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Abstract

Breast density has become an important issue in current breast cancer screening, 

both as a recognized risk factor for breast cancer and by decreasing screening 

ef#ciency by the masking effect. Different qualitative and quantitative methods 

have been proposed to evaluate area-based breast density and volumetric breast 

density (VBD). We propose a validation method comparing the computation 

of VBD obtained from digital mammographic images (VBDMX) with the 

computation of VBD from thorax CT images (VBDCT). We computed VBDMX 

by applying a conversion function to the pixel values in the mammographic 

images, based on models determined from images of breast equivalent 

material. VBDCT is computed from the average Houns#eld Unit (HU) over the 

manually delineated breast volume in the CT images. This average HU is then 

compared to the HU of adipose and #broglandular tissues from patient images. 

The VBDMX method was applied to 663 mammographic patient images taken 

on two Siemens Inspiration (hospL) and one GE Senographe Essential (hospJ). 

For the comparison study, we collected images from patients who had a thorax 

CT and a mammography screening exam within the same year. In total, thorax 

CT images corresponding to 40 breasts (hospL) and 47 breasts (hospJ) were 

retrieved. Averaged over the 663 mammographic images the median VBDMX 

was 14.7% . The density distribution and the inverse correlation between 

VBDMX and breast thickness were found as expected. The average difference 

between VBDMX and VBDCT is smaller for hospJ (4%) than for hospL (10%). 

This study shows the possibility to compare VBDMX with the VBD from thorax 

CT exams, without additional examinations. In spite of the limitations caused 

by poorly de#ned breast limits, the calibration of mammographic images to 

local VBD provides opportunities for further quantitative evaluations.
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1. Introduction

The classi#cation of breasts in groups based on the characteristics of parenchymal patterns in 

the mammographic images was originally developed by Wolfe in 1976 (Wolfe 1976). Wolfe’s 

classi#cation was later converted to the BIRADS classi�cation (Dórsi 2003), where breast 

density is estimated from the ratio of �broglandular tissue to total breast tissue as observed 

in mammograms. The ratio of the area of �broglandular tissue to the area of the breast is 

referred to as the areal breast density (ABD). Later, Kopans (Kopans 2008) put forward the 

volumetric breast density (VBD) as the ratio of the volume of the �broglandular tissue to the 

volume of the breast, on which Highnam, Brady and Shepstone (Highnam et al 1996) and 

others had been working.

A systematic review and meta-analysis of publications on breast density and parenchy-

mal patterns in relation to breast cancer risk was published in 2006 by McCormack and dos 

Santos (2006). The study demonstrated that the ABD, and to a lesser extent Wolfe grades and 

BIRADS classi�cation, are strong predictors of the risk of developing breast cancers. Van Gils 

et al (1999) and Ting et al (2012) also found that the evolution of the density as a function of 

time was indicative for the risk of developing breast cancers: the faster the changes, the higher 

the risk. For women who are being treated for breast cancer with Tamoxifen, the effect on 

the �broglandular tissue was found indicative for survival rate (Li et al 2013), with a higher 

survival rate for women whose �broglandular tissue decreases. Reproducible and consistent 

methods of quanti�cation of breast density have therefore become important tools in breast 

cancer epidemiology.

Several methods of local (Beckett and Kotre 2000, Desponds and Klausz 1994) and global 

(Highnam et al 1996, 2006, 2010Kaufhold et al 2002, Hartman et al 2008, Malkov et al 2008, 

Shepherd et al 2005b, van Engeland et al 2006) breast density computation have been pub-

lished, all relying on measurements of the transmission of x-rays through the breast. Almost 

all methods for digitized and digital mammographic images compare breast image pixel val-

ues to image pixel values of a breast tissue equivalent material (Heidsieck 1989) as system 

calibration. The most important problem encountered by all methods was the lack of an accu-

rate measure of breast thickness.

Two commercially available products are based on the work of Highnam, Brady et al 

(Highnam et al 2006): R2 QUANTRA™ (Hologic, Bedford, MA) and Volpara® (Matakina® 

Inc., Wellington, New Zealand). They handle the thickness estimation in a different way. 

Whereas the thickness estimation from the method of Highnam, Brady et al (Highnam et al 

2006) was based only on the hypothesis of a purely adipose uncompressed breast region and 

some image smoothness criteria, the R2 QUANTRA™ software uses an improved image-

based thickness correction as described in Hartmann et al (2008), with the recorded paddle 

height as the initial value for the compressed breast thickness. According to Highnam, Brady 

et al (Highnam et al 2010) the Volpara® software is searching for a purely adipose region in 

the image, based on phase congruency, to compute the VBD with a high precision compressed 

breast thickness. Shepherd dealt with the compression paddle orientation by placing a phan-

tom with lead markers on the paddle (Malkov et al 2008).

All these methods make some hypotheses. It is therefore important that they can be vali-

dated against known values. The common approach is to quantify the respective amounts of 

�broglandular and adipose tissues in 3D images of the same breast. Unfortunately the limits of 
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the breast are anatomically not well de�ned and determining the volume of the breast is inher-

ently dif�cult. This is also the case for 2D mammography. As a result, while good correlations 

can be obtained between breast volume estimates from different modalities, it is more dif�cult 

to obtain a good match between these volumes (van Engeland et al 2006, Wang et al 2013). 

Despite this dif�culty, the correlation between VBD as obtained from different images and from 

different modalities is possible. For the previously described methods (Van Engeland et al 2006, 

R2 QUANTRA™ 2008, Volpara® 2010) the authors compared the VBD from mammographic 

images to the VBD obtained by delineating manually the breast and the �broglandular tissue in 

breast magnetic resonance (MR) images of the same patient. The comparison between the VBD 

computed by single x-ray absorptiometry (Shepherd et al 2005a), QUANTRA™ and Volpara® 

on the one hand and MR on the other hand was described recently by Wang et al (2013). Using 

clinical MR images has however some drawbacks. Due to in-plane inhomogeneity of the pixel 

values it is not possible to set a threshold for automatic segmentation of the �broglandular tissue 

and therefore more sophisticated methods are needed. Segmenting manually the �broglandular 

tissue is dif�cult due to its irregular borders and the presence of small �brous structures. Next, 

MR images represent MR characteristics of the tissues, and the subsequent tissue classi�cation 

may be different from that based on x-ray imaging. Finally, breast MR is not performed for 

the screening population but mainly for patients being suspicious for a malignant disease. The 

presence of a disease may disturb the breast density measurement, in case the hypothesis of the 

two-compartment model, with only adipose and �broglandular tissues, is not valid anymore. 

Alonzo-Proulx et al (2010a) proposed dedicated breast CT images as a basis for comparison. 

They computed the volumes of �broglandular and adipose tissues in breast CT by thresholding 

the images. Then they simulated mammographic images from the breast CT acquisitions for 

which they then computed the VBD with their 2D method. Also Vedantham et al (2012) showed 

the possibility to measure the �broglandular tissue and the volumetric glandular fraction based 

on breast CT images. Breast CT seems to be a good solution to establish reliable VBD values 

but is only available in a small number of research centers. We propose a validation method 

based on regular thorax CT images. We exploit the large number of thorax CT procedures per-

formed on the breast screening population, which include most of the time the complete breast. 

The method can easily be performed by users of breast density applications.

In January 2014 Salvatore et al (2014) published a study where the authors show a prom-

ising agreement between BI-RADS density classi�cations in mammography and thorax CT 

of the same patients. Their work indicates a possibility to compute also the VBD from tho-

rax CT images. Salvatore et al (2012) segmented the breast with a semi-automatic computer 

algorithm prototype. They computed the breast density by partitioning the segmented breast 

region. We propose to use the characteristic of the Houns�eld Units (HU) provided by CT 

reconstruction algorithms being a linear function of the average attenuation of the material 

over the volume corresponding to the spatial resolution of the CT scanner in the X-Y-Z direc-

tions. As a consequence, this value is a direct function of the linear attenuation coef�cients of 

the local tissue components, and the VBD can be simply computed from the average HU in 

the breast volume and the HU of adipose and �broglandular tissues, without further in-breast 

tissue segmentation. Another advantage of the use of CT images instead of MR images is that 

the common use of x-rays in CT and mammography ensures the same classi�cation of tissues, 

based on x-ray attenuation properties of the materials. Thorax CT images with lesion free 

breasts can be collected in a relatively short time period. For example, at the university hos-

pital Universitair Ziekenhuis Gasthuisberg Leuven (BE) over 30 women per month undergo a 

screening exam within 12 months of a CT thorax exam. Therefore, the collection of these data 

does not require additional medical examinations, so there is neither extra radiation given to 

the patients nor extra cost and time are asked from the radiologists.
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In this work, we show the possibility to use thorax CT images obtained from a routine CT 

scanner to verify the accuracy of algorithms for VBD estimations. We have tested this proposal 

for an otherwise veri!ed VBD computation algorithm that we derived from the method by 

Kaufhold et al (2002). The additional veri!cation consisted of left/right and CC/MLO correla-

tions and comparison of population distribution of VBD with previous results from literature.

2. Material and methods

2.1. VBD for phantoms from digital mammographic images

Our model is based on the work of Kaufhold et al (2002) and in particular Formula 8 therein:

=

−

−

G
g F

G F
% 100 ,

patientID patientID

patientID patientID
 (1)

with % G the percentage density, and gpatientID, FpatientID and GpatientID the ‘mAs-normalized 

negative log’ intensity values for respectively the pixel where the density is evaluated, and 

pure adipose and !broglandular tissues with the same thickness. This expression was derived 

from the mono-energetic attenuation laws of Beer-Lambert by replacing mono-energetic pho-

ton "uence with detector signal, integrated over the complete spectrum. This includes scat-

ter and beam hardening and thus a dependence on the object thickness and tube potential. 

By denoting m the current-time product and p the offset-corrected pixel values (Perry et al 

2006), VBDMX the VBD based on mammographic images and x, A and G indicating the tissue 

of unknown density, purely adipose tissue and purely !broglandular tissue respectively, our 

equation can be written as:

=

−

−

VBD
p m p m

p m p m

ln ( / ) ln ( / )

ln ( / ) ln ( / )

x A

G A

MX (2)

Kaufhold et al (2002) previously calibrated the values for FpatientID and GpatientID as a func-

tion of thickness separately for eleven anode-!lter-tube potential combinations by imaging 

phantoms of breast tissue equivalent material with thickness ranging from 2 to 7  cm. We 

have performed the calibration for a broader range of spectra (see table 1) and we modeled 

ln(p/m)A as a second order polynomial function of both the tube potential and the thickness. 

In our computations we preferred to model ln(p/m)G − A = ln(p/m)G − ln(p/m)A as a single term 

because this gave smaller errors for VBD than modeling ln(p/m)G and ln(p/m)A separately and 

subtracting afterwards, i.e. 0.6% instead of 1.7% on average over intermediate points. This 

can be understood knowing that both terms, ln(p/m)G and ln(p/m)A, depend on the incoming 

spectrum in the same way, which cancels out in the combined term.

For the implementation of equation  (2) we acquired images of breast tissue simulating 

phantoms (CIRS Inc, Norfolk, VA). We used 24 × 18 × 1 cm3 plates with attenuation equiva-

lent to 0% and 100% !broglandular tissue. Phantoms with different VBD and thicknesses as 

presented in !gure 1 were realized by combining the different plates.

The acquisitions were done for two Siemens Inspiration systems in Universitair Ziekenhuis 

Gasthuisberg, Leuven, Belgium, hereafter called hospL, and a GE Senographe Essential in 

Centre Hospitalier Jolimont-Lobbes, Entité Jolimontoise, La Louvière, Belgium, hereafter 

called hospJ. Experimental conditions are listed in table 1.

For all acquisitions the compression paddle and the anti-scatter grid were in place. 

Acquisitions were performed in manual exposure mode with current-time product as close as 

possible to the one used in automatic exposure mode for the corresponding thickness. With 

the manual exposure mode we extended the thickness-tube potential range of the automatic 
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exposure mode. The values of p of the images were determined as the average of a square 

region of interest of 1 cm2 in the middle of the plate at 6 cm from the chest wall.

First we show the validity of equation (2) for our implementation. Therefore we computed 

the VBD for the phantoms in "gure 1 and compared the results to their known VBD. To do so, 

we used equation (2) with ln(p/m)A and ln(p/m)G computed with the values of p measured in 

the images of 0% and 100% phantoms. Secondly we evaluated the VBD model by comparing 

the results of equation (2) for the phantoms, computed with ln(p/m)A and ln(p/m)G − A from the 

second order polynomial, to the known VBD.

2.2. Application to mammographic images

To compute the VBDMX of a breast, the local VBD as obtained with equation  (2) is "rst 

determined in all pixels of the mammographic image. The VBDMX is then obtained by mul-

tiplication of the local VBDMX and the local thickness, giving the local glandular content, 

and further integration of these values over the breast area and normalization by the total 

volume. The anode, "lter, tube potential and current-time product are retrieved from the 

DICOM header of the image. However, since the models for ln(p/m)A and ln(p/m)G − A are 

Table 1. Summary of experimental conditions for the images of the phantoms. These 
data were used to implement equation (2).

System GE essential Siemens inspiration

Exposure mode AUTOMATIC, AUTOMATIC,
MANUAL MANUAL

Anode Molybdenum (Mo), Tungsten (W)
Rhodium (Rh)

Filter Molybdenum (Mo), Rhodium (Rh)
Rhodium (Rh)

Tube potential (kV) 24–27 (MoMo) 24–32 (W/Rh)
25–29 (MoRh)
27–32(RhRh)

Thickness (mm) 10–50 (MoMo) 20–80 (W/Rh)
20–70 (MoRh)
20–80 (RhRh)

Figure 1. Overview of combinations of phantom thickness and VBD used for the im-
plementation of equation  (2). All combinations are obtained from plates of 0% and 
100% VBD of 1 cm thick.
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highly dependent on the total thickness, the breast thickness in every pixel must be known 

accurately.

Therefore the image is segmented into three zones (see !gure 2): the background (outside 

the breast), the region where the breast under compression is in contact with the compression 

paddle, and the peripheral region of the breast in between these zones.

The background region is segmented by thresholding the image using a threshold value 

determined automatically from the histogram of the image. The thickness of the area in con-

tact with the compression paddle has been considered to be constant and equal to the com-

pressed breast thickness value, stored in the DICOM header. The peripheral region has been 

set as a band parallel to the border of the breast and with a width equal to half the thickness 

of the breast. In this band the thickness pro!les are semi-circular (van Engeland et al 2006).

The skin is excluded, from both the !broglandular and the breast volume, by subtracting a 

constant gland thickness of 2 × 1.5 mm (Yaffe et al 2009) from the thickness maps. The region 

of the pectoral muscle is excluded too. The segmentation was kept simple by segmenting a 

triangle formed by the line from the middle of the breast at the long side of the image to the 

start of the breast at the upper short side of the image.

The knowledge of the acquisition parameters, and, for each point of the image, the pixel 

value and the breast thickness, allows computing ln(p/m)A, ln(p/m)G − A and ln(p/m)x. This 

results in a density map of the image and the VBDMX of the breast. Highly attenuating objects 

are automatically excluded if their VBDMX is over 100% and also pixels with values lower 

than 0%, mainly in the peripheral region, are excluded from integration for the VBDMX.

2.3. Computation of volumetric breast density from CT images

The VBD was obtained from CT images (VBDCT) for comparison with the VBDMX from mam-

mographic images. The voxel values in CT images are de�ned by:

μ μ

μ
=

−

×HU 1000x
x water

water

 (3)

Figure 2. Segmentation of the mammographic image according to three thickness re-
gions: the background (dark region), the region where the breast under compression 
is in contact with the compression paddle (white region), and the peripheral region 
(shaded region). Left: schematic view, right: patient example.
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We can write VBDCT as (Deslattes 1969):

μ μ

μ μ
=

−

−

=

−

−

VBD
HU HU

HU HU

x A

G A

X A

G A

CT (4)

and

= − · +HU HU HU VBD HU( )X G A ACT (5)

with HUX, HUA and HUG the average HU, the HU of the adipose tissue and the HU of the 

!broglandular tissue, respectively (Geeraert et al 2013). equation (4) can be applied per voxel, 

but can as well be applied to a larger volume such as the entire breast, where HUX is the aver-

age HU over the entire volume, so only the breast and not the detailed glandular structure has 

to be segmented in the CT images.

We applied the computation of VBDCT to the database of breast images described in 

section 2.4. The breast was delineated manually slice per slice for the CT acquisitions (see 

!gure 3). The skin was excluded from the volume. The pectoral muscle was taken as the 

chest wall border of the breast.

As for mammography, the CT measurement method relies on the knowledge of the 

reference materials, adipose and !broglandular tissues, for which the HU values must 

be determined in the same conditions as for the clinical images. Therefore we identi!ed 

regions in the breast of the patient images that showed up as purely adipose or purely 

!broglandular tissue. Ten adipose and ten !broglandular regions were manually identi!ed 

in ten patients (see !gure 4). HUA and HUG were !xed to the average HU of these regions.

2.4. Database of mammographic and CT images

We have used three databases: one containing only mammographic images and two con-

taining both mammographic images and CT images (see table 2). All patient images were 

acquired for medical reasons, and no extra exams were acquired only for this study (Trial 

ID NTR3357 at Nederlands Trial Register according to the declaration of Helsinki, 2008). 

All images were collected in the two hospitals where the VBDMX model was calibrated: 

hospL and hospJ. Database 1 consists of mammographic images for testing the VBDMX 

computation algorithm. The VBDMX distribution and the mean and standard deviation over 

the population were computed. The VBDMX distribution was also plotted versus breast 

Figure 3. Delineation of the CT images. An upper slice (left), middle slice (middle) 
and lower slice (right) are presented with the delineation of the breast, determining the 
volume of the breast. The average HU is computed in the delineated part. In each case 
the skin is excluded.
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thickness. Databases 2 and 3 consist of thorax CT and standard screening mammogra-

phy images of patients who underwent both exams within the same year. We generally 

collected one CT series and four mammographic images per patient: one CC and one 

MLO mammographic image per breast. However for some CT series one breast was not 

fully present in the FOV or some patients had a mastectomy, and not all patients had two 

mammographic images per breast. Therefore we do not always have four mammographic 

images per CT exam. These databases were used to study the correlation between VBDMX 

and VBCT values.

3. Results

3.1. VBDMX for phantoms

The VBDMX of the phantoms were computed using equation (2) and the values of ln(p/m)A 

and ln(p/m)G − A directly derived from the measurements, and then compared to their nominal 

values #gure 5(a). The resulting maximum deviation from the nominal values #gure 5(b) was 

3.8% for the Siemens system and 1.5% for the GE system. The average errors were 0.6% and 

0.3% with standard deviations 1.2% and 0.7% respectively. When the VBDMX was computed 

from the ln(p/m)A and ln(p/m)G − A models, the average errors and standard deviations are 2% 

(2%) and 0.1% (0.5%) respectively #gure 5(c).

Table 2. Overview of the databases used for the computation of VBDMX and VBDCT.

Database 1 Database 2 Database 3

Type of images MX MX + CT MX + CT
# of MX images 663 50 103
# of breasts 235 40 47
# of CT images — 25 27
Hospital hospL, hospJ hospL hospJ

MX system Siemens Inspiration, GE 

Senographe Essential

Siemens Inspiration GE Senographe Essential

CT system — Siemens Sensation 64 Siemens SOMATOM De#ni-

tion Flash and De#nition AS
CT tube potential — 120 kV 120 kV
CT slice thickness — 5 mm 3 mm (22 cases), 5 mm 

(5 cases)
CT pixel size range — 0.63 × 0.63 mm2 to 

0.89 × 0.89 mm2

0.43 × 0.43 mm2 to  

0.98 × 0.98 mm2

Figure 4. Regions of purely adipose and purely #broglandular tissues are selected in 
patients images. HUA and HUG were set to the average HU of the regions.
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The impact of variations of the input parameter values (breast thickness, tube potential, 

current-time product and detector gain) separately was analyzed. The error on the VBD can be 

considered as a linear function of the errors on the input parameters. The deviations generating 

a 5% VBD error are given in table 3.

3.2. Calibration of the CT method

Suf"ciently large homogeneous regions could be found in the thorax CT images except for 

one patient for adipose tissue and two patients for "broglandular tissue. The HUA and HUG 

values averaged over all patients were found to be −109 and +13, with standard deviations 9.1 

and 11.9 respectively.

3.3. VBDMX and VBDCT for the databases

The VBDMX computation method was applied to Database 1 (663 images). Figure 6 represents 

the distribution of the VBDMX for all images. The maximum of the distribution is found at 

10% and the median density of the population is 14.7% . The skewness is 1.55. Our results 

Figure 5. Veri"cation of equation (2). (a) The VBDMX computed with the measured 
ln(p/m)A and ln(p/m)G as a function of the VBD of the phantom. (b) The absolute dif-
ference between the VBDMX computed with the measured ln(p/m)A and ln(p/m)G and 
the known VBD as a function of known VBD. (c) The absolute difference between the 
VBDMX computed with the modeled ln(p/m)A and ln(p/m)G − A and the known VBD as a 
function of known VBD.
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were compared with the results obtained by Yaffe et al (2009), who segmented automatically 

!broglandular tissues in dedicated breast CT images to compute the VBD. They also found a 

skewed distribution with a maximum at 10% and a skewness of 1.68.

Figure 7 shows the average VBD per thickness category as a function of compressed breast 

thickness. It is decreasing with increasing compressed breast thickness. Dance et al 2000 

published this decreasing trend for the local breast density based on computations from the 

exposure parameters of !lm-screen mammographic images acquired under automatic expo-

sure control (AEC). The AEC sensor was supposed to be manually placed over a dense region 

of the breast, so the resulting VBD is local and more representative of higher densities in the 

breast. We therefore computed the maximum local breast density manually for a subset of 129 

images of Database 1 to compare to Dances results (see !gure 7).

We have then compared our VBDCT data, based on the patient calibration, to the results of 

volumetric glandular fraction (VGF) published by Vedantham et al Vedantham et al (2012). 

The characteristics of the distributions (see table 4) are in good agreement, despite the small 

number of cases (25 for hospL and 27 for hospJ versus 150 for Vedantham et al). The distribu-

tion of our measurements is compared to the distributions published by Yaffe et al (2009) and 

Vedantham et al (2012) in !gure 8, all excluding the skin.

The correlations between CC and MLO images for VBDMX and between left and right 

breasts for VBDMX and VBDCT are shown in !gures 9–11. The good correlation coef!cients 

and the slope of the graphs close to 1 con!rm the con!dence in the method.

In !gure 12 some examples of breast density maps for eight different women are shown 

together with their exclusion map indicating in black the pixels with density below 0% and 

Table 3. The errors on the input parameters generating a 5% error on VBD.

Input parameter Deviation generating a 5% VBD error

Breast thickness 2.1%
Tube potential 0.8%
Current-time product 4.6%
Detector gain 4.8%

Figure 6. The distribution of the VBD computed for a large population (Siemens (560 
images) and GE (103 images)) compared to the distribution published by Yaffe et al 
(2009). Both are skewed distributions with their maximum at 10%.
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over 100%, excluded for the VBDMX computation. In !gure 12(b) the white lines in the density 

maps indicate the exclusion from the pectoral muscle estimation. Comparable !ndings were 

reported by Alonzo-Proulx et al (2010b) and Zoetelief (et al (2006).

3.4. Correlation between VBDCT and VBDMX

We checked !rst how good the correlation is of the volume obtained from the mammographic 

images compared to the volume obtained from the delineated thorax CT images !gure 13. 

The correlation could be improved, but we have good reasons to believe that a volume match 

is not critical to !nd a VBD correlation (Bakic et al 2009). We thus plotted the correlation of 

the VBDMX with HU in !gure 14, with the characteristics summarized in table 5. Each dot of 

the graph represents a mammographic image, with on the x-axis the VBDMX and on the y-axis 

the average HU of the corresponding breast delineated in the CT images. A linear regression 

is applied to the points of both Databases 2 and 3 separately. The solid line represents the 

expected HU on the y-axis based on equation (5) and the values of HUA and HUG measured 

in the thorax CT images for the given VBD on the x-axis. Figures 14(b) and (c) show sepa-

rately the MLO images, respectively the CC images. It can be seen that the linear regression 

in Database 3 is in closer agreement with the expected curve than the linear regression in 

Database 2, and that the linear regression on the MLO images of Database 3 is in closer 

Table 4. Distribution characteristics of the VBDCT in comparison with the volumetric 
glandular fraction (VGF), published by Vedantham et al (2012).

Our dataset Vendantham

hospL hospJ et al (2012)

Mean 0.18 0.10 0.17
Minimum 0 −0.02 0.01
Median 0.14 0.07 0.14
Maximum 0.51 0.63 0.72
First quartile 0.02 0.03 0.07
Third quartile 0.33 0.12 0.24

Figure 7. The average VBDMX per thickness category computed for Database 1 (full 
dots), as well as the maximum local breast density for the subset of 129 GE images 
(empty dots), compared to the local breast density described by Dance et al (2000).
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agreement with the expected curve than the linear regression on the CC images. The error for 

a point is computed as the shortest distance of the point to the expected curve. The value of ∆1 

is the average of the errors for all points per database. Table 5 gives an overview of the slopes, 

intercepts, correlation coef"cients R2 and ∆1 for the calibration and the least square "ts.

4. Discussion and conclusion

The original motivation for the present study was the need to validate an algorithm for the 

VBD computation from mammographic images. We "rst veri"ed the algorithm on the images 

of the phantoms used for calibration, then applied the algorithm to patient images. Finally we 

compared these results to previously published statistics. To extend the "eld of validations, we 

have proposed a method using routine thorax CT images.

When applied to phantoms of known density, the accuracy of the presented VBDMX method 

can be compared to results of Highnam et al in (2010): the authors obtained an average error 

Figure 8. Distribution of VBD from CT measurements (our data) and breast CT (Yaffe 
et al (2009) and Vedantham et al (2012), all excluding the skin.

Figure 9. Correlation between CC and MLO VBDMX for the images of Database 1.
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on a GE Essential of 1.11% for 25 measurements over a density range from 0% to 37.5% for 

Molybdenum–Rhodium 28 kV, Molybdenum–Molybdenum 26 kV and 28 kV spectra. If we 

restrict our results to that range of spectra we obtained an average error of 0.1%.

When applied to patient images, our VBDMX computation method gave population distri-

butions comparable to those obtained from other methods based on breast CT’s (Yaffe et al 

2009, Vedantham et al 2012) as shown in !gure 6. Using a different method Beckett and Kotre 

(2000) studied breast densities of large sets 1258 women of patient images. They computed 

the VBD at the position of the AEC-sensor, manually placed by the radiographer in an area 

supposed to be representative of a dense part of the breast. Dance et al (2000) used those 

results to obtain the local VBD as a function of compressed breast thickness for the screening 

populations which has been proposed in the European Guidelines for Quality Control (Perry 

et al 2006). Since these methods computed the density in a dense part of the breast, an overes-

timation of the average VBD was expected, and demonstrated in !gure 7.

Figure 10. Correlation between left and right VBDMX for the images of Database 1.

Figure 11. Correlation between left and right VBDCT for the images of Database 2 and 
Database 3.
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The assessment of VBD from mammographic images, however, is penalized by several 

factors. First of all, the thickness of the breast is known with a limited accuracy. This is even 

a concern for the compressed part (Hauge et al 2012). Secondly, we supposed a two-compart-

ment breast with adipose and !broglandular tissues. In order to take the skin into account, a 

general correction was made, with the thickness of the skin assumed to be 1.5 mm at both 

sides of the breast. This is however based on a standard value instead of a value derived from 

Figure 12. Examples of breast density maps (up) and their corresponding exclusion 
maps (down). (a) CC (b) MLO. The black areas of the exclusion maps are excluded 
from the VBDMX computation. On MLO images the diagonal bars indicate the pectoral 
muscle delineation.
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the individual patient data. Finally, the VBDMX method relies on the correspondence in attenu-

ation coef!cients between the phantoms and real breast tissue.

We built a database of patients who underwent both a thorax CT and a mammographic exam 

within one year. In large hospitals, over 5000 CT exams per month are performed. The chance 

for a woman at screening age undergoing a thorax CT exam also passing a screening mam-

mographic exam within one year is approximately equal to the participation rate to the breast 

screening. We found over 30 patients per month, resulting in over 100 mammographic images 

for which 3D VBD computation is available. The biggest limitation of collecting VBDCT is the 

manual delineation of the breast in the CT images, which is time-consuming. The good correla-

tion of the VBDMX with the VBDCT (table 5) compared to the weaker correlation of the mam-

mographic and CT volumes !gure 13 demonstrated that the thorax CT method is robust against 

errors in the determination of the breast volume. However the total breast volume in CT segmen-

tation can be made easier using semi-automatic methods as described by Salvatore et al (2014).

The slope of the trend line for the hospL images in !gure 14 is different from the one for the 

hospJ images. The trend line for the MLO images of hospJ !gure 14(b) is in closer agreement 

with the expected curve than for the CC images !gure 14(c). For hospL there is no difference 

between the MLO and CC images. There are several limitations that can cause these deviations. 

First of all, the CT images were delineated manually by two different physicists, which can 

cause a systematic bias due to a different interpretation of breast limits. Secondly, the mammo-

graphic images were acquired by two different teams of radiographers on different equipment. 

Due to different positioning techniques, this can cause a systematic difference in the imaged 

volumes between CC and MLO images. Systematic differences in positioning do not affect the 

correlation, but only the slope and intercept of the least square !ts. Missing adipose tissue (as in 

CC images) in a mammographic image would increase the measured VBDMX and decrease the 

slope of the least square curve in !gure 14. In CT, it was dif!cult to accurately determine the lim-

its of the breast in each slice as well as the !rst and last slices of series containing breast tissue.

We compared the results in !gure 14 to the results of the correlation between the Volpara® 

software and MR (!gure 2 in Highnam et al (2010)). The range of values in their data cloud at 

25% VBDMX was between 17% and 40% VBDMR. For our method, we found a range between 

Figure 13. Volumes of the breast in mammographic images compared to the volumes 
of the same breast measured in CT images.
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Figure 14. The average HU over the breast volume in thorax CT plotted versus  
VBDMX. Each dot represents a breast for which the average HU is available (Databases 
2 and 3) together with a VBDMX estimation. They are represented separately for the two 
hospitals, with the corresponding linear regressions. The solid line represents the ex-
pected HU based on equation (5) and calibration values of HUA and HUG. (a) Grouped 
CC and MLO mammographic images, (b) points relative to MLO mammographic 
 images only, (c) points relative to CC mammographic images only.
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4% and 32% VBDCT. This suggests that the comparison between VBDMX and a 3D imaging 

method as VBDCT or VBDMR is limited by comparable problems.

This opens the question of the determination of the ‘true’ breast volume and as a conse-

quence the overall volumetric breast density. Anatomically however the limits of the breast as 

an organ are not clear. Radiologists tend to consider the content of the mammographic images as 

setting the breast limits, even if different in CC and MLO views. This problem emphasizes the 

limitations of the volumetric breast density as a quantitative risk factor. We must keep in mind 

that the concept of breast density was originally introduced based on the appearance of !lm 

images, including the texture of the tissue (Wolfe 1976). The same concept was used in most 

studies on associated risk, and formalized in the standardized reporting method (McCormack 

and dos Santos 2006). It might therefore be completed with for example the absolute volume of 

the glandular tissue, or the texture in the unprocessed image as was explored by several groups 

(Byng et al 1996, Huo et al 2000, Reiser et al 2011). These analyses can bene!t from quantita-

tive images calibrated to local VBD values (Highnam et al 2006, Fowler et al 2013).

In this study we demonstrated the possibility of validating VBDMX computation methods 

by correlating them with VBD values from routine thorax CT exams. Therefore we have built 

a database of mammographic images of breasts for which corresponding CT series were avail-

able and showed a good correlation of the VBDMX, computed with a state of the art method, 

to the HU measured in CT images. The correlation between the VBD computed from mam-

mography and the VBD computed from 3D-imaging as CT, as shown in this study, shows the 

possibility to compute a volumetric quantity representing the dense tissue in the breast and 

its 2D distribution, which can be used for texture analysis and for possible dose applications.
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