addresses both problems simultaneously.

Most of the available young children models (below the age of three years) can be separated 
into three different categories: (I) the ones obtained through a purely manual segmentation, 
(II) the ones obtained purely synthetically, and finally (III) the ones obtained by downsiz-
ing older children or adults models. While purely manual segmentation as in Li et al (2015) 
allows for the construction of accurate children models, the amount of manual processing is 
cumbersome and prevents the use of such a methodology at a larger scale. A realistic 8 weeks 
old model has been built synthetically in Lee et al (2007). Purely synthetic models, such as 
the one proposed in Cassola et al (2013), are difficult to evaluate since anatomical realism is 
difficult to guarantee, but have the advantage of proposing a framework to build new models 
to be able to cover a wider age range. Older children and adults downsizing has been used in 
Hadjem et al (2005), Nagaoka et al (2008) for example, but they usually fail to take precisely 
into account the different anatomical variabilities that exist when comparing adults to infants 
(Wiart et al 2008, Li et al 2015). Moreover, head models of children not younger than 5 years 
old are mostly proposed. Recently, an 8 weeks old infant model has been added to the virtual 
population (Gosselin et al 2014) and is actually a morphed version of the 5 years old female 
child.

In order to overcome all the issues cited above, this paper proposes a new infant modeling 
framework that combines automatic segmentation on 3D MRI infant data with an anatomy 
transfer framework based on the segmentation results. This allows us to overcome the usual 
drawbacks of the scaling or morphing methods, alleviates the burden of purely manual seg-
mentation, and allows for the construction of realistic anatomical models at any age if imaging 
data, typically magnetic resonance imaging (MRI), of a patient at the target age are available.

Whole body MRI data are difficult to obtain for young children (due to ethical as well as 
technical limitations) and they usually display strong artifacts such as motion, low resolution 
and strong partial volume effect. Due to the possible deleterious effects, other modalities such 
as CT-scan are nearly never used in this young population and such data are not easily avail-
able. This makes MRI the logical choice for the development of the method. While research 
on multi-organs CT scans segmentation methods is an extensively explored field, few authors 
have addressed the problem of multi-organs segmentation for abdominal or whole body MRI 
data and to our knowledge no method exists to automatically generate young children models 
from partially segmented data.
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Facing the need to deal with the automatic segmentation of low quality MRI data as well 
as deriving whole body models from this segmentation, the aim of this paper is to combine 
segmentation and anatomy transfer to build reliable body models from low resolution data 
using anatomical information as prior. While other papers rely heavily on manual segmenta-
tion, the aim of this paper is to automate both the segmentation and the modeling parts, and 
to propose a reliable framework to automatically generate children whole body models. Once 
done, these models will be used to assess the young children exposure to plane waves from 
birth to the age of 3 years old.

The contributions of this paper are twofold; first a new framework gathering segmenta-
tion, a new anatomy transfer method and 3D modeling to build realistic young children 3D 
models is proposed; secondly, a preliminary dosimetry study on these data is performed. Data 
are described in section 2. The first part of section 3 focuses on the development of a multi-
organs segmentation framework for MRI data. The proposed anatomy transfer method is then 
described and resulting child models are presented. Finally, section 4 focuses on an analysis 
of the exposure of the young child to radio-frequency electromagnetic fields.

2. Medical data

As detailed next, five MRI volumes imaging children with ages ranging from 5 to 37 months 
old are used. Figure  1 contains examples of three slices of three different MRI volumes. 
Table 1 sums up the main characteristics of the used data sets. MRI images are T1 weighted in 
four cases and T2 weighted in the last one. Additionally, an existing mesh model of an 8 years 
old child was used for the anatomy transfer (see section 3.2). To reduce acquisition time, the 
imaging data are strongly anisotropic, with a very good in-slice resolution but a large slice 
thickness. All the images were recorded on children during medical examinations as part of 
the clinical routine and parents were asked to give their informed consent for the use of the 
data for research purposes.

Since all the structures and tissues of interest are not visible and easily segmented on the 
available data, a child model construction pipeline was designed to build, and then further 
enrich, children models.

Figure 1. Slices of three 3D MRI volumes of young children at different ages  
(a) 5 months (b) 2 years 1 month (c) 3 years 1 month.

S Dahdouh et alPhys. Med. Biol. 61 (2016) 1500
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3. Infants and children models construction

3.1. Semi-homogeneous models construction from whole body MRI data

In order to model infants and young children, a multi-organs framework for simultaneously 
segmenting different tissues in 3D MRI data has been developed in Dahdouh and Bloch 
(2015). This method extends the Variational Region Growing segmentation framework pro-
posed in Rose et al (2009) and Revol-Muller et al (2012), which integrates a shape prior in 
the region growing process. The approach proposed here integrates multiple shape constraints 
into a multi-region growing segmentation framework and proposes a new intensity criterion 
for segmenting noisy data. More precisely, to compensate for the low resolution and the lack 
of contrast, the segmentation framework is performed on a graph of supervoxels computed 
using the SLIC algorithm (Achanta et al 2012), and a shape prior per tissue, represented by its 
Legendre moments, is used. Both local (the supervoxel value) and global (neighboring regions 
mean intensity values, adjacent supervoxels values and distance to the neighboring regions) 
information is used to compute the intensity-based energy, given by the following equation.

Let Ω be a bounded and open subset of R3 and I : →Ω R an image. Ωi
in represents the seg-

mented region i and is a subset of Ω, Φi represents the characteristic function of the evolving 
region i and Φi

n, the characteristic function at iteration n.
The intensity-based energy is defined as:
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with µi the mean gray level value of region i, computed at each iteration, ajx the set of adjacent 
nodes to x, of cardinality Najx and ( )λ x r,  a weighting function to take into account the spatial 
proximity of all the other regions into the image.

Additionally, a shape prior per organ is used to constrain the segmented organ toward its 
actual shape. Learned from a set of annotated images, it is added as an energy term in the 

Table 1. Image Database.

Modality Age
Slice thickness 
(mm)

Image  resolution 
(mm px−1)

Structures  
of interest

MRI T1 5 months 7 0.634 envelope  +  brain  +  lungs  +   
spleen  +  liver  +  kidneys

MRI T1 1 year 5 months 7 0.966 envelope  +  brain  +  lungs  +   
spleen  +  liver  +  kidneys

MRI T1 2 years 1 month 7 0.966 envelope  +brain  +  lungs  +   
spleen  +  liver  +  kidneys

MRI T1 2 years 3 months 7 0.755 envelope  +brain  +  lungs  +   
spleen  +  liver  +  kidneys

MRI T2 3 years 1 month 7 0.94 envelope  +  brain  +  lungs  +   
liver  +  kidneys

Mesh model 
Christ et al 
(2010)

8 years NA NA 66 tissues

S Dahdouh et alPhys. Med. Biol. 61 (2016) 1500



1504

functional to be optimized. Shape priors are meshed and registered to the growing regions 
using the shape matching method proposed in Guy et al (2014).

Inter-regions conflicts resolution is handled using a weighted Voronoi decomposition 
method, the weights being determined by the magnitude ratio of tissues densities. The energy 
terms of the global energy equation are weighted using an information on growth direction 
and on gradient vector flow value. The aim is to either guide the segmentation toward the 
image natural edges if it is consistent with image and shape prior terms, or to enforce the shape 
prior term otherwise. Results on 3D infants MRI data were presented in Dahdouh and Bloch 
(2015) and compared to a set of manual segmentations. Both visual comparison and quanti-
tative measurements showed good results with a mean Dice index (similarity measurement) 
of 0.81 for the simultaneous segmentation of five tissues. Finally, the envelope is segmented 
using a thresholding approach and refined manually.

The segmentation method has been applied to the whole set of 3D MRI data and five semi-
homogeneous models of children have been obtained as shown in figure 2.

The aim of this paper being to develop reliable models for dosimetry studies, the need to 
enrich the obtained models with tissues such as muscles, fat or bones in order to obtain more 
heterogeneous ones has arised. However, the data being of low quality, further segmentation 
was not possible and an alternative strategy had to be developed, as detailed next.

3.2. Models enrichment: anatomy transfer framework

While many authors have addressed the problem of realistic anatomical simulation and defor-
mation (Faraj et al 2012, Ali-Hamadi et al 2013), few methods have been developed so far 
to deal with automatic anatomy modeling or anatomy transfer from one character to another. 
To our knowledge, one of the only works addressing this problem is Ali-Hamadi et al (2013), 
where a semi-automatic method was proposed for transferring the internal anatomy of a 
highly-detailed anatomical model to a minimal model composed of only skin. Skin layers are 
first registered and a fat layer is manually added. A semi-automatic method to generate this 
fat layer is proposed and a Laplacian deformation guided by anatomical constraints is used 
to transfer bones, muscles, viscera and skeleton. As stated by the authors, one of the draw-
backs of using direct Laplacian interpolation is the apparition of artifacts when transferring 

Figure 2. Child semi-homogeneous model construction. Reconstruction of five models 
based on the automatic segmentation of soft-tissues in MRI data.

S Dahdouh et alPhys. Med. Biol. 61 (2016) 1500
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the whole anatomy as well as the skeleton. Moreover, the authors were dealing with data and 
meshes of high quality, which is not our case. Due to low resolution of data available in this 
study, details on hands, feet (such as fingers or toes separation or even their positioning) and 
facial details (such as eyes position or nose) are missing. These artifacts are not consistent in 
all the data, which means that we had to develop a method robust enough to deal with artifacts 
varying from one model to another. In order to bypass the shortcomings of the method pro-
posed in Ali-Hamadi et al (2013), the authors suggested to take advantage of more anatomical 
knowledge to constrain the deformation process, which is one of the keypoints of the method 
proposed here.

As detailed in the following, a novel deformation framework guided by the segmentation 
results obtained in Dahdouh and Bloch (2015) is proposed here. The segmented tissues will be 
used as a prior to anchor and guide the deformation of the other surrounding tissues.

3.2.1. Overview. The model enrichment framework takes as input a set of 2-manifold triangle 
meshes (i.e. a list of polygones indexed over a list of vertices) to be used as reference tissues 
for the anatomy transfer, as well as a set of 2-manifold triangle meshes representing the exist-
ing tissues of the model to enrich. The Eartha model of the virtual family (Christ et al 2010) 
has been used here as reference and deformed toward the target ages and models.

During the first step, a topology unification procedure is applied between the existing soft-
tissue and skin meshes of the target model and their corresponding counter-parts in the refer-
ence model. The reference skeleton is then deformed toward the target child model using the 
previously registered skin and soft tissues as prior. Finally, the remaining reference tissues 
are incrementally deformed from the reference to the target model using the previous tissues 
deformations as constraints.

3.2.2. Topology unification. The aim of our deformation method is to transfer a whole anat-
omy from a source model to a target one, using only the skin model and few organs of the 
target as anchors. The first step is to establish vertex correspondence between both skin and 
soft-tissues models. Since they belong to different subjects, they have different topologies and 
positions.

Soft tissues correspondence. The source brain, lungs and liver are first deformed toward 
the target ones using a global PCA registration computed on the normal field of each mesh. 
The scaling factor used is based on the longest geodesic distance of each source mesh. All 
the pairwise registrations between source and target tissues are then refined using an iterative 
closest point algorithm (Besl and Mckay 1992). Using this procedure, topologically similar 
soft-tissue meshes at all studied ages are generated.

Skin registration. The same global procedure is first applied to register source and target 
skin meshes. However, due to the high variability in terms of positioning and shape, it was 
not enough to ensure a correct registration. Indeed, while body position is usually fixed when 
dealing with adults MRI, in the case of young children, motion is often an issue, and the body 
position can thus vary from one patient to another. It means that head and limbs positions can 
vary greatly from one model to another. To address the head positioning issue, a Moving Least 
Square (MLS) based deformation using the method proposed in Zhu and Gortler (2007) and 
a Euclidean distance for weights computation is applied. Euclidean distance is preferred here 
to the geodesic like distance proposed in Zhu and Gortler (2007) since landmarks are nodes 
of the soft tissue meshes and thus do not belong to the skin mesh. A set of random landmarks 
selected on both source and target brain models is used to deform the head, and a set of 

S Dahdouh et alPhys. Med. Biol. 61 (2016) 1500
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randomly selected landmarks on lungs and liver source and target meshes is used to anchor the 
rest of the body. As in Ali-Hamadi et al (2013) and Gilles et al (2010), the final skin surface is 
obtained using the shape matching deformation method proposed in Müller et al (2005) which 
is achieved using a closest point correspondence procedure and a smooth as rigid as possible 
deformation field based on these correspondences. This three steps procedure allows us to suc-
cessfully register a source skin model of an 8 years old child toward skin models of different 
children at different ages and positions. While some artifacts remain in the skin registration 
result (mainly around the hands and the feet when the initial segmentation was too rough), the 
result is satisfying enough to guide the rest of the deformation procedure as explained next.

3.2.3. Skeleton deformation. The skeleton Sk is divided into 21 bones ( ) { }∈Sk i i, 1..21 , and 
( )=∪ =Sk Sk ii 1

21 . Using a set of random landmarks selected on registered soft tissues and skin 
models, a semi-rigid MLS deformation, based on the method of Zhu and Gortler (2007) and 
a Euclidean distance, is used to deform each Sk(i) bone towards its target position. The use 
of landmarks on internal tissues in addition to the landmarks on skin constrains the deforma-
tion, allowing us to limit the non realistic bending and stretching observed in Ali-Hamadi  
et al (2013).

3.2.4. Soft tissues transfer. Once the skin Env, brain Br, lungs Lg, liver Lv and skeleton Sk 
are deformed toward the target position and shape as explained above, the other tissues are 
iteratively registered. The registration order is depending on the distance between the heart 
and the considered tissue, going outward toward the skin. Each registered tissue is then added 
as a constraint to the other tissues to be deformed. This allows us to not model fat before-
hand as was done by Ali-Hamadi et al (2013) since its registration will be dependent on the 
registration of the other tissues. Each tissue is deformed using a MLS based procedure using 
randomly selected points on all the already registered tissues, as explained in algorithm 1.

Thirteen tissues have been deformed at once allowing us to obtain detailed and accurate 
child models with ages ranging from 5 months to 3 years. Results of the whole deformation 
pipeline are illustrated in figure 3.

Algorithm 1: Soft tissues transfer

Data: s Sk i_ i 1..21( ) { }∈ : Sk(i) of the source skeleton, ( ) { }∈t Sk i_ i 1..21 :
    registered Sk(i) of the target skeleton, s Env_ , t Env_ , s Br_ , t Br_ ,
    s Lg_ , t Lg_ , s Lv_ , t Lv_  of the source and registered target models,
    ( ) { }∈s Tiss k_ k 1..5

m points_  ← Select 50 random vertices on each s_Sk(i),s Env_ ,s_Br,s Lg_ ,s Lv_
d points_  ← Get equivalent vertices on each t_Sk(i),t Env_ ,t Br_ ,t Lg_ ,t Lv_
Sort s Tiss k_ k 1..5( ) { }∈  by increasing distance to s_Sk(i)
foreach s Tiss k_ k 1..5( ) { }∈  do
    t Tiss k_ ( ) ← Deform ( )s Tiss k_  using m points_  and d points_  in a MLS
    procedure using a Euclidean distance
    sp points_  ← Select 50 random vertices on s Tiss k_ ( )
    tp points_  ← Get equivalent vertices on t Tiss k_ ( )
    m points m points sp points_ _ _← ∪
    d points d points tp points_ _ _← ∪
end

S Dahdouh et alPhys. Med. Biol. 61 (2016) 1500
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4. Children exposure to plane waves: preliminary dosimetry results

In 2013, a USA Common Sense Media research study highlighted the fact that 75% of 
American children have access to smart wireless devices like smartphones and tablets at 
home, and that up to 38% of children under the age of two have already used a smart mobile 
device for playing games or watching videos. This raises the question of the impact of such 
exposure on young children, and the World Health Organization (WHO) has dubbed numer-
ical EMF dosimetry studies on children as a high priority. However, so far, no study has been 
published analyzing the exposure of very young children. Indeed, the specific morphological 
changes in very young children, the deployment of new technologies and the rapid evolution 
of usages are major challenges for the assessment of RF-EMF exposure. As a prelimiray 
answer to this question, we analyzed in this paper the environmental exposure of very young 
children to RF-EMF by using three (selected as described next) of the five developed whole 
body children models described in the previous sections.

As a first step, the realism of the developed models has to be studied. Then, the exposure 
of children models to plane waves is analyzed. Finally, the importance of using age specific 
dielectric properties for the analysis of the exposure of very young children is discussed.

Figure 3. Source eight years old female model (a) skin, skeleton and soft tissues, and 
(b) skin and muscles, deformed towards a (c-d) 2 years 1 months old child model. 
(Scales are different for the two models.)

Table 2. Comparison between average French child weights and numerical child 
model weights in kg.

Ref. values for F Ref. values for M

Model Avg. 97th perc. Avg. weight 97th perc. Model weight

5 months 7 9 7 9.2 8
18 months 10.2 13 11 13.5 11.9
2 years 11.5 14.5 12.2 15 18.38
3 years 14 18 14.5 18 14.09

Note: The weights of the four different numerical models were computed using different tissue 
densities per age (F for female and M for male).

S Dahdouh et alPhys. Med. Biol. 61 (2016) 1500
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4.1. Children’s voxel models construction and validation

The children models are first rasterized and four (one per age) × ×1 1 1 mm3 voxel models are 
built. To validate the proposed models, their simulated weights are compared to the reference val-
ues from the World Health Organization (WHO) child growth standards as described in table 2. To 
compute these weights, the tissue densities from Duck (1990) were used. The weight of all tissues 
at all ages are given in appendix. Since all tissues have not been modeled, a unique density value 
(intestine), known to approximate well homogeneous tissues, has been chosen for the missing tis-
sues. Despite this approximation, the computed weights remain within the bounds of acceptable 
weights with regard to the WHO standards, for all models except the 2 years old model whose 
weight is above the 97th percentile leading us to discard it for the numerical dosimetry analysis. As 
an additional validation, the realism of the models was positively appreciated by medical experts.

4.2. Numerical dosimetry study design

Each of the three children models was exposed to a frontal plane wave vertically polarized at 
2100 and 2600 MHz (classical configurations corresponding to 3 G and 4 G, respectively). As 
most of the adults’ studies have been performed on floating models, we decided here to do the 
same to be able to more easily draw comparisons between children and adults results.

4.2.1. Dielectric properties. Numerous studies have assessed the existence of an age varia-
tion of dielectric properties of some tissues (Peyman et al 2001, Gabriel 2005, Peyman and 
Gabriel 2010). We therefore decided to use the dielectric properties (permitivity P and con-
ductivity C (S/m)) specific at 2100 and 2600 MHz for the child tissues when a significant age-
based variation was reported, and the adult’s values when no age-based variation was reported. 
Precise values are still not completely known, and interpolated from equivalent tissues from 
animals and adults. When available, dielectric properties were derived from 30 days old rats 
dielectric properties (Peyman et al 2001). When tissues showed a relevant age-based variation, 
tissues properties were derived from 10 kg pigs (Peyman and Gabriel 2010). Otherwise, they 
were derived from adult sheep dielectric properties (Gabriel et al 1996). Table 3 details the 

Table 3. Dielectric properties of the 5 and 18 months old children tissues.

Tissue

2100 MHz 2600 MHz

5 months child 18 months child 5 months child 18 months child

P C (S/m) P C (S/m) P C (S/m) P C (S/m)

Lungs (1) 49.16 1.36 49.16 1.36 48.17 1.79 48.17 1.79
Liver (2) 43.94 1.37 43.94 1.37 42.79 1.79 42.79 1.79
Kidneys (3) 54.02 2.05 54.02 2.05 52.41 2.55 52.41 2.55
Heart (4) 55.96 1.87 55.96 1.87 54.51 2.38 54.51 2.38
Spleen (5) 53.52 1.87 53.52 1.87 52.17 2.35 52.17 2.35
Stomach (6) 62.99 1.80 62.99 1.80 61.92 2.34 61.92 2.34
Brain (7) 58.12 1.53 42.86 1.15 57.29 2.04 42.05 1.57
CSF (8) 67 3.03 67 3.03 66.02 3.60 66.02 3.60
Homog. tissues (9) 55.55 2.79 55.55 2.79 54.13 3.29 54.13 3.29
Fat (10) 13.93 0.38 13.93 0.38 13.65 0.51 13.65 0.51
Muscle (11) 60.38 1.78 47.04 1.49 59.36 2.35 45.85 2.05
Skeleton (12) 24.57 2.88 24.57 2.88 23.61 3.86 23.61 3.86
Skin (13) 38.87 1.14 29.38 0.91 38.2 1.5 28.64 1.25
Skull (14) 29.63 0.87 16.26 0.49 28.79 1.17 15.64 0.68

S Dahdouh et alPhys. Med. Biol. 61 (2016) 1500
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dielectric properties of the different tissues at both frequencies for two of the children models. 
Since values at 37 and 18 months are similar, the same dielectric properties are used for both 
ages. As for densities, the homogeneous tissue was given the same dielectric properties as the 
intestine, as the best average equivalent values. It has to be noted that the precise estimation of 
all values at all ages is to a large extent an open question.

4.2.2. SAR computation. Two far-field exposure scenarios were considered using an incident 
plane wave, polarized vertically, with a frontal incidence, emitting at 2100 MHz and 2600 MHz.  
The total power absorbed by the children and the Specific Absorption Rate (SAR) distri-
butions (in W kg−1) were evaluated using the well-known Finite Difference Time-Domain 
(FDTD) method (Taflove 2005). In this paper, we computed the whole body SAR (WBSAR), 
the maximum SAR averaged over 10 grams of tissues (SAR10g) and average SAR values in 
specific organs of the child models. All the calculated values were estimated for an incident 
E-field of 1 V m−1.

4.3. Numerical dosimetry study results

4.3.1. Analysis of the EMF exposure evolution with age for very young children. Results of 
the children exposure in terms of WBSAR and SAR10g are given in table 4 and illustrated in 
figure 4.

As we can see, WBSAR exhibits the same behavior for both frequency bands: stable between 
5 and 18 months and decreasing afterwards. On the other hand, the SAR10g decreases only 
slightly between 5 and 18 months and remains stable afterwards.

However, these results have to be taken cautiously and further analysis with more models 
has to be performed to be able to draw definite conclusions. Moreover, to interpret the SAR10g 
results, we should keep in mind that the maximum can occur at different locations depending 
on the model. The amount of subcutaneous fat may also influence the results.

Table 4. WBSAR and SAR10g at 2100 (3 G) and 2600 (4 G) MHz for each child model 
(Values have to be multiplied by 10−05).

5 months 18 months 3 years

WBSAR  −  3G 2.041 2.061 1.812

WBSAR  −  4G 2.084 2.039 1.832

SAR10g  −  3G 26.09 14.99 15.08

SAR10g  −  4G 17.99 15.65 15.78

Figure 4. (a) WBSAR and (b) maxSAR10g evolution with age at 2100 and 2600 MHz.
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4.3.2. Influence of the dielectric properties on the whole-body and local average exposure of 
an 18 months child model. In order to study the importance of using age specific dielectric 
properties, we compared, for the 18 months child model, the whole-body, the maximum aver-
age and the local average exposure of the child model when using adult dielectric properties and 
18 months old specific dielectric properties for the child model tissues at 2100 and 2600 MHz  
frequency bands. Table 5 presents the WBSAR and SAR10g results when performing the analy-
sis with age-specific or adults tissue properties. As we can see, results are of the same order 
of magnitude and can be considered as equivalent for both frequency bands. Figures 5 and 6 
present the results for the average local SAR values for both frequency bands. The actual 
numbers can be found in table 6. In both frequency bands, skin exposure is overestimated 
when using adult dielectric properties while fat exposure tends to be underestimated. As brain 
exposure is a major health concern, many epidemiological studies have focused on the rela-
tionship between EMF exposure and brain tumors and more particularly on the brain cumula-
tive exposure to EMF (Aydin et al 2011, Cardis et al 2011a, 2011b). As we can see here, while 

Table 5. WBSAR and maxSAR10g values when using child specific dielectric 
properties (CDP) and adult dielectric properties (ADP) for the 18 months child model 
at 2100 and 2600 MHz.

Value

2100 MHz 2600 MHz

CDP ADP CDP ADP
WBSAR 2.06 2.04 2.04 2.04
maxSAR10g 15.0 14.9 15.7 15.2

Note: values have to be multiplied by 10−05.

Figure 5. Comparison between local average SAR values obtained for child (blue) and 
adult’s (red) dielectric properties. Left: 2100 MHz. Right: 2600 MHz.

Figure 6. Comparison between local average SAR values obtained for child (left)  
and adult’s (right) dielectric properties at different frequencies (2100 MHz in blue and 
2600 MHz in red).
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brain exposure tends to be underestimated when using adult dielectric properties at 2100 MHz  
(by about 10%), it is overestimated at 2600 MHz (by about 5%). These results highlight the 
need, when studying local exposure, to consider age specific dielectric properties.

5. Conclusion

In this paper, a segmentation and anatomy transfer based framework has been proposed, and new 
infant models to be used for numerical dosimetry simulations have been developed. The idea is 
to use registered segmented organs between a source model and a target model to guide the blind 
deformation of the other tissues. The segmented organs are obtained using a segmentation frame-
work combining a new intensity-based energy and shape priors into a variational region growing 

Table 6. Absolute power Pabs (W) and average local SAR (W kg−1) values when using 
child specific dielectric properties (CDP) and adult dielectric properties (ADP) for the 
18 months child model at 2100 and 2600 MHz.

Model Tissue

2100 MHz 2600 MHz

Pabs SAR Pabs SAR

Child’s  
dielec. prop.

Lungs (1) 1.63E  −  06 5.78E  −  06 1.22E  −  06 4.31E  −  06
Liver (2) 1.11E  −  06 4.64E  −  06 6.30E  −  07 2.64E  −  06
Kidneys (3) 4.36E  −  08 9.08E  −  07 2.03E  −  08 4.23E  −  07
Heart (4) 4.14E  −  07 3.17E  −  06 3.05E  −  07 2.34E  −  06
Spleen (5) 5.74E  −  08 1.31E  −  06 3.40E  −  08 7.76E  −  07
Stomach (6) 2.31E  −  07 3.39E  −  06 1.26E  −  07 1.85E  −  06
Brain (7) 9.23E  −  06 1.05E  −  05 5.95E  −  06 6.78E  −  06
CSF (8) 2.16E  −  06 3.20E  −  05 1.60E  −  06 2.37E  −  05
Hom. tissues (9) 1.42E  −  04 5.34E  −  05 1.47E  −  04 5.53E  −  05
Fat (10) 2.93E  −  05 9.20E  −  06 2.97E  −  05 9.32E  −  06
Muscle (11) 2.42E  −  05 1.57E  −  05 2.12E  −  05 1.38E  −  05
Skeleton (12) 1.56E  −  05 1.48E  −  05 1.10E  −  05 1.05E  −  05
Skin (13) 1.45E  −  05 2.95E  −  05 1.94E  −  05 3.94E  −  05
Skull (14) 1.07E  −  05 8.72E  −  06 1.00E  −  05 8.20E  −  06

Adult’s  
dielec. prop.

Lungs (1) 1.85E  −  06 6.57E  −  06 1.55E  −  06 5.50E  −  06
Liver (2) 1.12E  −  06 4.68E  −  06 7.35E  −  07 3.08E  −  06
Kidneys (3) 3.93E  −  08 8.19E  −  07 2.39E  −  08 4.97E  −  07
Heart (4) 4.30E  −  07 3.29E  −  06 3.61E  −  07 2.76E  −  06
Spleen (5) 7.38E  −  08 1.68E  −  06 5.22E  −  08 1.19E  −  06
Stomach (6) 2.51E  −  07 3.68E  −  06 1.66E  −  07 2.43E  −  06
Brain (7) 8.38E  −  06 9.55E  −  06 6.26E  −  06 7.13E  −  06
CSF (8) 2.02E  −  06 2.99E  −  05 1.57E  −  06 2.33E  −  05
Hom. tissues (9) 1.50E  −  04 5.66E  −  05 1.54E  −  04 5.80E  −  05
Fat (10) 1.97E  −  05 6.20E  −  06 2.07E  −  05 6.51E  −  06
Muscle (11) 2.61E  −  05 1.70E  −  05 2.30E  −  05 1.50E  −  05
Skeleton (12) 7.42E  −  06 7.04E  −  06 5.88E  −  06 5.58E  −  06
Skin (13) 2.07E  −  05 4.22E  −  05 2.39E  −  05 4.85E  −  05
Skull (14) 1.07E  −  05 8.74E  −  06 9.69E  −  06 7.92E  −  06
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based method. This method allows for the simultaneous segmentation of multiple tissues. These 
tissues are then used in an anatomy transfer framework which incrementally adds new tissues to 
the target model and uses the newly registered tissues as constraints for the remaining ones. While 
the proposed method targets the early childhood, it is not specific to it and thus could be used for 
all possible ages, for instance for completing older children models such as those developed in 
Fouquier et al (2011). Using this method, five child models from 5 to 37 months containing thir-
teen tissues have been created. While artifacts such as slight deformations of the skull, imprecise 
positioning of the elbows and bending of muscle and fat still remain in the deformation procedure, 
the quality of the segmentation and following deformation procedure is good enough to ensure 
the production of realistic 3D anatomical models of the human body. The resulting models have 
thus been used to conduct a preliminary study on the exposure of 5 to 37 months old children 
models to radiofrequency electromagnetic fields from cellular base stations that are connecting 
the mobile phones to the networks. The first results show a decrease of the whole body exposure 
with age. Comparing exposure results obtained by using adult dielectric properties for the child 
tissues and those obtained by using child specific dielectric properties, we have seen that there is 
no influence of dielectric properties on the whole-body SAR and the average maximum over 10g 
SAR. In particular, when looking at the brain exposure, depending on the frequency band, the 
child brain exposure can be under- or over-estimated when using adult dielectric properties for 
the child tissues. This highlights the importance of using age-specific dielectric properties when 
studying children exposure. However, these results should be considered cautiously because of 
the combined uncertainties inherent to the estimation of the dielectric properties, models postur-
ing and the variability in morphology.
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Appendix. Tissues weights in kg per model

5 months old 18 months old 37 months old

Lungs 0.19 0.28 0.315
Liver 0.188 0.23 0.335
Kidneys 0.028 0.04 0.06
Heart 0.1 0.13 0.14
Spleen 0.03 0.043 0.05
Stomach 0.02 0.068 0.08
Intestine 0.003 0.005 0.009
Brain 0.58 0.87 1.08
CSF 0.08 0.06 0.13
Hom. tissues 2.22 2.65 3.3
Fat 1.76 3.18 3.1
Muscle 1.84 1.537 2.67
Skeleton 0.77 1.05 1.42
Skin 0.36 0.49 0.58
Skull 0.477 1.22 0.73
Total 8.68 11.9 14.09
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