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a b s t r a c t

We propose a method for fast, accurate and robust localization of several organs in medical images. We

generalize the global-to-local cascade of regression random forest to multiple organs. A first regressor encodes

the global relationships between organs, learning simultaneously all organs parameters. Then subsequent

regressors refine the localization of each organ locally and independently for improved accuracy. By combining

the regression vote distribution and the organ shape prior (through probabilistic atlas representation) we

compute confidence maps that are organ-dedicated probability maps. They are used within the cascade itself,

to better select the test voxels for the second set of regressors, and to provide richer information than the

classical bounding boxes result thanks to the shape prior.

We propose an extensive study of the different learning and testing parameters, showing both their robustness

to reasonable perturbations and their influence on the final algorithm accuracy. Finally we demonstrate the

robustness and accuracy of our approach by evaluating the localization of six abdominal organs (liver, two

kidneys, spleen, gallbladder and stomach) on a large and diverse database of 130 CT volumes. Moreover,

the comparison of our results with two existing methods shows significant improvements brought by our

approach and our deep understanding and optimization of the parameters.

© 2015 Elsevier B.V. All rights reserved.
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1. Introduction

With the ever growing amount of 3D medical acquisitions, auto-

matic, robust and accurate anatomy localization is of prime interest.

First, it directly enables faster data navigation and visualization of

target structures which can undoubtedly save the radiologist some

time (Andriole et al., 2011). Second, organ localization is a key ini-

tialization step for tasks such as segmentation or registration (for the

liver segmentation for example (Gauriau et al., 2013)). It is, overall, a

crucial component to streamline complex workflows such as medical

treatment planning and follow-up (in liver radiotherapy for instance,

the volume of the liver is required to compute the dose (Murthy et al.,

2005)). Such a component should be almost transparent in these kinds

of applications. It should help the user or subsequent algorithms with-

out a significant computation overhead and it should be accurate and

robust enough to be reliable as an intermediary result. Therefore, the

speed and the performance of the anatomy localization are two major

aspects to take into account in the design of such an algorithm.

The method we propose follows these requirements and presents

the advantage of being easily reproducible. The main contribution
∗ Corresponding author.
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f this work is to provide a fast anatomy localization of multiple

tructures simultaneously with good accuracy and shape consistency

n few seconds on a personal computer. This method is based

n a cascade of regressions and the combination of localization

redictions with organ dedicated probabilistic atlases. Fig. 1 presents

he outline of the method applied to the localization of the right and

eft kidneys in a 3D CT image. The idea is first to predict the position

f all the organs simultaneously with a single regressor and then to

efine the localization organ per organ using dedicated regressors.

his paper extends our preliminary work (Gauriau et al., 2014), in

articular by giving a better theoretical description of the approach

nd proposing a detailed study and optimization of the learning and

esting parameters.

In Section 1.1 we give a brief overview of the previous works on

ulti-organ localization and in Section 1.3 we summarize the contri-

utions of this article. In Section 1.2 we give some background on the

andom forest method and existing extensions for object detection.

ection 2 presents our approach and describes the principles behind

onfidence maps. Section 3 is dedicated to the study of an application

f the proposed method, using the random forest as a regressor,

or the localization of six abdominal organs: the liver, the two

idneys, the gallbladder, the spleen and the stomach. For that pur-

ose we use a large and diverse database of 130 3D CT volumes. We

http://dx.doi.org/10.1016/j.media.2015.04.007
http://www.ScienceDirect.com
http://www.elsevier.com/locate/media
http://crossmark.crossref.org/dialog/?doi=10.1016/j.media.2015.04.007&domain=pdf
mailto:romanegauriau@gmail.com
http://dx.doi.org/10.1016/j.media.2015.04.007
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Coarse Localization
image + confidence map as overlay

Refined Localization
image + confidence map as overlay

Probabilistic 
Atlases Probabilistic 

Atlases

Global Regressor
predict location and size of all organs

Local Regressors (one per organ)
predict location and size of single organs

Fig. 1. Outline of the method applied to the localization of the kidneys in a 3D CT image. A cascade of random forest regressors provides a final accurate localization in the form of

one confidence map per organ (both displayed as overlay over the image, red indicates a high chance of belonging to the organ while indicates a low chance). (For interpretation

of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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escribe our implementation choices, so that the implementation can

e reproduced by an interested reader. We also analyze the influence

f a wide number of training and testing parameters on the overall

erformance of the method. Besides providing us with an optimal

et of parameters, this study demonstrates our method’s relatively

ow sensitivity to parameter variations. In Section 4 we evaluate

ur algorithm, in comparison with existing works. We illustrate the

enefits of introducing organ-dedicated confidence maps.

.1. Previous works on multi-organ localization

Localization aims at finding the position of a given structure while

egmentation aims at determining the part of the image belonging

o the said structure. Segmentation methods are often dependent on

reliminary localization. While intrinsically linked, these two tasks

ften lead to vastly different formulations and algorithms. Numerous

orks deal with single organ localization. Among prominent ones,

ne can cite the marginal space learning (MSL) proposed by Zheng

t al. (2007), already applied in several contexts (Seifert et al., 2010;

u et al., 2014). Its goal is to reduce the localization search space

y learning several detectors (classifiers) with increasing complex-

ty (first find the best translated position in the image, then the best

ranslated and rotated position, etc.). The generalization of such single

rgan methods to multiple organs localization is not always straight-

orward, except by doing it sequentially and thus not taking into ac-

ount organ relationships. The importance of contextual information

nd spatial relationships has then led to specific methods for multi-

tructure localization. This is the reason why we focus this overview

n such methods. We classify them into three groups of techniques:

nowledge-based, atlas-based, and learning-based approaches.

Knowledge-based approaches. The spatial relationships of the

natomical structures can be represented by a graph where the nodes

nd the edges correspond to the organs and their relationships, re-

pectively. Liu et al. (2011) used this representation in conjunction

ith organ-dedicated appearance models to label several organs.

hey solve this problem using dynamic programming. Unfortunately

hey do not give a quantitative evaluation or information about the

omputation time. Fouquier et al. (2012) proposed to localize and

egment the brain structures in a pre-computed sequential order,

ollowing the prior knowledge of the spatial relationships between

he different structures. The sequential nature of this process tends

o propagate the errors and may require a backtracking procedure.

o prevent such a problem, Nempont et al. (2013) proposed to solve

he localization and segmentation in a global fashion following a con-

traint network. Although this approach has the benefit of relying
n strong prior knowledge, it is computationally expensive in prac-

ice (several hours) and requires a very fine parameter tuning which

akes it difficult to apply in practice until now.

Atlas-based approaches. Atlas-based approaches were originally

sed for segmentation purposes (see surveys on the topic such as

abezas et al. 2011; Kalinic 2008). They are particularly computa-

ionally expensive. In the case of localization, the registration may

e done at a lower resolution resulting in a reduced computational

ost (Fenchel et al., 2008; Shimizu et al., 2005). Several approaches

ere proposed to handle the inter-patient variability by using a prob-

bilistic atlas (Shimizu et al., 2005), a mean atlas (Joshi et al., 2004)

r a multi-atlas approach (Blezek & Miller, 2007; Wolz et al., 2012).

hese approaches improve the standard atlas-based methods, albeit

t the cost of increased computational time. In that respect, Atlas

orests (Zikic et al., 2013) propose an efficient, random forest-based

lternative to the registration-based evaluation of textbook multi-

tlas methods. Multi-atlas methods may still not be sufficient to cope

ith large variability, pathologies and inherent image-specific chal-

enges. Recent developments such as the works of Lombaert et al.

2014) (Laplacian Forests) and Konukoglu et al. (2013) (Neighborhood

pproximation Forests) exploit similarities between training images

o capture more specific, more local variations (in the sense of a simi-

arity metric) than classical global atlases/models. These works relate

o multi-atlas approaches in that their key ideas can be used to build

ore specific, more accurate atlases while still benefiting from (local)

lustering of training data. These works focus notably on learning and

xploiting the appropriate similarity metrics within the framework

f Random Forests (see also Section 1.2).

Learning-based methods. Machine learning techniques have

ecently raised high interest in the medical image processing

ommunity, probably benefiting from the computing power increase

nd from an easier access to large databases. A very good introduction

o statistical learning can be found in Hastie (2009). The goal of

tatistical machine learning is roughly to model the dependence of

n output variable y on an input variable x. This dependence can be

efined as the posterior probability distribution p(y|x) which helps

redicting the value of an unobserved variable y. We distinguish

wo different ways of modeling p(y|x): the generative model learns

he joint distribution p(y, x) while the discriminative model learns

irectly the conditional probability p(y|x). Although some authors

Bishop & Lasserre, 2007; Ng & Jordan, 2001) showed the interest of

enerative models with the increase of sample numbers, discrimi-

ative models are still preferred in most of applications as the data

rue distribution may be difficult to estimate. If y corresponds to a

abel (or discrete variable), this problem is called classification (for
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example y = 1 if x belongs to the target organ and y = 0 if it belongs

to the background). If y corresponds to a continuous variable then

the problem is called regression. The variable y may be a 3D position

to predict for example. In image processing, classification-based

methods often leverage the local context at the cost of an exhaustive

scan of the image. In general, regression-based methods rely more

on the global context but achieve faster speed for a lower accuracy

(full parsing of the image is not required).

We distinguish two types of learning-based methods for multi-

organ localization for which regression or classification may be used.

The first one is based on landmarks detection, while the second one

aims at finding regions of interest (ROI). Landmark-based methods

are often used as a preprocessing step for positioning the organ mod-

els (Chen & Zheng, 2014; Seifert et al., 2009). The principle is to learn

the position of anatomically meaningful and reproducible locations

(e.g. the top of the right lung or the tip of the liver). Landmarks de-

tection can be performed following different strategies. Landmarks

can be detected independently (Chen & Zheng, 2014) or take into

account the spatial relationships, for instance with a multivariate

Gaussian model (Zhan et al., 2008) or with a graphical model (Seifert

et al., 2009). Submodular strategies may also be designed to reduce

the search range (Liu et al., 2010). Lay et al. (2013) proposed to in-

crease the organ parameterization complexity by performing a joint

anatomical landmarks detection. They obtained accurate and fast re-

sults on shapes such as the lungs or the kidneys. Landmark-based

methods are generally efficient in both computation time (close to or

below 1 s depending on the method and implementation) and accu-

racy. However one may criticize the difficulty of determining reliable

anatomical landmarks. While landmarks may be relatively obvious

for bones, finding reproducible landmarks for soft tissues (e.g. the

liver) may be more challenging. Instead of detecting landmarks, some

researchers proposed to directly localize the ROI containing the or-

gans. These ROI are often represented in the form of bounding boxes.

The problem can be solved by classification, which consists in build-

ing a classifier and parsing the image to find the best box position.

This kind of approach can be performed using the MSL in an indepen-

dent fashion (Lu et al., 2012; Wu et al., 2014) which may lack spatial

consistency. Sofka et al. (2010) enhanced this type of approach by

finding the best sequential order of detection thanks to a hierarchi-

cal detection network. Alternatively, regression approaches were also

proposed. Criminisi et al. (2013); 2011) first proposed to use regres-

sion for multiple organs localization. This type of technique was also

successfully applied to localization in MR images (Pauly et al., 2011).

This method reaches a good trade-off between accuracy and speed (in

seconds) and is relatively easy to implement (there exist many ran-

dom forest open source implementations, see Section 3.2). Following

the work of Dollár et al. (2010) on cascades of regression, Cuingnet

et al. (2012) proposed to improve the method of Criminisi et al. (2011)

with a cascade of regression random forests for kidneys localization.

Despite the efficiency and robustness of these methods, one may crit-

icize the rough parameterization of the organs (bounding boxes). We

refer the reader to Zhou (2014) for a recent and extensive overview

of the different discriminative methods for anatomy detection.

1.2. Background on random forests

A random forest is a collection of decision trees in which random-

ization is introduced during learning to reduce the statistical depen-

dence between the trees. This concept was first introduced by Amit

and Geman (1994); 1997) and Ho (1995); 1998) almost at the same

time, and further developed and theorized by Breiman (2001) (with

the introduction of bootstrap aggregating). The paternity of decision

trees is given to Morgan and Sonquist (1963) who first used regres-

sion trees for process explanation and prediction. We refer the reader

to Hastie (2009) for details on decision trees and their variants.
The original idea of random forest was to add randomness in the

ode decision tree construction. Instead of choosing the best split

mong all possible features, the best split is determined among a

ubset of randomly chosen features at each node. This considerably

ecreases the training time, and also has the interesting characteristic

f being more robust against over-fitting. The random forest method

s particularly adapted to multiple-output regression problems.

Given a set of training samples (called labels, which are the values

hat we want to regress, and their associated features), each tree is

earned from a uniformly randomly chosen subset (method called

agging or bootstrap aggregating). Each tree node is built iteratively

y finding the best split according to random image feature values

nd a given objective function (e.g. information gain or residual sum

f squares (RSS) of the labels compared to the left and right mean

abels). At a new node, if the stopping criterion (e.g. minimum node

ize) is fulfilled, the tree construction is stopped and a leaf node is

uilt. The training samples that reach that leaf are recorded by storing

heir mean value or distribution. Each tree thus performs a coherent

artition of the initial training subset. During testing, each test sample

s pushed through each tree and reaches specific leaves. All these

utputs are then combined (e.g. by average or maximum a posteriori)

o give the final output prediction. We refer the reader to the book of

riminisi and Shotton (2013) for more details on random forests and

heir application to computer vision and medical image analysis.

Random forests have practical advantages: they are fast (both in

esting and training), they are relatively easy to implement (binary

rees), they scale well to large training sets and they give robust

nd accurate predictors. This explains the recent popularity of this

ethod, in particular in the computer vision community. One com-

etitor for the speed aspect may be the random ferns (Ozuysal et al.,

007), a non-hierarchical variant. However it requires large training

ets to outperform random forests.

Multiple variants have been proposed to improve the accuracy

nd/or to integrate more contextual information. In Section 1.1, we

lready mentioned random forest extensions related to atlas-based

rameworks (Konukoglu et al., 2013; Lombaert et al., 2014; Zikic et al.,

013). Hereafter, we give a brief overview of existing variants, with a

articular focus on object/organ detection and localization.

Note that those approaches can often be applied with other types

f classifiers and regressors than random forests. Separate decision

orests may be trained iteratively to refine successively the predic-

ions as in the work of Shotton et al. (2008). Dollár et al. (2010) lever-

ged this idea of cascaded predictions by learning multiple regressors.

ach regressor is learned so as to minimize the difference between

he true pose of the object to localize and the pose computed by the

revious regressors. Tu (2008) proposed to integrate the semantic in-

ormation from the first classifier into the next classifier (probabilistic

oosting tree classifiers (Tu, 2005)). This approach called auto-context

as successfully applied to brain segmentation (Tu & Bai, 2010). Se-

antic context may also be introduced directly in the forest construc-

ion. The entangled forests of Montillo et al. (2011) are built so that

ree nodes may depend on the sub-results of the same tree. Authors

how that it improves accuracy and captures more long-range con-

ext. In the context-sensitive forests proposed by Kontschieder et al.

2012) the forest entanglement is enhanced by sharing both regres-

ion and classification information between nodes. Kontschieder et al.

2013) also generalize the idea of entanglement and auto-context

ith the geodesic forest by using long-range soft connectivity features

nd a new objective function inspired by conditional random fields.

uch entangled methods come with a cost: an increasing complexity

nd a longer learning process (8 h to train the entangled forest on

00 CT volumes for the segmentation of 12 organs (Montillo et al.,

011)), which can make parameter optimization delicate. Joint pixel

lassification and shape regression have also been successfully ap-

lied to multi-organ segmentation (Glocker et al., 2012). Computation

peed is however not mentioned. When the objects to localize have a
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articular structure (which is the case in medical imaging), the ran-

om forest may be conditioned with global variables. Dantone et al.

2012) proposed to tackle the problem of face detection by using

he head pose as a prior to learn several random forest regressors.

un et al. (2012) generalized this idea with a random forest regres-

ion model incorporating dependency relationships between output

ariables through a global latent variable. This has the advantage of

mproving the accuracy of a classical regression forest at a small com-

utational overhead.

.3. Conclusion on related works and summary of our contributions

The previous sections showed the richness of existing methods

or object localization. However to our knowledge there is no method

edicated to multi-object localization taking into account the object

patial relationships, the contextual information and the shape priors

n a fast and accurate manner. Our framework attempts to fill all these

equirements. The localization of multiple organs is performed with a

ascade of regression forests conditioned with organ-dedicated shape

riors. It gives confidence maps for each organ as a localization result.

his relates our method to the works of Criminisi et al. (2013; 2011)

n random forest regression for anatomy localization, Cuingnet et al.

2012) on cascades of regressors for kidneys localization, and Sun et al.

2012) on conditional regression models. By keeping the method rel-

tively simple to implement, we show that we can get accurate and

obust performance at a low computation cost. Our method only re-

uires to learn several classical random forest regressors in cascade,

o build one probabilistic atlas per organ and to implement an effi-

ient confidence map computer. We actually propose a fast imple-

entation based on convolution for this last critical component (see

ection 2.2.2). The low training computation time also allows us to

erform an exhaustive evaluation of the different parameters of our

ramework (Section 3). While giving us a good understanding of the

ifferent parameters contributions, this also guarantees the best pos-

ible accuracy. We show in Section 4 that our method provides in a

ew seconds a consistent and accurate localization for multiple organs

n 3D medical images.

. A method for localizing multiple organs

The method we present here is designed for the localization of

ultiple organs. In Fig. 1 we present an outline of the method for the

ocalization of the two kidneys. The method works in two steps, in

global-to-local fashion. It makes use of three main components: (i)

ounding boxes predictors (in our case: regression random forests),

ii) probabilistic atlases for each organ, (iii) confidence maps. Con-

dence maps combine votes aggregation with a probabilistic atlas,

esulting in organ-dedicated probabilistic maps. The first step of our

ethod aims at finding the global organ locations with a single re-

ressor while the second step aims at refining individually the organ

ositions with organ dedicated regressors. After introducing our main

otations in Section 2.1, we explain the principle of confidence maps

n Section 2.2 and we detail the cascade approach in Section 2.3.

.1. Notations

We use the following notations hereafter:

• � ⊂ R
3 is the image domain,

• o ∈ [[1, Norg]] are the indices of the Norg organs to localize,
• k � [[1, K]] is the index for one single prediction/regression,
• G = S◦T is a geometric transformation of R

3 composed of a trans-

lation T and an anisotropic scaling S. Go, k denotes the geometric

transformation associated with organ o and regression k,
• b ∈ R

6 denotes a 3D bounding box parameterization either as its

center location and size (c, s ∈ R
3) or as its extremal vertices
(bmin, bmax ∈ R
3), bo, k then denotes the bounding box parame-

terization of organ o and regression k,
• x � � denotes any voxel of an image I,
• vk denotes a test voxel for regression k.

.2. Merging shape priors and vote distributions with confidence maps

In the main works on organ localization with regression, spatial

ote distributions are not fully exploited. However, as shown with

he Hough forests (Gall & Lempitsky, 2009), vote aggregation can give

ore information than a single measure of the distribution (e.g. mean

r median). For this purpose we introduce the notion of confidence

ap, which encodes the confidence in finding a target organ at a

iven location. It is built through an aggregation process, making use

f both the spatial distribution of the regression votes and of organ

hape priors through probabilistic atlases.

.2.1. Probabilistic atlas building

To compute a probabilistic atlas of an organ we first register the

inary masks of several samples of this organ. For this purpose let

Mi}i∈[[1,Nm]] be the set of Nm different cropped binary masks of the

rgan such that ∀i, 1 ≤ i ≤ Nm Mi; � → [0, 1] and where Mr (r �
[1, Nm]]) is a mask of reference chosen arbitrarily. We transform

ach mask with a transformation � i (rigid and anisotropic scaling) in

rder to scale up the masks Mi to the same size as Mr (considering

he bounding boxes of the binary shapes). The probabilistic atlas A is

hen computed as an average of these masks:

(x) = 1

Nm

Nm∑

i=1

Mi ◦ �i(x)

ach value A(x) evaluates the probability of a voxel x to belong to the

rgan. Fig. 2a and d show probabilistic atlases for the liver and the

ight kidney respectively. We normalize the atlas in location and scale

n the range [ − 1, 1]3. Thus if x�[ − 1, 1]3 we have A(x) = 0.

.2.2. Confidence map principle and numerical considerations

Here we explain the construction of the confidence maps and pro-

ose an implementation to compute them efficiently. The principle

s illustrated for the kidney localization in Fig. 3. Numerous voxels

f the image vote for the kidney bounding box location and each of

hese votes are combined with the right kidney probabilistic atlas

following an aggregation process).

Organs bounding boxes prediction. Let us consider a regressor R

redicting the bounding box position for organ o. For a test voxel vk

nd its associated image features from an image I, it gives a prediction

f the bounding box bo, k of an organ o. Note that, as in Criminisi et al.

2013), the label regressed is actually the relative distance of the

oting voxel to the extremal vertices of the bounding box. For the

ake of comprehension, we simplify the notation and assume that the

egressor predicts the bounding box parameters. If the regressor is a

andom forest one can store the distributions of the training labels

n the leaves of the trees. During the testing phase this allows us to

ompute the posterior probability p(bo, k|I, vk) that we denote αo, k. It

ives a confidence score about the vote of vk for the location of the

ounding box bo, k of the organ o. We can thus write [bo, k, αo, k] =
(vk, I).

Confidence map construction. If we consider the localization at a

oxel level in the image, either the voxel x belongs to the box or it

oes not. The probability p(x � o|bo, k) of a voxel to belong to the

rgan o given the predicted bounding box bo, k then follows a uni-

orm distribution. This approximation is rough, especially for organs

ith non convex shapes as the liver for example. Thus we propose

o enhance this hypothesis by using a shape prior through the use of

robabilistic atlases Ao of organ o. We assume that p(x � o|bo, k) =
o◦Go, k(x) where Go, k is the transformation which translates and re-

izes (anisotropically) the bounding box bo, k to fit into [ − 1, 1]3.
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Fig. 2. Atlases of the liver (a) and the kidney (d), localization of the liver and the right kidney: images with confidence map as overlay (images have been cropped) and predicted

median box after global step (b), (e) and local step (c), (f).

Fig. 3. Outline of the confidence map computation, here illustrated on an application for the only right kidney localization (for the sake of understanding).
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We want to know the joint probability of localizing an organ and

that a voxel of the image belongs to this organ, which means that we

want to compute the probability of having both a predicted bounding

box bo, k and x � o, given an image I and a test voxel vk:

p(x ∈ o, bo,k|I, vk) = p(x ∈ o|bo,k, I, vk).p(bo,k|I, vk)

As to deduce the probability of (x � o), knowing the bounding box

bo, k or knowing the image I and the voting voxel vk are equivalent

(p(x � o|bo, k, I, vk) = p(x � o|bo, k)), we can consider that the random

variables (x � o|bo, k) and (I, vk|bo, k) are independent conditionally to

bo, k. We can write:

p(x ∈ o, bo,k|I, vk) = p(x ∈ o|bo,k).p(bo,k|I, vk)

= αo,k . Ao ◦ Go,k(x)

In the work of Criminisi et al. (2013) and Cuingnet et al. (2012),

the authors assume that the localization results from a measure over

the predictions given by multiple test voxels of the image (maximum

a posteriori, average or median). Here we consider the entire set of

K predictions and model the final confidence score F in each voxel of

the image I, defining the confidence maps of organ o as follows:

F(x ∈ o, {bo,k}k∈[[1,K]]|I) = Co(x) = 1

K

K∑

k=1

αo,k.Ao ◦ Go,k(x)

where Co is the confidence map of organ o. We then normalize the

map Co by its maximum to get values in the range [0, 1]. For a voxel

x of the image I, Co(x) can be seen as the chance of x to belong to the

organ o.

Some examples of confidence maps are given in Fig. 2(b), (c), (e)

and (f). Fig. 2(b) and (e) show that the maps capture the ambiguity of

the vote distribution, as we observe that some voxels were correctly

voting for the box upper wall position, an information that the median

was not able to capture.
Fast confidence map implementation. The confidence map C for a

iven organ is actually built by translating and scaling the organ prob-

bilistic atlas A according to each vote k and accumulating the result

n C with weight αk. The map C gives a confidence score about the

resence of the organ at a given location in the image.

The computation of these maps may be expensive. Therefore we

ropose a fast implementation which considerably reduces the com-

utation time while not degrading significantly the accuracy (the

seudo-code is given in the Appendix in Algorithm 1). The idea is

o uniformly discretize the space of predicted bounding boxes di-

ensions (over each dimension x, y and z). With K votes, each cor-

esponding to a bounding box location and size dk, we can compute

he corresponding centers ck. We denote dmin and dmax the minimum

nd maximum box sizes over the K predictions. Assume we want to

iscretize the space of these box sizes ensemble. We do it by defining

he jth (where j � [[1, J]]) discretized size d̂j ∈ R
3 as:

ˆ
j = j

J
(dmax − dmin)

ach size dimension is discretized the same way. For each possible

iscretized size of box d̂j, we create a volume Cj of the same size as the

mage (it is however possible to work at a lower resolution) initialized

o 0. For each prediction we set the box centers to their confidence

core value in the volume Cj. We define the probabilistic atlas Aj which

as been anisotropically rescaled to the jth sample size. This atlas is

hen convolved with the volume Cj. The final map C is computed as

he sum of each Cj and normalized by the maximum to get the final

robability map. With a uniform discretization on 27 box sizes (three

er spatial dimension, which is good trade-off between speed and

recision), the computation is about 30 times faster for a limited loss

f accuracy (see Section 4). These two possible implementations are
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Fig. 4. Example of 1D features computed at each tree node: difference of mean inten-

sities in two patches of random size and location in a certain range.

t

a

3

o

t

t

d

m

e

e

t

3

c

a

r

a

a

i

e

o

l

d

w

f

e

g

a

w

u

d

i

f

t

c

v

fi

s

w

v

fi

t

i

t

p

lso detailed and compared in our previous publication (Gauriau et al.,

014).

.3. Localizing organs with cascade of regressors and confidence maps

Our approach consists of two steps in a coarse-to-fine fashion.

first regressor, aiming at capturing the spatial relationships be-

ween the organs, is learned using global information: voxels of the

hole image vote for the positions of all the organs simultaneously

all the bounding boxes are regressed with the same forest, as done by

riminisi et al. (2013)). Afterward, new regressors, dedicated to each

rgan, are learned using more local information. We may wonder why

ot to localize directly each organ independently like in the second

tep. Our experiments showed that the global step helps increasing

he robustness of the approach as it encodes the global anatomy prior.

he benefit of the cascade approach has also already been shown in

uingnet et al. (2012). The authors localize the two kidneys by using a

ascade of random forest regressions. The first regression predicts the

wo bounding boxes simultaneously. In a second step, two regressors

efine the left and right kidneys bounding box centers independently.

or these two last regressors, the voting voxels (at training and testing

ime) are selected in a ROI around the bounding box centers predicted

y the first regressor.

Here we propose to introduce the use of confidence maps for re-

ning the votes in the cascade of regressors. Moreover, instead of only

efining the bounding box centers in the second step, we refine the

rediction of all the bounding box parameters. The selection of vox-

ls which vote in the local step may benefit of the information given

y the confidence maps, that is to say the vote distributions and the

hape prior. Note that this method could be applied with other types

f multi-variate regressor. In Section 3 we detail how to implement

his method with the random forest as a regressor.

.3.1. Global step

In the first step, a random subset of Kg voxels {vk}k∈[[1,Kg]] of the

mage I vote for the bounding boxes parameters {bk,o}k∈[[1,Kg]] of all or-

ans o. By regressing all the parameters jointly (i.e. [{bo, k}o, {αo, k}o] =
(vk, I)), the relationships between the organs are implicitly embed-

ed during learning. Votes are performed according to long-range

eatures computed from the image (see Section 3 for the details on

he features). These features are chosen to encapsulate global infor-

ation from the image. Then the confidence map Co for each organ o

s computed using the algorithm described in Section 2.2.2, given the

robabilistic atlas Ao. Fig. 2c and f shows some examples of results

fter this global step for the liver and the right kidney localization. In

hese figures we compare the localization with the confidence maps

nd the one given by the bounding boxes (computed from the median

ver the predictions). We see that capturing the distribution of the

otes can be more informative than just a median.

.3.2. Local step

The second step aims at improving the previous localization. Each

rgan o is re-localized individually using a ROI selected thanks to

he previous global localization and the resulting confidence maps.

he ROI is found by computing the binary mask Bo from the map

o thresholded at a value tg (see Section 3 for numerical values).

fterward we select a random subset of Kl voxels {vk}k∈[[1,Kl]]
such

hat each voxel is in the ROI (Bo(vk) = 1). Each voxel vk votes for the

ounding box of organ o using a regressor specifically trained for this

rgan. Contrarily to the previous step this regressor is now learned

sing shorter-range features (see Section 3) and computed in the

icinity of the organ o thanks to the confidence map. This gives more

mportance to local information. Then the votes are used to compute

ew and more accurate confidence maps C′
o for each organ. Fig. 2c

nd f shows the benefit of adding this local step after the global step:
he confidence maps are more focused on each organ and less spread

round it.

. Using the random forest as a regressor: implementation and

ff-line training

To test our approach we propose to localize six abdominal organs:

he liver, the right and left kidneys, the gallbladder, the spleen and

he stomach from various types of 3D CT volumes and using the ran-

om forest as a regressor. When using the random forest there are

ultiple parameters to set. In this part we show that a simple param-

ters optimization procedure helps to get better performances. These

xperiments also demonstrate the good robustness of the algorithm

o small variations of these optimal parameters.

.1. Using the regression forest as a regressor

To regress the parameters bo (see notations in Section 2.1) we

hoose to use the random forest as in Criminisi et al. (2013). The

uthors showed that the regression random forest is well suited to

ough localization especially in terms of accuracy and speed. We are

ble to reinforce its robustness and accuracy using our global-to-local

pproach with confidence maps.

We use the same kind of features as Criminisi et al. (2013), sim-

lar to those introduced by Gall and Lempitsky (2009) and Shotton

t al. (2009). These contextual features are defined as the difference

f mean intensities in two 3D patches of random size and random

ocation in a given range. We define � as the maximum offset in each

imension of the patches to the test voxel and W as the maximum

idth size of the 3D patches. Fig. 4 shows an example of this type of

eatures. Note that the patches may be reduced to a single voxel or an

mpty box, thus giving unary features. For the global step of the al-

orithm, long-range features (high values of � and W) are used (they

re computed from the image after Gaussian smoothing, with kernel

idth of 3 mm). For the local step, more local features (shorter val-

es of � and W) are used. In each tree leaf the multivariate Gaussian

istributions of the parameters to regress are stored. This statistical

nformation is used to compute the confidence scores of each vote.

The first global forest is learned from a random subset of voxels

rom images of the training set. After learning this forest we proceed

o the localization on the same training images and we compute the

onfidence maps associated with this result. Note that in practice the

otes with low confidence scores are discarded. To compute the con-

dence maps we only keep the best votes according to the confidence

core (if N is the number of votes, K � N is the number of votes that

e keep). Then each local regression forest is learned from training

oxels in the vicinity of the corresponding organ thanks to the con-

dence maps (hypothesis demonstrated in next experiments). After

he forest of the global step is trained, we use it to test the training

mages. The resulting confidence maps are then thresholded to select

he training voxels that are used to train the local forests. The testing

hase proceeds exactly the same way.
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Table 1

Regression forest parameters.

Maximum Nb training Range of Confidence Nb of

Parameters tree depth voxels/image Bootstrap size features (mm) map threshold Nb of votes best votes

Global step Tg = 14 Sg = 25, 000 Bg = 40% �g = 50, Wg = 180 Ng = 60, 000 Kg = 10%

Local step Tl = 14 Sl = 10, 000 Bl = 50% �l = 40, Wl = 40 tcmap = 40% Nl = 10, 000 Kl = 10%
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3.2. Database description and implementation

The database we use is the same as in our previous work (Gauriau

et al., 2014). It is composed of 130 3D CT images coming from 112

patients with diverse medical conditions (healthy and pathological

subjects, no organ missing). It includes volumes with varied fields of

view, body shapes, resolution and use or not of contrast agents. Slices

and inter-slices resolutions range from 0.5 to 1 mm and from 0.5 to

3 mm, respectively. For both training and testing we work at a resolu-

tion of 3 mm. All the organs have been manually segmented in these

130 volumes. The dataset is split randomly into 50 and 80 volumes

for training and testing, respectively. Our method is implemented in

C++ and running times are given for a machine with two 2.3 GHz

cores and 8 Go RAM.1 The forest training is parallelized (one tree per

processor).

3.3. Off-line training procedure

To reach the best performance and analyze each aspect of the

algorithm, we perform an extensive optimization of the algorithm

parameters. Considering the computation time (learning one tree of

depth 12 takes about 2 min), we choose to use a greedy and sequential

parameters optimization.

Protocol. For each parameter we perform a five-fold cross-

validation on the training set (40 for training and 10 for testing). For

computation time and memory reasons, the accuracy of the algorithm

is measured as the mean over each organ of the mean distances of

the predicted boxes to the ground truth bounding boxes. We assume

this would give nearly equivalent results if we looked at the accuracy

of the confidence maps (as the goal is to reduce the bias and variance

of the random forest regressors). Moreover, our experiments showed

that optimizing the parameters per organ would not bring significant

improvements. The predicted boxes are simply computed by taking

the median of the votes over the best votes Kg and Kl. For each test im-

age we run the algorithm five times to be able to measure and reduce

the variability induced by the randomness of the method. For learning

the forests we perform subbagging (Andonova et al., 2002) with uni-

form random draw with replacement. This means that we learn each

tree on a random subset of the training set the size of which is inferior

to the training set size (in the original bagging method, the bootstrap

has the same size as the whole training set). If subbagging is inter-

esting to reduce the training computation time, we will also show

that it can also make the algorithm more robust. The node feature

selection is also randomized (we compute only 30 random features

at each node). For each experiment we use seven trees, as this gives

a good trade-off between low variance and computation time (also

shown in later experiments, see Fig. 12). Before each learning we

de-correlate the data with a whitening transform. This is a traditional

statistical method which forces the variance of the training data along

each dimension to become equal to one, thus preventing to give more

importance to one or another dimension during learning.
1 Due to industrial confidentiality concerns we are not able to release our own code.

Several packages and libraries on random forests can be found on the web such like

the scikit-learn package in Python (Pedregosa et al., 2011) or TMDA in C++ (Hoecker

et al., 2007). GPU implementations have also been proposed (Grahn et al., 2011; Sharp,

2008).
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We first initialize every parameter arbitrarily with values already

iving reasonable results. These values were quite easy to find, taking

nto account the literature on the subject and a few experiments.

hen we optimize each parameter one-by-one by grid-search and we

eplace its value by the optimized one.

Parameters to be optimized. We use the index g for the global forest

nd l for the local forests.

For the global forest we study the following parameters (in this

rder):

• Tg, Sg: the maximum tree depth and the number of voxels per

image used for training respectively (studied jointly),
• Bg: the bootstrap size (percentage of training samples used to learn

one tree),
• �g, Wg: feature patches maximum offset and width (studied

jointly),
• Ng, Kg: the number of test voxels per image and the percentage of

test voxels kept for the final prediction computation respectively

(studied jointly).

For the local forests we study the same parameters: Tl, Sl, Ql, �l,

l, Nl and Kl.

We also study the parameter tcmap which is the threshold of the

onfidence map computed after the global step for selecting the voxels

sed for learning or testing the local forest.

.4. Off-line training results

All the final results of the parameters optimization are given in

able 1.

The graphics of Figs. 5 and 6 show the optimization of the pa-

ameters of the global step. Each of them gives the testing cross val-

dation accuracy computed for the different parameter values in the

ame order as they were optimized. Fig. 5a shows that the accuracy

s increasing with the maximum tree depth until Tg = 14, and for this

alue the optimal number of training voxels per image is Sg = 25, 000.

he maximum tree depth and the number of training voxels per im-

ge being fixed, we can look at the optimal bootstrap value. In Fig. 5b

e see that an optimal value is around Bg = 40% although close values

ive similar accuracy. We note that a bootstrap of 100% (equivalent

o original bagging) gives the same result but with higher variance

mean variance over all the organs). Here the subbagging helps to

chieve more robustness.

In Fig. 5c we can see the influence of the feature parameters. It

hows the algorithm accuracy in function of the maximum offset value

g of the 3D patches. Each curve is given for different values of the

atches maximum width Wg. We see that big patches lead to better

ccuracy, reaching a plateau at about Wg = 60 mm of maximum width.

e also note that increasing values of �g degrades the accuracy. Some

xperiments show that this can be explained by an increasing number

f patches that fall outside of the image domain, the features being

hen undetermined. In our implementation we do not discard labels

ith undefined features. At a node, labels with undefined features

ust go right and left in the tree, as these labels may have defined

eatures at other nodes of the tree and then be useful. While former

esults were related to the training part, the next figure shows results

n the testing part. For this test we keep the best forest given after

he last parameter tuning. In Fig. 6 we show the accuracy compared
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Fig. 5. Parameter optimization results for the global random forest. Performance is given for (a) the number of training voxels per image Sg , each curve corresponding to a given

maximum tree depth, (b) the bootstrap Bg with error bars corresponding to the standard deviation of the localization accuracy, (c) the features parameter �g and Wg .

Fig. 6. Performance in function of the percentage of selected test voxels Kg , each curve corresponding to different values of the number of test voxels Ng . The right plot is a zoom

with error bars related to the standard deviation of the results over the multiple tests.
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o the percentage of best test voxels Kg. Each curve corresponds to

ifferent numbers of test voxels per image Ng. We note that from

g = 1000 we reach almost the same accuracy. However, looking

t the right plot which is a zoomed version showing the standard

eviation over the multiple tests, we see that the standard deviation

ver the multiple tests decreases when the number of test voxels

ncreases. With Ng = 60, 000 and Kg = 10% the results reach a standard

eviation below 0.2 mm. We deemed such performance reasonable

nough, as increasing this value would also increase the computation

ime.

The graphics of Figs. 7 and 8 show the optimization of parameters

or the local random forests (second step in the cascade). In particular

ig. 7a shows that from a maximum tree depth of Tl = 14 the conver-

ence is reached, and that a number of Sl = 10, 000 training voxels

er image gives optimal results. Fig. 7b shows a very good robustness

ith respect to the bootstrap value, and we set it to B = 50%. Fig. 7c
l
hows the accuracy in function of the feature parameters. Note that

ore local features than in the global forest are preferred. This con-

rms the interest of using a coarse-to-fine approach. As highlighted

n Zhou et al. (2010), such a framework mimics the human visual

ystem in a certain way: global information is first used to define the

ontext and then, while restricting the ROI, more local information is

hen required to refine the understanding analysis of this area.

For the best performance, these features should have displace-

ents up to �l = 40 mm and patches widths up to Wl = 40 mm.

inally in Fig. 8 we show the results in function of the testing vox-

ls for the local part. From Nl = 1000 we get similar accuracies, but

ooking at the right plot we set Nl = 10, 000 and Kl = 10%, which

orresponds to a standard deviation in test below 0.2 mm. Finally,

ig. 7d shows the performance result in function of the confidence

ap threshold tcmap. This parameter actually controls the size of

he ROI in which the local step is performed. Setting the value to
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Fig. 7. Parameter optimization results for the local random forests. Performance is given for (a) the number of training voxels per image Sl , each curve corresponding to a given

maximum tree depth, (b) the bootstrap Bl with error bars corresponding to the standard deviation over the localization accuracy, (c) the features parameter �l and Wl , (d) the

threshold of the confidence map for local forest voxel selection.
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tcmap = 40% gives the best results, but we note that this parameter is

very stable and values between 20% and 80% give similar results (this

is also explained by the relatively small spread of the confidence maps,

see Fig. 2c and f. This result demonstrates the interest of restraining

the ROI in the cascade approach.

3.5. Conclusions on parameters optimization

Although very costly in terms of computation time (more than

2 full weeks in cumulative time), this study on parameters is very

informative. First of all, it shows that the choice of parameters may

be crucial for having a good algorithm accuracy. Fortunately, our re-

sults also show that there is no need to tune every parameter very

precisely, since the results remain quite stable in certain range of pa-

rameter values. This proves that our implementation is robust. This

will be also demonstrated by the results presented next, showing
hat the same parameter optimization can be used for a varied and

arge set of images. The experiments also showed the interest of us-

ng subbagging. While reducing the training computation time, it also

einforces the robustness of the algorithm. Finally this part also con-

rms the intuition that the range of features directly relates to the

evel of information we want to retrieve. The coarse global step lo-

alization requires features covering large parts of the image, as if we

ad to look at the image from far away. On the other hand, more local

eatures are needed in the local step for refinement purpose: the ROI

s narrower and we look at the image more closely.

. Evaluation and validation of the approach

In this section we evaluate our approach, taking into account the

arameters optimization realized in the previous section. We perform

ere two types of experiments. The first one aims to show that the
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Fig. 9. Best and worst results per organ (first and second line respectively) according to the mean distance to ground truth. Confidence maps are overlaid on the images and the

green contour corresponds to the manual segmentations. From left to right, organs are in this order: liver, left and right kidneys, spleen, gallbladder and stomach. (For interpretation

of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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onfidence maps can be used as a result in itself, while the second

xperiment demonstrates several aspects of our work: the interest

f the cascade approach with a comparison to other state-of-the-

rt methods, the benefit of a parameter optimization, and finally the

nterest of using the confidence maps in the cascade for the voting

oxels selection.

.1. Protocol of the experiments

For the two following sets of experiments, we use the same

atabase as the one described in Section 3.2. We learn the forests

n the training set, following the conclusions of the parameters opti-

ization of Section 3, and we perform our experiments on the testing

et (80 volumes). For the first experiment we consider the confidence

aps as a result, which corresponds to our own original approach.

n the second experiment we want to see the influence of the use

f the confidence maps in the cascade and compare the obtained re-

ults with those of existing methods. Therefore we use the median

ounding boxes as a final result as in Cuingnet et al. (2012).

.2. Processing time

Implementation details are given in Section 3.2. Training the seven

orests (one for the global step and six for the local step) and building

he probabilistic atlases takes approximately 20 min. Testing a clas-

ical abdominal image (approximate size: 512 voxels × 512 voxels ×
30 voxels) takes around 5 s. The confidence maps computation takes

bout half that time (one map computation takes around 200 ms).

.3. First experiment

Our first objective is to show that the confidence maps can be

sed as a localization result itself, giving more consistent information

han the bounding boxes alone. Confidence maps are computed at a

mm isotropic spacing. In Fig. 9 the best and the worst results are

hown for each organ according to the mean distance to ground truth.

oreover an exhaustive visualization of the results can be seen in the

upplementary material.2

The results of the first experiment are given in Table 2 using the fast

mplementation of confidence maps, as the results of Gauriau et al.

2014) already shown equivalent performances with the naive and

lower implementation. On the first line the results are given of the

ean distance (in millimeters) of the thresholded confidence maps

ontours (with threshold set to 50%) to the ground truth contours.

he results statistics (median and standard deviation) confirm that

ur method is robust to the variety of test images. Fig. 10 details these

esults by giving the distribution of mean distances to ground truth
2 http://perso.telecom-paristech.fr/~gauriau/MOLoc_SupMat.html

l

g

t

or each organ. Note the low spread of the results and the very few

umber of outliers (no result below 35 mm). These results confirm

hat our approach can be very useful in various contexts such as

egmentation initialization or fast anatomy detection, added to the

act that it runs in about 5 s. This makes our approach adapted to

linical applications, especially as the code may still be optimized.

The goal of this first experiment is also to show that the confidence

aps give much more information than a simple binary mask or

ontour. For that purpose we propose adapted evaluation measures

aking into account the fuzziness of the maps. If C denotes a confidence

ap and B a binary mask of the organ ground truth, then the true

ositive values TP, the false negative values FN and the false positive

alues FP are defined as:

TP =
∑

x∈�

B(x)C(x)

N =
∑

x∈�

B(x)(1 − C(x))

FP =
∑

x∈�

(1 − B(x))C(x)

Then following the definitions of the sensitivity (or recall) S, the

recision P and the dice coefficient D:

= TP

TP + FN
, P = TP

TP + FN
, D = 2TP

2TP + FP + FN

e are able to propose weighted versions of these measures. The cor-

esponding figures are reported in Table 2. In Fig. 11 we also show the

eceiver operating characteristic (ROC) curves for varying confidence

ap thresholds. We note a good compromise between sensitivity and

recision. In terms of accuracy, results are deemed as satisfying for

ocalization purposes. The accuracy is lower for the stomach and the

allbladder which are challenging organs due to their shape and loca-

ion variability. However the results given in Table 2, Figs. 11 and 10

http://perso.telecom-paristech.fr/~gauriau/MOLoc_SupMat.html
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Table 2

Results with confidence maps (5 mm isotropic spacing) with mean distance (mm), dice (%), weighted dice (%), weighted sensitivity (%) and weighted precision

(%) (mean ± standard deviation (median)). Mean distance and weighted dice are computed given the confidence map thresholded to 50%.

Liver L. Kidney R. Kidney Spleen Gallbladder Stomach All organs Time

Mean distance (mm) 10.6 ± 2(10) 6.3 ± 4(6) 5.8 ± 2(5) 9.1 ± 3(8) 8.8 ± 4(8) 13.9 ± 7(12) 9.0 ± 2(8)

Dice (%) 74.9 ± 5(76) 69.6 ± 11(72) 70.8 ± 9(73) 60.3 ± 12(62) 33.1 ± 18(34) 48.3 ± 14(50) 59.5 ± 7(62)

W. dice (%) 74.9 ± 10(79) 75.5 ± 8(78) 77.4 ± 6(79) 72.7 ± 8(74) 51.7 ± 16(56) 58.1 ± 10(60) 68.4 ± 14(73) 5 s

W. sensitivity (%) 78.3 ± 6(80) 69.5 ± 8(71) 70.9 ± 8(72) 69.3 ± 11(71) 51.7 ± 17(54) 52.7 ± 10(54) 65.4 ± 14(69)

W. precision (%) 67.2 ± 19.8(77) 80.3 ± 11(83) 83.2 ± 8(87) 74.6 ± 14(76) 54.6 ± 18(58) 62.0 ± 17(62) 70.3 ± 18(75)

(Sensitivity) Recall
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Fig. 11. Receiver operating characteristic (ROC) curves showing how the precision and sensitivity change depending on the confidence map threshold.

Table 3

Box walls mean distances per organ (mean distance (mm) ± standard deviation (median)), per method and per experiment. In bold are the best results. The results

are given for the same database (see Section 3.2).

Method Liver L. Kidney R. Kidney Spleen Gallbladder Stomach All organs Time(�) (s)

Criminisi et al. (2013) 14.0 ± 5(14) 12.3 ± 7(11) 13.2 ± 6(12) 14.2 ± 6(13) 15.5 ± 8(14) 16.8 ± 16(16) 14.4 ± 7(13) 0.5

Cuingnet et al. (2012) 12.2 ± 4(12) 6.8 ± 6(6) 6.4 ± 4(5) 9.0 ± 5(8) 11.4 ± 8(10) 14.2 ± 7(13) 10.0 ± 7(9) 2

Our method

After global step 13.5 ± 4(13) 11.3 ± 6(10) 12.8 ± 5(12) 13.0 ± 5(13) 15.1 ± 6(14) 15.1 ± 6(14) 13.5 ± 6(13) 0.5

After local step, method 1 11.7 ± 4(11) 5.8 ± 4(5) 6.2 ± 3(5) 8.7 ± 4(8) 9.5 ± 4(9) 13.4 ± 6(13) 9.2 ± 5(8) 2

After local step, method 2 10.7 ± 4(10) 5.5 ± 4(5) 5.6 ± 3(5) 7.9 ± 4(7) 9.5 ± 4(8) 13.2 ± 5(13) 8.8 ± 5(8) 3.2

Number of trees
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Fig. 12. Results on bounding boxes for methods 1 and 2 and for various numbers of

trees (same number of trees in the global and local step).
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show that they are still correctly detected, meaning the localization

may not be perfect but still reasonably overlapping the ground truth.

4.4. Second experiment

In this second experiment, we show the interest of using the con-

fidence maps in the cascade approach and compare our results with

existing methods. We evaluate the methods of Cuingnet et al. (2012)
nd Criminisi et al. (2013) on our database. We gathered all the im-

lementation details that we could find in their articles. If we could

ot find any parameter detail we used the same as ours. For the three

ethods we work at the same resolution (3 mm). The main differ-

nces between our implementation and the one of Criminisi et al.

2013) are: (i) they store histograms in the leaves, (ii) the final pre-

iction is computed from the leaves with less uncertainty and by

nding histogram maxima, (iii) the tree depth is 12, (iv) the mini-

um node size is 25. The differences between our implementation

nd the one of Cuingnet et al. (2012) are: (i) the voting voxels se-

ection in the second step (ROI around the bounding box centers),

ii) the tree depth is 15, (iii) the minimum node size is 100, (iv) the

ounding box centers only are re-estimated in the second regression

tep. In comparison our implementation has the following character-

stics: (i) Gaussian distributions are stored in the leaves, (ii) the final

rediction is the median over the votes with less uncertainty, (iii) the

ree depth is 14, (iv) the voting voxels of the second step are selected

hanks to the confidence maps, (v) all the bounding box parameters

re re-estimated in the cascade, (vi) the minimum node size is 50.

The results are computed considering the bounding box wall dis-

ances (our results are computed by taking the median bounding box

ver the K best predictions). The figures are given in Table 3.
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Fig. 13. Results after the global step (first row) and the local step (second row). The confidence maps and the median boxes are overlaid on the images, the green contour

corresponds to the organ manual segmentation. From left to right, organs are in this order: gallbladder, left kidney, spleen and stomach. (For interpretation of the references to

colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 14. Example of localization in the case of a missing right kidney.
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First of all, the performances after the global step (third line) show

he benefit of the parameter optimization, as these results reach better

ccuracy than the results presented by Criminisi et al. (2013). Then

e propose to compare the way of selecting the test voxels for the

econd local step:

• method 1: from the predicted boxes after the global step,
• method 2: from the thresholded confidence map.

he corresponding results are given in the last two lines of Table 3.

he results after the method 1 first show the benefit of the cascade ap-

roach (additional iterations did not show significant improvements

f the results), compared to the single step one. Fig. 13 confirms visu-

lly the benefit of the cascade approach. The results after the method

show the difference between our method and the original cascade

pproach. Significant improvements are especially noticed for the

iver (gain of 1 mm, about 10% improvement) and the spleen (gain

f 0.8 mm, about 10% improvement) whose shapes are very far from

he bounding box approximation. This confirms the benefit of the

hape prior for such organs. Moreover, a comparison of our results to

hose of Cuingnet et al. (2012) for the kidneys shows that the cascade

pproach is scalable and the increasing number of organs does not

egrade the performances. Fig. 12 shows the results of method 1 and

ethod 2 for a varying number of trees in the forest. We observe a

ery fast convergence of the accuracy, forests with three trees already

iving very good results.

. Conclusion

In this article we proposed a fast, robust and accurate method for

he localization of multiple organs. We extended the idea of cascade

f random forest regressors while introducing the concept of confi-

ence map, which models the vote distributions with the addition of

hape prior. We showed that the confidence map, with a proposed

ast implementation, can enhance the consistency and accuracy of

ulti-organ localization for a limited computational overhead. It is

generic tool with promising potential, which can be used with any

ype of regressor and which is adaptable to different modalities (e.g.

T, MRI). Moreover its fuzziness property may be useful in many

ypes of clinical applications, such as segmentation (for initialization)

r visualization (to target the structures of interest for 3D rendering)

or instance. It has been recently successfully applied in an automatic

egmentation framework (Gauriau et al., 2015). The confidence maps

re used for both the template initialization and the computation of

rgan-dedicated image forces.

This work also focused on parameters optimization and features

nderstanding. The use of random forest is here very relevant as
here is no need of a fine-tuning of the parameters. On the other

and a coarse optimization of the parameters helps improving the

ocalization results. Our parameter study also highlights the link be-

ween the image information level and the range of features. We hope

hat we have given enough implementation details to make it acces-

ible to any other researcher who would like to perform anatomy

ocalization.

Finally, the consistency and accuracy of this method may still be

mproved with the use of multiple probabilistic atlases per organ and

ith the addition of the rotation parameters. In its current form our

ethod does not handle the missing organ case. Even if an organ is

issing, the algorithm will give a localization prediction. In Fig. 14

e present an example of localization in a CT image with a missing

ight kidney. The result is plausible (the kidney is located below the

iver) even if the organ is not present. As mentioned in Criminisi

t al. (2013), the organ could be declared present if the confidence

f the prediction is above a given threshold. Automatic detection of

issing organs will be explored in a future work. Moreover, even

hough our results show consistent confidence maps in practice (not

oo far from the original organ shape), this is not guaranteed by our

ramework. We are currently investigating approaches to enforce the

hape consistency of the final result. Keeping this method simple, with

low complexity and as generic as possible already gives reasonable

esults and makes it a fast and powerful component, that can be easily

ntegrated into more advanced workflows.
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C ← 0, dmax ← 0, dmin ←max ;

for k ← 1 to K do

[bmin, bmax, αk] ← Rθ [vk];

ck ← 1
2 (bmin + bmax);

dk ← bmax − bmin ;

dmax ← max(dmax,dk);

dmin ← min(dmin,dk);

d̂ ← quantize(dmax,dmin,J) ;

foreach d̂j ∈ d̂ do

indices ← getIndicesOfVotes(d̂j,d̂);

Cj ← 0;

foreach ind ∈ indices do

Cj[cind] ← Cj[cind] + αind ;

Aj ← rescaleAtlas(A,d̂j) ;

Cj ← convolve(Cj,Aj) ;

C ← C + Cj ;

Algorithm 1: Pseudo-code for fast confidence map computation.
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Appndix A

We present here the pseudo-code for the fast confidence map

computation (Algorithm 1). The variables bmin, bmax, dmin, dmax, ck,

dk and x are in R
3. The variable d̂ denotes the set of discretized size

samples. The function getBoxDimensions computes the size of the

box defined with parameters bmin and bmax. The function quantize
computes the different sample sizes from the range of boxes sizes.

The function getIndicesOfVotes retrieves the indices of votes corre-

sponding to the sample size d̂j. The function rescaleAtlas rescales

the atlas A anisotropically to fit to dimensions d.
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