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Abstract Diffusion MRI fiber tracking datasets can con-
tain millions of 3D streamlines, and their representation can
weight tens of gigabytes of memory. These sets of stream-
lines are called tractograms and are often used for clinical
operations or research. Their size makes them difficult to
store, visualize, process or exchange over the network. We
propose a new compression algorithm well-suited for trac-
tograms, by taking advantage of the way streamlines are ob-
tained with usual tracking algorithms. Our approach is based
on unit vector quantization methods combined with a spa-
tial transformation which results in low compression and
decompression times, as well as a high compression ratio.
For instance, a 11.5GB tractogram can be compressed to a
1.02GB file and decompressed in 11.3 seconds. Moreover,
our method allows for the compression and decompression
of individual streamlines, reducing the need for a costly out-
of-core algorithm with heavy datasets. Last, we open a way
toward on-the-fly compression and decompression for han-
dling larger datasets without needing a load of RAM (i.e.
in-core handling), faster network exchanges and faster load-
ing times for visualization or processing.

Keywords Compression · Diffusion MRI · Tractography ·
On-the-fly algorithms · Unit vectors

1 Introduction

Diffusion magnetic resonance imaging (dMRI) tractography
is currently the only technique able to non-invasively ob-

? C. Mercier · S. Rousseau contributed equally to this work.
C. Mercier · S. Rousseau · P. Gori · I. Bloch · T. Boubekeur
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tain the white matter architecture of the human brain. Trac-
tography helps clinicians, neurosurgeons and researchers to
understand the connections of the brain and is widely used
for pre-operative planning, during clinical operations, and
for research purposes. Fiber tracking datasets – called trac-
tograms – are composed of 3D streamlines represented as
3D polylines with hundreds to thousands of ordered 3D
points. Modern tractography algorithms can obtain up to
several millions of these streamlines (Tournier et al. (2011)),
resulting in tens of gigabytes (GB) of data (Rheault et al.
(2017)). For instance, a file containing 1 million streamlines
and obtained with a constant stepsize of 0.1mm can weight
up to 8.7GB. This massive amount of data complicates visu-
alization, processing, sharing or storage. In this article, we
introduce a new compression algorithm for fiber tracking
datasets, which is both fast and efficient.

Existing methods, that propose a solution to this data
size problem, can be divided into two different categories.
They either compress the whole tractogram or the represen-
tation of each streamline.

Tractogram-level compression This kind of approach con-
sists in reducing the number of streamlines of a tractogram.
A simple way of doing so is to randomly select a sub-
set of streamlines from the original dataset (Gori et al.
(2016)). This is a pragmatic approach, however, there is
no guarantee that meaningful streamlines are not removed.
Another method is based on grouping similar streamlines
into clusters (Alexandroni et al. (2017); Garyfallidis et al.
(2012); Guevara et al. (2011); Liu et al. (2012); Maddah
et al. (2007); Wassermann et al. (2010); Demir and ¸Cetingül
(2015); Zhang et al. (2018); Siless et al. (2018)) in order
to remove statistical redundancy. In that case, clusters can
be represented using a streamline from the original dataset
– usually called a prototype (Guevara et al. (2011)) – or
with one created for this purpose (Garyfallidis et al. (2012)).
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These clusters are built using metrics specifically designed
for brain streamlines, thus preserving important properties
such as extremities and path (Olivetti et al. (2017); Siless
et al. (2018)). Another way of grouping streamlines is by
doing it gradually, merging similar streamlines together,
and thus obtaining a multiresolution representation (Mercier
et al. (2018); Zhang and Laidlaw (2002)). A geometric rep-
resentation of grouped streamlines can also be used (Mad-
dah et al. (2007)), such as generalized cylinders (Mercier
et al. (2018); Petrovic et al. (2007)) so that the spatial extent
of the merged streamlines are kept at each resolution. Us-
ing these approaches, the data will be easier to understand
and visualize, or even to analyze according to certain criteria
(general shapes, connections, etc.). Nevertheless, depending
on the application, keeping all the original streamlines might
be required or preferred.

Streamline-level compression When trying to keep as much
information as possible from the original tractogram, per-
streamline compression algorithms appear to be a good al-
ternative. These methods can, in most cases, be combined
with a tractogram-level compression.

It is possible to use general compression algorithms di-
rectly on the data. Whereas lossless compression algorithms
compress data by identifying and removing statistical redun-
dancy – and therefore do not lose any information from the
original data – lossy algorithms are going further by remov-
ing unnecessary data or introducing approximations. In the
case of brain tractograms, the data are composed of a set of
3D points expressed as floating point values. A pragmatic
approach is to compress them using a general floating point
data compression algorithm such as the one of Lindstrom
(2014). However, this approach cannot compete with more
data-aware methods, which are more efficient as they take
advantage of the specificities of the data. For instance, a
classical approach in neuroscience is to reduce the number
of points, by using algorithms such as a linearization that
removes colinear (or almost colinear) points (Presseau et al.
(2015)). This can be combined with a general compression
algorithm as data are still floating point values, improving
the compression ratio.

One possible approach for a data-aware compression is
to build a dictionary in a dedicated space of representa-
tion (Presseau et al. (2015); Kumar and Desrosiers (2016);
Moreno et al. (2017)). Presseau’s algorithm (Presseau et al.
(2015)) uses a three steps process, starting with (i) lin-
earization, then (ii) quantization and eventually (iii) encod-
ing the points using a dictionary. The method is similar to
the zip compression, and the algorithm is named zfib. This
method achieves good compression ratios (around 90%), but
at the cost of high compression times (more than ten minutes
for tractograms with 1M streamlines). Some points from

the original streamlines are removed due to the lineariza-
tion step, therefore reducing the performance of point-based
algorithms (Soares et al. (2013)). The authors also tried to
apply some transformations – including wavelet-based ones
– without success as they reduced the compression ratio.

Another compression algorithm method dedicated to
tractography uses a sparse representation of stream-
lines (Chung et al. (2009); Kumar and Desrosiers (2016);
Moreno et al. (2017)). In Chung et al. (2009), the stream-
lines are represented using cosine functions, parametrized
with 60 parameters, reducing the memory cost. The average
error introduced in this case is about 0.26mm. Kumar and
Desrosiers (2016)’s approach segments and clusters stream-
lines using a dictionary built with a sparse coding of the
streamlines. In that case, the goal is not to reduce the mem-
ory usage but to ease some heavy computations on stream-
lines. In Alexandroni et al. (2017) the idea is to use a dic-
tionary combined with the fiber-density-coreset method. As
a result, it removes high-frequency data (sudden changes
in the streamlines path are smoothed) by only retaining a
few non-zero coefficients for each streamline. The typical
average error is around 2mm on data with a resolution of
1.25mm3. In Caiafa and Pestilli (2017), a sparse encoding is
performed on the tensor representation. This results in a size
in memory which is about the same as the one with usual
3D points representation. Moreover, points are moved at the
center of the voxels of the original grid, resulting in possible
important errors, and point order is lost in the process.

The maximum error when compressing streamlines
should not exceed the voxel size, and should ideally be an
order of magnitude smaller. This should be the case not only
with clinical DWI, whose voxel size are around 2mm3, but
also for research protocols (e.g. 1.25mm3 in Van Essen et al.
(2012)). Moreover, these dictionary-based methods do not
allow for the compression and decompression of specific
fascicles or tracts, which could drastically reduce the mem-
ory load for visualization or processing.

Consequently, there is an important need for a new ef-
ficient and fast compression algorithm for brain tractogra-
phy data. To combine speed, compression ratio, the ability to
compress independently each streamline of the tractogram,
and the scalability, we focus our work on the representation
of individual streamlines and introduce a new compression
and decompression algorithm based on this representation.

Data constraints for our representation To compress data,
it is necessary to find a space of representation smaller than
the original one. In our case, we take advantage of the way
streamlines are acquired. In particular, we use two con-
straints: a constant stepsize (δ ) and a maximum angle of
deviation (ψ).

Commonly used tractography algorithms use a constant
stepsize while tracking streamlines. This property is some-
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Fig. 1: A unit vector (in green) is approximated by the clos-
est quantization point (in orange).

times used in some post-processing (Soares et al. (2013)).
Furthermore, termination of streamlines happens when the
angle between two consecutive segments of the streamline
is higher than a maximum angle. Using these two con-
straints allows us to consider a streamline as a succession
of unit vectors whose angles between consecutive vectors
are bounded by the maximum angle.

Unit vectors quantization When considering lossy com-
pression of independent unit vectors, the literature has
shown that unit vectors quantizations are the most effi-
cient (Cigolle et al. (2014)). They consider unit vectors as
points on the surface of the unit sphere. A unit vector is
compressed (or quantized) by being approximated with the
closest point of a point set distributed onto the surface of the
unit sphere, as shown in Figure 1. Each point is then encoded
using an identifier that is smaller in memory than its origi-
nal 3D coordinates. To minimize the maximal error (angle
between the original unit vector and the quantized unit vec-
tor) the chosen point set needs to have a distribution as uni-
form as possible onto the surface of the unit sphere. Among
possible distributions, octahedral quantization (Meyer et al.
(2010)) is a good candidate for a fast compression and de-
compression of the unit vectors Cigolle et al. (2014). More
recently, Keinert et al. (2015) introduced a new inverse map-
ping for the spherical Fibonacci point set. This point set is
known for the uniformity of its distribution over the surface
of the unit sphere. This quantization will, therefore, decrease
the quantization error, but at the cost of computational com-
plexity.

Both distributions make sense with our approach as we
can either want a fast decompression for streaming algo-
rithms (octahedral) or sacrifice a little bit of speed (spherical
Fibonacci) to decrease the compression error that is directly
linked to the compression ratio. These two methods will be
used in the remainder of this article. The common point of
all unit vector quantization techniques is their speed. These
algorithms can usually decompress millions of unit vectors

per second on a single processor (Cigolle et al. (2014)) and
billions of them on a graphics processor unit (GPU).

Contribution In this article, we introduce a new represen-
tation model for the streamlines of brain tractograms. We
then propose qfib, a new compression and decompression
algorithm based on the proposed representation. It handles
each streamline individually using two constraints specific
to tractography methods (constant stepsize and maximum
angle between consecutive points), a mapping on the unit
sphere, and a unit vector quantization. This method has the
following properties:

– High compression ratio (between 80 and 90%).
– Fast compression and decompression (few seconds).
– Low compression error.
– Ability to compress/decompress individual streamlines.
– Conservation of the number of points of each streamline.
– Ability to access any random single streamline from the

compressed dataset.

Moreover, we provide a publicly available open source im-
plementation of our compression and decompression algo-
rithm along with a docker file1.

2 Method

We define δ as the constant stepsize and ψ as the maximum
angle in the following parts of this article.

2.1 Brain streamlines representation

A streamline fa containing Na points is described as a 3D
polyline fa = {p1 . . . pNa} of ordered points. Each stream-
line has its own number of points Na as we use a con-
stant stepsize δa. The ith point of the streamline is defined
as pi = pi−1 +

−−−→pi−1 pi for i ∈ [2,Na]. Since two successive
points along the streamline are supposed to be at a constant
distance, pi can also be written as:

pi = pi−1 +δa
ˆ−−−→pi−1 pi (1)

where −̂→x denotes the normalized vector−→x /|−→x |. This means
that each 3D polyline from the dataset can be represented by
its first point and a set of unit vectors. The stepsize needs to
be constant on a per-streamline basis for this representation
to work.

2.2 Unit vectors quantization

Using unit vectors already reduces the size required to store
streamlines, as only two dimensions (spherical coordinates)

1 https://github.com/syrousseau/qfib

https://github.com/syrousseau/qfib
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Fig. 2: Octahedral quantization (Meyer et al. (2010))
projects a unit vector to an octahedron, then, to a unit square
to encode the discretization of the resulting 2D coordinates.

are needed to encode each segment instead of the three re-
quired by the Cartesian coordinates. When encoding the first
two points of each streamline, their size, and unit vectors,
the compression ratio will be slightly under 33%, depend-
ing on the average number of points in the streamline of
the dataset. In order to further increase the compression
ratio, we take advantage of the tractography resolution –
linked to the dMRI resolution – and use a lossy compres-
sion. As introduced in Section 1, when choosing a quantiza-
tion method, we can prioritize the speed with the octahedral
quantization (Meyer et al. (2010)), or the precision with the
spherical Fibonacci quantization (Keinert et al. (2015)).

Octahedral quantization (Meyer et al. (2010)) It is a unit
vector representation method that projects the vector [x,y,z]
defined on the surface of the unit sphere to an octahedron
by normalizing it using an L1-norm. This octahedron is then
unwrapped onto a 2D unit square as shown in Figure 2. The
resulting 2D coordinates [u,v] are discretized prior to en-
coding. When encoding using an M bits quantization, each
of these two coordinates is discretized on M/2 bits. The un-
quantized vector can be retrieved using the following for-
mula (Meyer et al. (2010)), where σ(x) = 1 for x ≥ 0 and
σ(x) =−1 otherwise:

z = 1−|u|− |v|

[x,y] =
{
[u,v]T if z≥ 0
[σ(v)− v,σ(u)−u]T if z < 0

(2)

Spherical Fibonacci quantization (Keinert et al. (2015))
This method is based on the Spherical Fibonacci point set
as it yields a nearly uniform point distribution on the surface
of the unit sphere (Keinert et al. (2015)). Using this point set,
the spherical coordinates (φ ,θ) of the jth point of the point
set containing K points are defined as (González (2010)):{

θ j = arccos(1− 2 j+1
K )

φ j = 2 jπ((3−
√

5)/2)
(3)

When compressing a vector using an M bits quantization,
the number of points of discretization used will be K = 2M .
The mapping proposed by Keinert et al. (2015) is used to
find the closest spherical Fibonacci point to the unit vector

Ψ 
θ1

P0

x

P0

θ2

Scap

dS1

Ssphere

dS2

x'

Fig. 3: Notations used in Section 2.3. The mapping in-
troduced by Rousseau and Boubekeur (2017) transforms a
point x defined on a spherical cap centered in P0 and with
a maximal angle of ψ represented as the yellow area on the
surface of the unit sphere to another point x′ defined on the
surface of the whole unit sphere colored in light blue.

to encode (Figure 1) and the identifier j of this closest point
is stored. The advantages of both quantization methods are
discussed in Section 3.

2.3 Mapping

We showed in Section 2.2 that quantized unit vectors can
be used to represent streamlines. This representation can be
considered as a differential description of the streamline for
which the decompression is performed by an integration us-
ing the first point and the stepsize δ as constant terms. It
provides good compression ratios, but it is possible to even
push forward the compression by adding the constraint on
the maximal angle ψ between two consecutive segments.
We take advantage of this property by expressing each unit
vector with respect to the previous one. It can be seen as
a second order differential representation (second deriva-
tive). The relative position between consecutive unit vectors
is limited to a spherical cap, parametrized by the angle ψ

(in yellow in Figure 3). As such, the quantization point set
would only be partially used, which is not optimal. Defining
a uniform point set on a spherical cap could solve this issue,
however, none exists (Rousseau and Boubekeur (2017)).

Another possibility is to define a mapping from the
spherical cap to the whole unit sphere. In this way, vec-
tors could be quantized on the whole unit sphere. To be
retrieved, vectors will then need to be unquantized be-
fore being unmapped. To minimize the error, this mapping
should preserve the uniformity of the point set distribution.
Such a mapping was recently introduced by Rousseau and
Boubekeur (2017). As illustrated in Figure 3, the conserva-
tion of the point set distribution is ensured by keeping the
equality between the ratio dS1/Scap and dS2/Ssphere where
dS1 is an infinitesimal ring on the surface of the spheri-
cal cap (orange), dS2 is the infinitesimal ring on the whole
sphere corresponding to dS1 mapped to the whole sphere
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P0
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P3
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P'0
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P'2

P'3

P'4

Fig. 4: Quantization with (in green) and without (in orange)
propagation error reduction. The error computed per point is
shown in red.

(blue), and Scap and Ssphere are respectively the surface of
the spherical cap (yellow) and of the whole unit sphere (light
blue). This method can be adapted to our problem by encod-
ing each unit vector from its predecessor. A point x on a
spherical cap is transformed into a point x′ on the whole unit
sphere by:

x′ = cP0 +
√

1− c2 with c = 1− 1− cos(θ1)

k
(4)

where k = 1−cos(ψ)
2 +ε is the ratio between the length of the

projection of the spherical cap on axis P0 and the diameter of

the unit sphere (Figure 3). In practice, the unit vector ˆ−−−→Pi−1Pi

is mapped relative to ˆ−−−−−→
Pi−2Pi−1 to find the vector x′, by using

P0 =
ˆ−−−−−→

Pi−2Pi−1 and x =
ˆ−−−→Pi−1Pi. As indicated in the origi-

nal article by Rousseau and Boubekeur (2017), we add an ε

to the ratio due to numerical imprecision to ensure that all
unit vectors lie on the spherical cap. Representing unit vec-
tors relative to the previous ones can be seen as the second
derivative, as the first point is needed for the first integration
and the first unit vector for the second one.

2.4 Propagation error reduction

Each time a unit vector is compressed, a small error is in-
troduced due to the quantization process, meaning that start-
ing from the point pi−1, the new position will be p′i instead
of pi. Therefore, continuously compressing the unit vectors

ˆ−−−→pi−1 pi can lead to an important error as shown with the or-
ange curve in Figure 4. To avoid this error from being fully
propagated, we substitute the points pi−1 for p′i−1. This point
has already been mapped and quantized (compressed) at the
previous step, and then unquantized and unmapped (decom-
pressed). As a result, it is not at the exact same place as
pi−1, and instead of compressing the unit vectors ˆ−−−→pi−1 pi, we

compress the unit vectors
ˆ−−−→

p′i−1 pi. This slight modification
compensates for the accumulated error. Indeed, it allows the
streamline being compressed to always use a direction re-
lated to its current position, thus reducing the error propa-
gation. This is presented on the green curve of Figure 4. In

Fig. 5: Example on an S curve streamline (black). The com-
pressed and decompressed streamline is shown without (in
orange) and with error propagation reduction (in green).

Figure 5, we show on a small streamline example the differ-
ence between a streamline compressed without error propa-
gation reduction (in orange) and with our error propagation
reduction strategy (in green). The second one is closer to the
original streamline (in black).

2.5 Compression algorithm and encoding pattern

To compress the streamline fa = {p1, ..., pNa} into a stream-
line f ′ for which the slightly changed decompressed coordi-
nates will be {p′1, ..., p′Na

}, combining all the steps described
in Section 2, we obtain the following algorithm:

– we store the first and second points as they are, using
their Cartesian coordinates;

– for the other points, we use the mapping proposed
by Rousseau and Boubekeur (2017) on the unit vector

ˆ−−−→
p′i−1 pi where the axis of the spherical cap is

ˆ−−−−−→
p′i−2 p′i−1,

and the ratio depends on the maximum angle ψ;
– we quantize the mapped vector using the octahe-

dral (Meyer et al. (2010)) or the spherical Fibonacci
quantization (Keinert et al. (2015)) depending on the ap-
plication scenario.

This algorithm is applied independently on each streamline
of the dataset. As the first unit vector is recomputed for each
streamline, it allows for a different δa for each streamline,
making qfib usable for resampled streamlines, as long as
it guarantees constant stepsize along each streamline. The
C++ pseudo code for the compression and decompression is
available in Appendix A. When used for file storage, we de-
fine the qfib format in Figure 6. We evaluate it in Section 3.

3 Results and discussion

We test our algorithm using streamlines traced from a ran-
domly selected subject of the Human Connectome Pro-
ject Van Essen et al. (2012) dataset. As our method requires
a constant stepsize, we use the SD STREAM (deterministic)
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Version nb: uint8

Nb. of bers: uint32

Ratio: oat32

Quantization: uint8

Precision: uint8

 

 

Header

The compressed bers

Content

First point: 3 × oat32

Second point: 3 × oat32

Nb. of compressed points: uint16

Compressed points: 

         - int8 for each point (8bits)

         - int16 for each point (16 bits)

Compressed Fiber

Compressed File (.q b)

Fig. 6: qfib – The format used to store the compressed
streamlines.

Table 1: Size of the files (tck format).

Stepsize δ 0.1 mm 0.2 mm 0.5 mm
Nb. of streamlines 500k 3M 500k 3M 500k 3M

Size of input file (GB)
Deterministic 3.80 22.8 1.92 11.5 0.84 5.01
Probabilistic 4.36 26.2 2.35 14.1 1.26 7.53

and iFOD1 (probabilistic) algorithms from MRtrix (Tournier
et al. (2012)) to compute the tractograms. We test the ef-
fectiveness of our algorithm on 12 bundles where we vary
the stepsize δ between 0.1 and 1mm, and the number of
streamlines between 60k and 3M. The maximum angle is
not specified when generating the streamlines, which means
that the default formula of MRtrix (Tournier et al. (2012))
is used: maximum angle = 90◦ × δ/voxelsize. The voxels
size on the dMRI images is 1.25mm3. Streamlines lengths
are constrained between 40mm and 256mm and are forced
to end on the brain cortical surface. All configurations are
presented in Table 1 with file sizes (tck format).

Our technique is general and any diffusion model or trac-
tography algorithm could be used provided it is based on
a per-streamline constant stepsize (δa). We implemented a
TCK file reader but any file fomat for 3D points can be han-
dled, assuming a suitable reader is provided to access to a
list of point coordinates. Although its application is demon-
strated with the octahedral and spherical Fibonacci quanti-
zations, our method is compatible with any actual or future
unit vector quantization method.

We first illustrate the results of our method on a few toy
examples, then compare our algorithm with zfib (Presseau
et al. (2015)). We evaluate the compression ratios of the two
approaches and their impact on mapped scalar values, using
fractional anisotropy (FA) as an example. We conclude by
showing that our method can also run out-of-core.

3.1 Error

To better illustrate the error introduced using our compres-
sion method, we show in Figure 7 four different stream-
lines (in black) and their compressed and decompressed ver-
sion (in green). As we quantize the relative directions of
each segment, a straight streamline (Figure 7(a)) remains to-
tally straight, with no error introduced. However, when in-

troducing some curvature in the streamlines, we notice that
the error increases according to the angle as shown in Fig-
ures 7(b), 7(c), 7(d), for which the maximum angles are re-
spectively 40.3°, 45.7° and 73.7°. With the spiral curve (Fig-
ure 7(d)), the angle is too important for the mapping to be
effective. In that case, the error is higher, and the difference
with the original curve is more visible than with the other
curves. However, this streamline is not anatomically mean-
ingful as such curvature should not appear in a tractogram.

Our compression keeps the original number of points.
As a result, we are able to measure pointwise errors. The
errors are computed between the original dataset contain-
ing the streamlines fa = {pa,1 . . . , pa,Na} and the compressed
and decompressed streamlines f ′a = {p′a,1, . . . , p′a,Na

} using
the following formulas:

mean error =
∑

L
a=1 ∑

Na
b=1 ||pa,b− p′a,b||
∑

L
a=1 Na

(5)

max error = max{||pa,b− p′a,b|| | a ∈ [1,L], b ∈ [1,Na]}

where Na is the number of points in the streamline fa, and L
the number of streamlines in the dataset. Table 3 shows these
errors for every file described in Table 1. It emphasizes that
increasing the precision of the quantization from 8 bits to
16 bits greatly reduces the error as there are more possible
points on the unit sphere during quantization. However, this
results in lower compression ratios (see Section 3.2).

Even though it is usually advised to use stepsizes at a
tenth of the voxel size (so around 0.1 or 0.2mm in our case),
greater stepsizes can be used. In these cases, according to
our errors, it is better to use a 16 bits quantization. The
method used for quantization impacts the error. The spher-
ical Fibonacci quantization introduces less error, but octa-
hedral quantization remains interesting for its faster compu-
tation time with still relatively low error (see Section 3.3).

Figure 8 evaluates the error depending on streamlines
length on a histogram where each column represents a clus-
ter of 10mm length difference. The tractograms were made
using a probabilistic algorithm and a 0.1mm stepsize. They
were compressed and decompressed using an 8 bits octahe-
dral quantization. The histogram shows that the maximum
error seems to be mostly independent of the length, in con-
trast to the average error which increases with the length of
the streamlines.

Table 2 shows the maximum and average errors obtained
at the extremities of the streamlines. This point is important
as it characterizes the connectivity of the streamline. We no-
tice that the error (including the maximum one) is really low
for δa ≤ 0.2mm with an 8 bits quantization. For δ = 0.5mm,
the error starts to be too important, especially with the octa-
hedral quantization, and a 16 bits quantization is preferable.
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Fig. 7: Original streamlines (black), compressed and decom-
pressed streamlines (green) using an 8 bits octahedral quan-
tization.

Table 2: Maximum and average errors on the endpoints.

Stepsize δ 0.1 mm 0.2 mm 0.5 mm
Nb. of streamlines 500k 3M 500k 3M 500k 3M

Maximum error (×10−2mm)
Quantization Precision Deterministic

Fibonacci 8 bits 4.91 5.28 10.3 10.6 32.9 33.5
16 bits 0.50 0.57 0.28 0.28 0.36 0.38

Octahedral 8 bits 7.53 8.03 15.9 16.5 46.1 50.7
16 bits 0.50 0.56 0.26 0.29 0.47 0.46

Quantization Precision Probabilistic

Fibonacci 8 bits 2.76 2.85 5.25 5.43 18.4 18.6
16 bits 0.13 0.13 0.12 0.14 0.64 0.63

Octahedral 8 bits 4.78 4.78 8.30 8.64 26.7 31.8
16 bits 0.13 0.13 0.14 0.15 0.79 0.80

Average error (×10−3mm)
Quantization Precision Deterministic

Fibonacci 8 bits 19.9 19.9 42.2 42.2 109 109
16 bits 0.44 0.44 0.32 0.32 1.17 1.18

Octahedral 8 bits 29.0 29.0 61.4 61.4 161 161
16 bits 0.44 0.44 0.34 0.34 1.31 1.31

Quantization Precision Probabilistic

Fibonacci 8 bits 17.5 17.5 25.1 25.3 62.5 62.7
16 bits 0.21 0.21 0.41 0.41 2.12 2.12

Octahedral 8 bits 28.0 28.1 40.7 40.5 94.4 94.7
16 bits 0.22 0.22 0.46 0.46 2.36 2.39

To visualize these errors, we color-mapped the com-
pressed streamlines according to their distance from the
original dataset (Figure 9). The quantization used is the oc-
tahedral one. The color scale is going from 0mm (dark blue)
to 1.25mm (dark red) of error, the voxel size of our data.
We used the streamlines computed with a 1mm stepsize us-
ing the deterministic method. This case is an illustration of
the situations where it is important to use a 16 bits precision
quantization. Indeed, the error obtained in this case (Fig-
ure 9(b)) is almost not visible on the picture, compared to
the 8 bits precision (Figure 9(a)).

Table 3: Maximum and average errors of our method de-
pending on the dataset, precision in bits and quantization
method.

Stepsize δ 0.1 mm 0.2 mm 0.5 mm
Nb. of streamlines 500k 3M 500k 3M 500k 3M

Maximum error (×10−2mm)
Quantization Precision Deterministic

Fibonacci 8 bits 4.94 5.30 10.3 10.6 33.2 34.1
16 bits 0.50 0.57 0.28 0.28 0.39 0.38

Octahedral 8 bits 7.53 8.03 16.5 16.5 46.7 51.0
16 bits 0.50 0.56 0.27 0.29 0.50 0.52

Quantization Precision Probabilistic

Fibonacci 8 bits 3.04 2.95 5.86 5.91 19.7 20.6
16 bits 0.13 0.14 0.14 0.16 0.69 0.72

Octahedral 8 bits 4.79 4.90 8.55 9.38 29.8 31.7
16 bits 0.13 0.14 0.17 0.19 0.87 0.93

Average error (×10−3mm)
Quantization Precision Deterministic

Fibonacci 8 bits 2.54 0.52 9.10 2.04 55.8 9.76
16 bits 0.10 0.03 0.10 0.03 0.47 0.11

Octahedral 8 bits 3.12 0.55 12.4 2.29 66.8 18.8
16 bits 0.10 0.03 0.10 0.03 0.64 0.15

Quantization Precision Probabilistic

Fibonacci 8 bits 1.35 0.22 5.01 0.83 19.2 3.73
16 bits 0.04 0.01 0.08 0.01 0.63 0.16

Octahedral 8 bits 2.69 0.45 5.21 1.11 37.5 6.26
16 bits 0.04 0.01 0.08 0.02 0.94 0.20
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Fig. 8: Error in mm depending on streamlines length for an
8 bits octahedral quantization with δ = 0.1mm.

3.2 Compression Ratio

The compression ratio is computed using the following for-
mula:

compression ratio = 100× (1− compressed size
original size

) (6)

Our compression ratio (Table 4) is mostly stable around 90%
using an 8 bits quantization and around 82% using a 16 bits
quantization. We emphasize that our compression ratios are
strictly better than zfib for the same error values with an
8 bits quantization and stepsizes under 0.5mm which cor-
respond to the advised values for the stepsize. When the
zfib error is set to 0.2mm (their default value), we have
either better compression ratios or smaller errors. For the
streamlines generated using a probabilistic method, that are
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Fig. 9: The figure on the left of each panel represents the worst streamlines extracted from the figure on the right hand side
of the panel, showing the local compression error (see color code on the top of the figure) for the 8-bits (a) and 16-bits (b)
octahedral quantization. The dataset was computed using the deterministic algorithm and δ = 1mm.

Table 4: Compression ratios of qfib and zfib. The N/A
values are the ones for which the algorithm was not able to
perform the compression and decompression.

Stepsize δ 0.1 mm 0.2 mm 0.5 mm
Nb. of streamlines 500k 3M 500k 3M 500k 3M

Compression ratios (in percentage)
Method Parameter Deterministic

qfib 8 bits 91.4 91.4 91.1 91.1 90.4 90.4
16 bits 83.1 83.1 82.8 82.8 82.3 82.2

zfib same? N/A N/A 78.4 N/A 96.6 96.8
0.2 mm 98.1 98.1 95.9 96.0 87.5 87.5

Method Parameter Probabilistic

qfib 8 bits 91.4 91.4 91.2 91.2 90.8 90.8
16 bits 83.1 83.1 82.9 82.9 82.6 82.6

zfib same? N/A N/A 78.1 N/A 87.1 N/A
0.2 mm 96.0 N/A 88.7 N/A 69.9 N/A

same?: same error than qfib when using an 8 bit octahedral
quantization (Table.3).

more tangled, we achieve better compression ratios with the
same error value in every shown case.

3.3 Computation time

In Table 5, we show the compression and decompression
times of qfib and zfib. These figures were obtained us-
ing a computer with an Intel Xeon E5-1650v4 (6 cores, 12
threads, 3.6GHz). In both methods, we only account for the
compression and decompression time and not reading and
writing from/to the hard drive. We set the error of zfib to
0.2 mm as it is the default value on the provided source code.
We can see that, for both compression and decompression,
our method is at least two orders of magnitude faster than
zfib. Moreover, during our experiments using the source
code provided by the authors, zfib failed to compress very
large files whereas our method is more scalable.

3.4 Impact on Fractional Anisotropy

Scalar quantities such as Fractional Anisotropy (FA) are
often mapped onto the streamlines. As such, it is neces-

Table 5: Computation times of qfib and zfib. With zfib,
we set the maximal error to 0.2 mm. N/A are the values for
which the algorithm was not able to perform the full com-
pression and decompression.

Stepsize δ 0.1 mm 0.2 mm 0.5 mm
Nb. of streamlines 500k 3M 500k 3M 500k 3M

Compression time (s)

Deterministic
qfib (fibo) 24.1 144 12.8 74.8 5.49 32.0
qfib (octa) 7.83 46.5 3.81 22.6 1.67 9.76

zfib 702 4243 387 2284 387 2373

Probabilistic
qfib (fibo) 27.9 167 15.3 90.6 8.27 49.7
qfib (octa) 8.61 54.7 4.86 29.0 2.53 15.5

zfib 910 N/A 1052 N/A 1418 N/A
Decompression time (s)

Deterministic
qfib (fibo) 4.98 30.1 2.61 15.4 1.14 6.79
qfib (octa) 3.56 20.7 1.90 11.3 0.88 5.30

zfib 12.1 72.7 12.9 77.1 17.3 103

Probabilistic
qfib (fibo) 5.77 34.9 3.23 18.9 1.75 10.3
qfib (octa) 4.08 24.3 2.24 13.3 1.29 7.47

zfib 28.5 N/A 43.0 N/A 60.8 N/A

sary to verify that their values remain respected even when
streamlines are compressed. We compute the FA map us-
ing a Bresenham-like integration similarly to Presseau et al.
(2015). Results are presented in Table 6 as an error percent-
age between the original streamlines and the compressed
and decompressed ones. The error used for Presseau’s al-
gorithm was the default one of 0.2mm. This table shows that
we obtain a lower average FA error in all tested configura-
tions.

To go even further, we compute the FA error pointwise
similarly to Equation 5. We use a trilinear interpolation of
the 8 voxels surrounding each point. This cannot be done for
zfib as it does not keep the same amount of points as the
original dataset. The result of this comparison is presented
in Table 7. We can see that our maximum errors are under
0.2mm for 8 bits quantization when using stepsizes less than
0.5mm. Moreover, the average error is really low, which was
expected considering the low errors reported in Table 3.
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Table 6: Comparison of zfib and qfib for FA computation.
We compute the average error in FA computation using a
Bresenham-like integration (Presseau et al. (2015)).

Stepsize δ 0.1 mm 0.2 mm 0.5 mm
Nb. of streamlines 500k 3M 500k 3M 500k 3M

Average error of FA (in percentage)
Method Bits Deterministic

qfib 5 0.004 0.004 0.008 0.009 0.023 0.023
fibonacci 16 0.000 0.000 0.000 0.000 0.000 0.000

qfib 8 0.006 0.006 0.012 0.012 0.033 0.036
octahedral 16 0.000 0.000 0.000 0.000 0.001 0.000

zfib - 2.506 2.527 2.572 2.553 2.200 2.219
Method Bits Probabilistic

qfib 8 0.002 0.002 0.004 0.002 0.003 0.002
fibonacci 16 0.000 0.000 0.000 0.000 0.000 0.000

qfib 8 0.003 0.003 0.005 0.003 0.004 0.006
octahedral 16 0.000 0.000 0.000 0.000 0.000 0.000

zfib - 0.575 N/A 0.347 N/A 0.077 N/A

Table 7: Errors of FA computation between original stream-
lines and the compressed and decompressed ones using
qfib.

Stepsize δ 0.1 mm 0.2 mm 0.5 mm
Nb. of streamlines 500k 3M 500k 3M 500k 3M

Maximum error (absolute value ×10−2)
Quantization Precision Deterministic

Fibonacci 8 bits 3.91 3.93 7.92 8.32 22.6 22.9
16 bits 0.29 0.29 0.16 0.15 0.19 0.23

Octahedral 8 bits 5.89 6.23 12.0 12.4 32.7 32.5
16 bits 0.30 0.29 0.15 0.15 0.25 0.28

Quantization Precision Probabilistic

Fibonacci 8 bits 2.43 2.25 3.66 3.93 11.1 12.4
16 bits 0.09 0.09 0.09 0.09 0.44 0.48

Octahedral 8 bits 3.48 3.85 5.61 6.39 17.6 17.8
16 bits 0.09 0.09 0.10 0.10 0.48 0.57

Average error (absolute value ×10−3)
Quantization Precision Deterministic

Fibonacci 8 bits 0.45 0.37 0.99 0.88 2.69 2.61
16 bits 0.01 0.01 0.01 0.01 0.04 0.03

Octahedral 8 bits 0.67 0.53 1.45 1.31 3.95 3.83
16 bits 0.01 0.01 0.01 0.01 0.04 0.04

Quantization Precision Probabilistic

Fibonacci 8 bits 0.44 0.35 0.70 0.63 1.87 1.78
16 bits 0.01 0.00 0.01 0.01 0.07 0.06

Octahedral 8 bits 0.69 0.54 1.12 0.99 2.77 2.63
16 bits 0.01 0.01 0.01 0.01 0.08 0.07

3.5 Out-of-Core version.

To push forward the scalability of our method, we devel-
oped an out-of-core version of our algorithm. Compression
times are presented in Table 8. They are higher than the in-
core version. This is explained by the need to use the hard
drive during compression and decompression in contrast to
Table 5. This algorithm requires a few MB of RAM to run,
no matter the tractogram size, making it possible to be used
on any computer. To demonstrate that our algorithm is not
limited to powerful hardware or small files, we decided to
compress a huge dataset using a single-board computer. We
generated a dataset containing 10 millions of streamlines,
with a stepsize of 0.1mm using the probabilistic method, re-
sulting in an 87.3GB tck file. For the hardware part, we used
a Raspberry Pi 2 (≈ 35$) with 1GB of RAM, and a processor

with 4 cores at 900 MHz. The data was stored in an external
hard drive connected to the Raspberry Pi using the USB 2.0
interface. The compression resulted in a 7.49GB file with a
compression ratio of 91.4% using an 8 bits octahedral quan-
tization. It took around 4 hours, whereas the decompres-
sion took around 5.3 hours. These timings are consequent
because of the USB 2.0 interface limitation. An important
amount of time was indeed required to read and write all the
data. This explains why the decompression took more time
than the compression, as writing is slower than reading on a
hard drive.

Table 8: Compression times of our out-of-core algorithm
(qfib) with an 8 bits octahedral quantization.

Stepsize δ 0.1 mm 0.2 mm 0.5 mm
Nb. of streamlines 500k 3M 500k 3M 500k 3M

Compression time (s)
Deterministic 29.1 166 14.3 88.3 6.82 40.8
Probabilistic 33.0 192 17.9 103 9.99 57.9

3.6 Limitations

The main limitation of our method is the requirement for a
constant stepsize per streamline. To overcome this issue, one
could previously use a resampling method. Furthermore, we
conceived our method especially for brain tractography, us-
ing specific properties and constraints, thus other limitations
could appear when trying to apply the same compression al-
gorithm to other kinds of data. For instance, in the case of
streamlines with a bigger maximum angle between consec-
utive segments, the mapping might not be as efficient, as il-
lustrated in Figure 7. In such a case, it could be necessary to
use a 16 bit or higher precision quantization, thus reducing
the resulting compression ratio.

3.7 Future work

Our method is pleasingly parallel, which means that it can
be trivially parallelized at the streamline level. Therefore, it
would be straightforward to implement a massively paral-
lel version on the GPU. This could improve a lot the com-
pression and decompression times. Doing so, an interesting
subject of research will be to try to visualize the compressed
streamlines, by individually decompressing them on-the-fly
from the VRAM. This could reduce the need for an impor-
tant amount of RAM and VRAM on the machine, and im-
prove the data transfer speed between RAM and VRAM.
In the future, it could be interesting to integrate the pro-
posed method in existing tractography algorithms to gen-
erate streamlines directly in this compressed format. To fur-
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ther improve the streamline compression, a more parsimo-
nious space of representation could be used, using, for in-
stance, Bézier curves, B-splines or NURBS.

4 Conclusion

We have presented a novel streamline compression algo-
rithm for brain tractograms, and its associated encoding for-
mat – qfib. We evaluated and validated it using a wide vari-
ety of brain tractography configurations with different step-
sizes and numbers of streamlines. This algorithm provides
lower errors in general cases and better compression and
decompression times than existing methods. The compres-
sion ratio is high, around 90%, with errors under the dMRI
precision. In contrast to other methods, qfib does not re-
move any point from the original dataset, which is important
when point-based algorithms need to be applied afterward.
Moreover, the compression and decompression steps han-
dle each streamline individually. This implies that they can
both be easily parallelized and that qfib is as efficient on
small as on large databases in contrast to dictionary-based
methods. This also means that one can decompress single
streamlines from the compressed representation, allowing
users to directly access specific fascicles or tracts with neg-
ligible memory usage and loading time. Consequently, our
approach opens a way toward on-the-fly application where
an algorithm could work with the compressed representation
of the streamlines in memory, and decompress only single
streamlines or small bundles before applying some compu-
tation on them. This reduces the need for loads of RAM or
VRAM. We also demonstrated that our algorithm works out-
of-core. In this case, the size of the data to compress is only
limited by the hard drive.

We provide a reference C++ implementation of our
method as an open source code on GitHub2.
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A Pseudo-code

s t r u c t CFiber
{

vec3 f i r s t , s econd ;
vector<u i n t 8 t> d a t a ;

}

void compress ( c o n s t vec tor<vec3> & f i b e r , CFiber & c f i b e r ){

/ / encode t h e f i r s t two p o i n t s
c f i b e r . f i r s t = f i b e r [ 0 ] ;
c f i b e r . second = f i b e r [ 1 ] ;

/ / compute t h e f i r s t u n i t v e c t o r and t h e s t e p s i z e
vec3 a x i s = normal ize ( f i b e r [ 1 ] − f i b e r [ 0 ] ) ;
f l o a t s t e p s i z e = d i s t a n c e ( f i b e r [ 0 ] , f i b e r [ 1 ] ) ;
vec3 c u r r e n t = f i b e r [ 1 ] ;

/ / compress t h e r e s t o f t h e f i b e r
f o r ( unsigned i = 2 ; i < f i b e r . s i z e ( ) ; ++ i ){

vec3 v = normal ize ( f i b e r [ i ] − c u r r e n t ) ;
c f i b e r . d a t a [ i −2] = q u a n t i z e ( inverseMapping ( v , a x i s , r a t i o ) )
a x i s = mapping ( unquant ize ( c f i b e r . d a t a [ i −2] ) , a x i s , r a t i o ) ;
c u r r e n t = c u r r e n t + ( s t e p s i z e * a x i s ) ;

}
}

void decompress ( c o n s t CFiber & c f i b e r , vector<vec3> & f i b e r ){

/ / decode t h e f i r s t two p o i n t s
f i b e r [ 0 ] = c f i b e r . f i r s t ;
f i b e r [ 1 ] = c f i b e r . second ;

/ / compute f i r s t u n i t v e c t o r and s t e p s i z e
vec3 a x i s = normal ize ( f i b e r [ 1 ] − f i b e r [ 0 ] ) ;
f l o a t s t e p s i z e = d i s t a n c e ( f i b e r [ 0 ] , f i b e r [ 1 ] )

/ / decode t h e r e s t o f t h e f i b e r
f o r ( unsigned i = 0 ; i < c f i b e r . d a t a . s i z e ( ) ; ++ i ){

vec3 v = mapping ( unquant ize ( c f i b e r . d a t a [ i ] ) ) ;
f i b e r [ i +2] = f i b e r [ i +1] + ( s t e p s i z e * v ) ;
a x i s = v ;

}
}

C++ pseudocode of our compression and decompression algorithm. The pseudocode of the mapping and inverseMapping functions can be found
in [Rousseau et al. 2017] article. The quantize and unquantize functions are the octahedral quantization [Meyer et al. 2010] or the spherical
Fibonacci [Keinert et al. 2015]. For more details on the implementation, the reader can refer to the source code available on GitHub. https:
//github.com/syrousseau/qfib

https://github.com/syrousseau/qfib
https://github.com/syrousseau/qfib
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