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a b s t r a c t

Denoising and contrast enhancement play key roles in optimizing the trade-off between image quality and X-

ray dose. However, these tasks present multiple challenges raised by noise level, low visibility of fine anatom-

ical structures, heterogeneous conditions due to different exposure parameters, and patient characteristics.

This work proposes a new method to address these challenges. We first introduce a patch-based filter adapted

to the properties of the noise corrupting X-ray images. The filtered images are then used as oracles to define

non parametric noise containment maps that, when applied in a multiscale contrast enhancement frame-

work, allow optimizing the trade-off between improvement of the visibility of anatomical structures and

noise reduction. A significant amount of tests on both phantoms and clinical images has shown that the pro-

posed method is better suited than others for visual inspection for diagnosis, even when compared to an

algorithm used to process low dose images in clinical routine.

© 2015 Elsevier B.V. All rights reserved.
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. Introduction

Medical imaging based on X-rays is the main source of exposure

o artificial radiation (Smith-Blindman et al., 2012), which, as high-

ighted in some recent studies, entails negative secondary effects for

he patient health. Shuryak et al. (2010) have pointed out that all

ge groups run the risk of developing radio-induced cancers, and

onckers et al. (2008) have shown that the patients affected by sco-

iosis have a higher probability of developing a cancer because they

ndergo more X-ray exams.

The way clinical image quality is perceived depends on how raw

-ray image quality is improved through the different steps of the

mage processing chain. In particular, the noise level on the outcome

ndirectly indicates if an image has been acquired in good conditions

Shepard et al., 2009). Therefore, it is important to define an algo-

ithm robust to changes in the amount of signal at the detector, i.e.

table to changes in the amount of skin entrance dose and to inter-

atient variability. The dose could be for instance reduced and still

chieve the same diagnostic goal for a given study. Alternatively, the

ame amount of input signal could be used despite an increase in

atient’s size.
� This paper was recommended for publication by Dr. James Duncan.
∗ Corresponding author at: EOS imaging, Paris, France. Tel.: +33 155256828.

E-mail address: pirrera@eos-imaging.com (P. Irrera).
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In this paper we consider X-ray images acquired with a low dose,

nd as a typical example we process images acquired with the stereo-

adiographic imaging system EOS (Wybier and Bossard, 2013), that

llows simultaneously acquiring full body frontal and lateral images

f a patient in weight-bearing position. The density of the tissues

ignificantly changes according to different anatomical regions (see

ig. 1a), which considerably affects signal values and noise levels. This

ntra-patient variability is another important factor that needs to be

aken into account to optimally process the acquired data.

X-ray images present both components of noise and signal that

annot be clearly distinguished because the local contrast at the ac-

uisition is low. Therefore, the image quality enhancement requires

o both reduce the noise and increase the visibility of fine anatomical

etails. In some works (Sakata and Ogawa, 2009; Loza et al., 2014) the

uthors propose to restore the input image by using wavelet-based

pproaches and, then, to enhance it. Nevertheless, this type of ap-

roach can lead to a loss of spatial resolution that is not acceptable

n clinical routine. The use of more advanced denoising filters that

epresent an image in a patch space could overcome the aforemen-

ioned issue. The patches are sub-images that capture local charac-

eristics and, hence, the noise can be attenuated while preserving

dges and texture. These filters have been also used in medical ap-

lications (Cerciello et al., 2012) showing promising results. Never-

heless, as pointed out by Lebrun et al. (2012) in a survey on this de-

oising technique, very fine texture, e.g. fine bone texture, may be

attened out. The use of highly performing noise reduction filters is

hen only a partial solution in radiography applications: the resulting

http://dx.doi.org/10.1016/j.media.2015.11.002
http://www.ScienceDirect.com
http://www.elsevier.com/locate/media
http://crossmark.crossref.org/dialog/?doi=10.1016/j.media.2015.11.002&domain=pdf
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Fig. 1. Noise estimation using the percentile method: (a) Input image I. (b) Interpolated noise curve from the n points (μi , σ i). (c) Resulting map of noise standard deviation (σ (S)).
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images may risk to be perceived as unnatural by the clinicians due to

a lack of information in the bone structures. The noise containment

maps (Stahl et al., 1999) are an alternative approach that consists in

defining, in a multiscale framework, whether a coefficient can be fully

enhanced as associated with signal information, or not. Stahl et al.

(1999) use density and activity measures to define the noise contain-

ment maps. However, the definition of these maps depends on global

user-defined parameters, which is the main drawback of this method.

Indeed, the capacity of containing the noise relies on these parame-

ters. Finally, given the heterogeneity of digital X-ray data, parametric

noise containment maps are sub-optimal.

Contributions. This work proposes a general framework for joint

denoising and enhancement of X-ray full body images that addresses

the aforementioned drawbacks of existing methods. The main contri-

bution of this paper consists in showing how the output of a denois-

ing filter applied to an X-ray image well approximates the ground

truth image and can be then exploited to increase the visibility of

anatomical details while containing the noise. We propose an exten-

sion of the Non Local Means (NLM) filter (Buades et al., 2005) that

can be easily adapted to our noise model and is called X-ray Non Lo-

cal Means (XNLM) filter. The result of this filter is exploited to define

non-parametric noise containment maps that are used in a multiscale

framework to robustly limit the presence of the noise in the final so-

lution. Note that the independence from manually set parameters is a

crucial element, which makes the method robust to the heterogene-

ity of the data to be processed. While the tests presented in this paper

have specifically been carried out on EOS images, the approach could

likely be applied to any image exhibiting similar characteristics.

The main scope of the validation consists in quantifying how

much our work can help clinicians in their diagnosis. The provided

outcomes are meant to be suitable for diagnosis without any fur-

ther manual user interaction. Manual windowing can optimize con-

trast and brightness, however these adjustments can cause noise to

raise and further slow down diagnosis process. For these reasons, the

results that optimize the trade-off between contrast and amount of

noise should be automatically obtained.

The quality of clinical images is not easy to objectively assess and

this aspect is studied in this work. Therefore, two new validation ap-

proaches are proposed. In particular, classical measures of contrast

(average local variance (Chang and Wu, 1998) and contrast improve-

ment index (Laine et al., 1995)) are revisited by associating them with

anatomically meaningful regions. Moreover, the image quality evalu-

ation is completed with clinical assessments according to the feed-

backs of a radiologist.

Some aspects introduced in this paper are partially related with

two of our former works. The first one (Irrera et al., 2013) has allowed
 p
howing that the denoising filter parameters need to be tuned for dif-

erent anatomical regions in order to efficiently restore a full body X-

ay image. However, while in this previous work the parameters were

et by manually adjusting the shape of a curve, this is not the case for

he XNLM filter here introduced, that now exploits automatic esti-

ates of the noise levels. In the second paper (Irrera et al., 2014) the

enoising process has been combined with a multiscale decomposi-

ion with the aim of reducing the spatial resolution loss on EOS im-

ges used in follow-up examinations. This is very different from the

oise containment approach proposed here, which has the advantage

f not being limited to a specific clinical case as it is free from critical

arameter setting.

The paper is organized as follows. Section 2 explains how to es-

imate a curve that gives the noise standard deviation as a function

f the signal and, then, how to exploit it to formulate the XNLM

lter. Section 3 outlines how to estimate the noise containment

aps and to increase the visibility of anatomical details. Section 4

resents some results on both phantom and clinical images. Section 5

oncludes the paper, and summarizes the achieved objectives and

erspectives.

. X-ray Non Local Means filter

.1. Overview of the Non Local Means filter

The Non Local Means (NLM) filter estimates the intensity value

f a pixel xi by means of a weighted average that depends on the

imilarity between patches (Buades et al., 2005). The result of the

lter is good as long as the information in the image is redundant,

.e. similar structures can be found at different spots. This hypothe-

is is valid for X-ray images. Given the input image I, the gray level

f the filtered image Î at a pixel xi is formally defined as follows

Buades et al., 2005):

(̂xi) =
∑|�|

j=1
ς(i, j)I

(
x j

)
∑|�|

j=1
ς(i, j)

(1)

here ς (i, j) is the weight associated with I(xj) in the estimation of

(̂xi). The domain � represents the search space for similar patches.

n practice, this is a window of half-size w (i.e. |�| = (2w + 1)2) cen-

ered at pixel xi. The weight ς (i, j) quantifies the distance in the patch

pace between spatially near pixels. Formally, let Pi and Pj denote

atches of half-size p (i.e. |P| = (2p + 1)2) centered, respectively, at
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1 The image I is obtained after the following sequence of steps: system calibration,

logarithmic mapping and LUT inversion. The latter operation associates high gray lev-

els to high absorption regions.
i and xj. The corresponding weight is defined as:

(i, j) = exp

(
−d(Pi, Pj)

h2

)
(2)

here d(Pi, Pj) is the distance between the patches Pi and Pj and

is a smoothing parameter controlling the decay of the exponen-

ial function. In the original formulation (Buades et al., 2005), d was

Gaussian-weighted Euclidean distance. However, in more recent

orks (Darbon et al., 2008; Coupé et al., 2008), the convolution with

he Gaussian is avoided and the normalized Euclidean distance is

sed without noticeable effect on the final quality:

(Pi, Pj) = ‖I(Pi) − I(Pj)‖2

2|Pi| (3)

here I(Pi) are the intensities of I in the patch centered at pixel xi and,

hus, ‖.‖2 is the Euclidean norm in R
|P|.

The NLM filter in its naive formulation is computationally expen-

ive. The complexity is of order O(N|�||Pi|) where N is the number of

ixels of I. Darbon et al. (2008) have addressed this issue by making

he computation independent of the patch size. Basically, the weights

re computed from the discrete integration between the difference of

he image I and its shifted versions by using integral images. There-

ore, the computational load is reduced to O(N|�||4|).

We propose an extension of the classical NLM filter that takes into

ccount the noise model which is described in the following section.

.2. Noise model estimation

An appropriate model of noise affecting the input image is a

ey element in the denoising procedure. In medical X-ray images,

he noise is signal-dependent. Specifically, the noise at the detector

s a combination of quantum and electronic noise that can be de-

cribed, respectively, by Poisson and Gaussian distributions. How-

ver, as shown by Damet et al. (2014), in EOS images the quantum

oise contribution is predominant and, even at very low doses, the

lectronic noise is negligible. Therefore, the noise model can be ap-

roximated by a Poisson distribution. Nevertheless, such a model is

arely observed in X-ray images (Hensel et al., 2006), as the raw im-

ge is mapped into a logarithmic domain to compensate for the ex-

onential attenuation of X-rays passing through the body. This oper-

tion gives sense to the gray levels that are then linearly dependent

n the matter thickness and density. Consequently, the relation be-

ween signal and noise standard deviation does not follow anymore

root square function. Hensel et al. (2006) have verified that the

oise in this case can be modeled with an additive zero mean normal-

istribution η with signal-dependent standard deviation ση(S). Then,

f I and S are the observed data and the ground truth signal, respec-

ively, then I = S + η and the probability density function of the vari-

ble η is:

f (η; S) = 1

ση(S)
√

2π
exp

(
− η2

2ση(S)
2

)
(4)

hen, in order to properly characterize the problem, ση(S) needs to

e estimated. Colom and Buades (2013) have recently proposed a

oise estimation method that does not require the assumption of ho-

oscedastic (i.e. signal-independent) noise and consists of a block-

ased formulation of the percentile method (Ponomarenko et al.,

007), which is very robust for rating the noise standard deviation

rom a single image (Lebrun et al., 2012; Colom and Buades, 2013).

he first step of the percentile method consists in computing a high-

ass filtered version of I, that we denote HI. This allows for the elim-

nation of the deterministic component due to the signal and, so, to

nd a predominant component of noise in many small windows of

alf-size b. Some examples of suitable high-pass filters are the dis-

rete Laplacian, the Discrete Cosine Transform (DCT) and the Wavelet
oefficients. Then, a local variance image V is computed from HI us-

ng windows of half-size b. The key idea of the percentile is that signal

omponents, e.g. edges, are present only in the rightmost part of the

istogram of V. This allows for a biased value of the noise standard

eviation to be obtained by computing a low percentile of the his-

ogram. The bias is corrected by applying a linear correction factor

hat depends on the percentile value, the window half-size b and the

hoice of the high-pass filter. We use a 10% percentile, b = 7 and the

rst detail level of the multiscale decomposition (see Section 3.1.1) as

igh pass filter in all our tests.

In order to extend the method beyond the homoscedastic case,

he input image is divided according to the intensity levels into n

ot overlapped and not necessarily connected regions i = 1, 2, . . . , n

f equal size. It is assumed that in each region i, the noise follows

Gaussian distribution and is signal independent. The classical per-

entile method is then used to determine the noise standard devia-

ion σ i in a region i. A signal level μi is also computed as the median

f the average gray levels of the blocks in the region i. Finally the n

oints {(μ1, σ1), (μ2, σ2), . . . , (μn, σn)} (see Fig. 1b) are linearly in-

erpolated to obtain the noise curve.

The assumptions made by Colom and Buades (2013) are respected

y the formula in Eq. (4) and, hence, this method can be used to esti-

ate a noise map for describing the noise strength in digital X-ray

mages. For example, given an EOS image (Fig. 1a)1 the percentile

ethod allows estimating a noise curve (Fig. 1b) that is used to ob-

ain the corresponding noise map (Fig. 1c). It is worth noting that

he noise level increases with the amount of absorption, which is ex-

ected after the logarithmic conversion (Hensel et al., 2006) and has

een observed on all the processed images. Fig. 1c shows that the

stimated σ values change significantly and coherently according to

he body tissue thickness. For example, the noise level in a low den-

ity level region such as the lungs is 4 times lower than that in the

elvis.

.3. X-rays Non Local Means filter

The noise model so characterized is used to propose a patch-

ased filter adapted to X-ray image denoising. The noise is signal-

ependent and the same parameters cannot be used to denoise the

hole image. However, in a small region the ση value is approxi-

ately stable because the density of the tissues therein is practically

onstant, i.e. the map ση changes smoothly. It should be noted that

he smoothing parameter h is proportional to the noise standard de-

iation σ (Buades et al., 2005), i.e. h2 = 2kσ 2. The proportional fac-

or k is meant to adjust the automatic estimation of σ . Coupé et al.

2008) have pointed out that the optimal value of k depends on the

trength of the noise affecting the data, e.g. k = 0.5 for low noise

evels and k = 1 for medium and high noise levels. However, this is

ainly due to the tendency of over-estimating σ at low noise levels

Colom and Buades, 2013). Considering that the percentile method

uffers less from this issue (Lebrun et al., 2012) and that, in the worst

ase, the only region affected by over-smoothing would be the back-

round where the X-rays are not absorbed, k has been fixed to 1. For-

ally, h is integrated in the patch distance definition in order to take

nto account the dependency on the X-ray absorption:

X (Pi, Pj) = ‖I(Pi) − I(Pj)‖2

2σi
2|P| (5)

ote that in this equation the noise level is the one associated with

he window � centered at the pixel xi. This implies that σ i � σ j ∀j ∈
, which is coherent with the assumption on the smooth transition of
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Fig. 2. Zoom of XNLM filter output: (a) input image I; (b) denoised image Î; and (c) absolute difference ‖I − Î‖.
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the tissue density values. The weights are then computed as follows:

ςX (i, j) = exp(−dX (Pi, Pj)) (6)

In conclusion, considering the signal-dependent nature of the

noise (Section 2.2), the NLM filter can be formulated to denoise X-ray

images. The proposed filter is called XNLM, which stands for X-rays

Non Local Means filter. It is worth noting that the automatic definition

of σ avoids manual parameter tuning and, hence, it is more robust

to changes in X-ray acquisition settings (see Section 4.1) and patient

morphotypes. However, the patch and window size still need to be

defined by the user. In this work patch and window half-sizes are, re-

spectively, fixed to p = 2 and w = 7. Besides, note that the similarity

between patches is quantified with an Euclidean distance which al-

lows implementing the XNLM filter by using integral images (Darbon

et al., 2008).

Fig. 2 c shows the absolute difference between a region of the

noisy image I (Fig. 2a) and the corresponding denoised image Î

(Fig. 2b), which indicates that the noise is mainly removed while the

structures are well preserved. Moreover, the filter adapts to different

levels of absorption. For example the noise reduction is stronger in

the spine region than in the pulmonary one. In the following sections

we explain how the image Î can be used to define noise containment

maps that are then applied in a multiscale contrast enhancement

approach.

3. Local noise containment maps

3.1. Overview of multiscale contrast enhancement methods

3.1.1. Multiscale analysis

The multiscale (MS) decomposition allows modifying separately

fine and coarse details (Li et al., 2005) and is often used to enhance

the contrast of digital X-ray images (Stahl et al., 1999; Dippel et al.,

2002; Fan and Han, 2011). The Laplacian Pyramid (Burt and Adeldon,

1983) (LP) is a classical MS decomposition technique. An image is en-

coded in k band-pass images {D0, D1, . . . , Dk−1} and its low frequency

residual Lk by recursive filtering:{
Lt =↓ (g(Lt−1))

t � 1
Dt = Lt−1− ↑ (Lt )

(7)

where L0 = I, ↓ and ↑ are, respectively, the down-sampling and up-

sampling operators, and g(.) is the smoothing filter, e.g. a binomial

filter. The smooth transition between scales causes redundancy. This

allows avoiding strong halo artifacts that appear when decomposing

with an orthogonal basis (Dippel et al., 2002). The sub-sampling, used

to double the spatial scale at each iteration, is the reason of aliasing

artifacts due to non linear operations in the reconstruction (Li et al.,
005). Therefore, in this work an undecimated version of the LP, also

nown as Isotropic Undecimated Wavelet (IUWT) (Starck et al., 2007),

s used.

.1.2. Multiscale synthesis

An image decomposed using IUWT is rebuilt by adding all the de-

ail images Dt to the low frequency residual Lk. Consequently, the en-

anced image Y is obtained by adding the boosted detail images �t:

= Lk +
k−1∑
t=0

�t (8)

here �t = ft (Dt ) and ft(.) is a non-linear boosting remapping func-

ion. Dippel et al. (2002) give an example of such a function and study

ow its parameters affect the X-ray image quality. Basically, these

unctions confine the enhancement in low activity regions, which are

efined according to a contrast measure (Mantiuk et al., 2006). This

llows limiting the halo artifacts, which are a known drawback of lin-

ar MS decomposition techniques (Li et al., 2005). Finally, the param-

ters of the boosting functions are set to well balance coarse and fine

etails (Dippel et al., 2002).

.1.3. The noise

Since the detail images are obtained by recursively smoothing,

he noise is progressively reduced at coarser scales. Nevertheless, the

oise equally contaminates all frequencies. Therefore, by fully en-

ancing the band-pass images Dt, the noise is increased.

The noise containment maps address this problem by consider-

ng that the amount of noise in the output image Y can be limited by

ot enhancing the detail coefficients that are corrupted by noise. For-

ally, a noise containment map is a function wt(xi) ∈ [0, 1]. The 0 and

values are associated with a noise free and full noise coefficient, re-

pectively. Therefore, the boosted output level at scale t is the result

f the coefficient-wise weighted sum between the input band-pass

mage Dt and its fully enhanced version f(Dt):

t = wt Dt + (1 − wt ) ft (Dt ) (9)

he advantage of noise containment maps compared to filters is that

o information is lost, as nothing from Dt is erased. For this reason,

his approach is often preferred to process X-ray images. However, it

s not trivial to define correct wt maps. While an overestimation of

oise would cause a reduction of visibility of anatomical structures,

n underestimation would overshoot the detail coefficients by hence

iving an unnatural effect. Stahl et al. (1999) define wt by using local

ensity (gray level) and activity (e.g. local standard deviation) maps.

an and Han (2011) implicitly estimate noise containment maps by

omparing Peli’s contrast measure (Peli, 1990) before and after boost-

ng. The main drawback of these methods is that the results depend
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Fig. 3. Estimation of the LNC-maps from analysis of noisy and denoised images. Top row: lung ROI. Bottom row: spine ROI. (a,e): I manually windowed for better visibility. (b,f):

DI
0. (c,g): DÎ

0. (d,h): LNC-maps, the interval of gray levels is [0, 1].

Table 1

Percent energy loss δt in a lung region (R1) and in a lumbar spine one

(R2).

δ0 δ1 δ2 δ3 δ4 δ5

R1 0.78 0.35 0.18 0.05 0.02 0.00

R2 0.97 0.85 0.56 0.27 0.09 0.03
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n some global user-defined parameters, e.g. the level of activity as-

ociated with noise and structures. This is particularly tricky in dig-

tal radiography for two reasons. First, there is a high intra-patient

ariability because the noise level changes significantly in a full body

-ray image (Section 2.2) and therefore globally defined parameters

re sub-optimal. Secondly, there is a high inter-patient variability in

ge, size and acquisition conditions. Consequently, different param-

ter settings should be defined to address this large heterogeneity,

hich is very difficult to validate.

.2. Definition of local noise containment maps

The band-pass images DI
t obtained by decomposing an X-ray im-

ge I with the IUWT contain both signal and noise components.

ig. 3b and f shows the detail levels DI
0

in lung (Fig. 3a) and lum-

ar spine (Fig. 3e) regions, respectively. These examples confirm that

he anatomical structures are merged with noise. On the other hand,

he corresponding detail levels DÎ
t (Fig. 3c and g) are noise-free. This

oes not imply that all the relevant information is preserved, but it

s easier to identify which coefficients should be fully enhanced. In

ther words, the restored image Î is used as an oracle for the defini-

ion of the noise containment maps. The examples also exhibit that

he difference between the original and restored band-pass images

epends on the properties of the anatomical regions. This is due to

he fact that the XNLM filter does not uniformly restore an image I

ut rather depending on the estimated σ values.

These observations are quantitatively studied by associating an

nergy measure with the band-pass images. Given a detail image

t, only a few coefficients are significantly not null, i.e. the signal is

parse in the MS decomposition. This has led many researchers to use

tatistical models to describe detail coefficients. Further information

n this aspect can be found in the work by Loza et al. (2010) and ref-
rences therein. This paper simply assumes that the coefficients can

e modeled by a Laplacian distribution with zero mean and scale pa-

ameter β . Given the maximum likelihood estimation of β of a zero

ean Laplacian distribution, the energy 
(Dt) of the detail level Dt

istribution is:

(Dt ) = 2

(
1

M

N∑
i=1

|Dt (zi)|
)2

(10)

here M is the number of detail coefficients at scale t and zi are the

oordinates of the coefficient i. The percent energy loss at a band-pass

mage DÎ
t is then computed as follows:

t = 1 − 
(DÎ
t )


(DI
t )

. (11)

able 1 indicates that δt monotonically decreases to zero as a func-

ion of t. This happens because the XNLM filter removes only the high

requency component of the noise as it is patch-based (Lebrun et al.,

012). Besides, the detail band-pass images are obtained by apply-

ng an iterative smoothing filter (Eq. (7)), which progressively reduces

he noise importance. From the δt values in Table 1, where the lung

nd lumbar spine region are denoted by R1 and R2, respectively, we

educe that the percent energy loss decays faster in low density re-

ions. For example, the noise in the lumbar spine region needs to be

aken into account up to the third decomposition level, while in the

ung region it is negligible at the second level. As a consequence, by

omparing the input and noise-free detail coefficients it is possible

o automatically decide up to which decomposition level the noise

eeds to be contained while avoiding relying on empirically defined

arameters.

Fig. 3 c and g shows that the energy is preserved in correspon-

ence of edges and structures, such as the ribs or the internal parts

f a vertebra, because the XNLM tends to preserve locally redundant

nformation. As a consequence, we can estimate local noise contain-

ent maps (LNC-maps), where the term local highlights the fact that

he measures come from an analysis in local patches.

The LNC-maps wt are computed by comparing a measure of lo-

al contrast of DI
t and DÎ

t . This measure, denoted by Ct, is the average

agnitude of coefficients in a patch of size |P|, i.e. the same patch size

sed by the XNLM filter. It is preferable to use the average within a
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Fig. 4. Activity map: (a) Computed using CI
t . (b) Computed using CÎ

t .
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small window rather than single coefficients in order to avoid taking

into account aberrant values, especially at fine levels. The LNC-map

at scale t is then computed as follows:

wt = δt

(
1 − 2CI

tC
Î
t + ε

CI
t

2 + CÎ
t

2 + ε

)
(12)

where CI
t is the contrast measure from DI

t , ε is a scalar factor used to

avoid singularities, in this case fixed to 1, and δt is the percent energy

loss at a level t (Eq. (11)). In Eq. (12) wt is computed as the product

of a local term that measures the correlation between local contrast

measures and a global one. The local term represents the probabil-

ity of a coefficient being pure noise. The probability is low when the

contrast values are similar because the XNLM filter detects a struc-

ture of interest preserving the most of its energy. The global term δt

indirectly quantifies the amount of redundancy in the image and can

help distinguishing a small morphotype from a big one, because the

higher the signal at the detector the more visible are the structures.

The relevance of this global term has been confirmed by gathering the

feedback from experts who concluded that, by defining the LNC-map

using only the local one, the outcome presented a slight smoothing

effect. Finally, it is worth noting that the LNC-maps do not depend on

user-defined parameters.

The resulting LNC-maps at scale 0 for the two ROIs taken as ex-

amples are shown in Fig. 3. According to Eq. (9), by using these noise

containment maps the anatomical structures of interest, such as the

ribs and the bronchi, the vertebral edges in the lungs (Fig. 3d) and the

lumbar spine (Fig. 3h), are fully enhanced.

3.3. Proposed boosting technique

The detail coefficients are modified according to an activity map

in order to increase the contrast. In particular, while the detail coeffi-

cient values associated with low activity are increased, those at high

activity are preserved. We use an activity map that is a variant of Peli’s

formula (Peli, 1990) that measures the contrast on complex images:

At = CÎ
t

LÎ
t + ε̃

(13)

where CÎ
t is the contrast measure computed from DÎ

t (Section 3.2), Lt

is the low frequency residual at scale t and ε̃ is a scalar value, fixed to

100 for all the tests, that is used to avoid singularities and dependency

from very low coefficient magnitudes. With respect to the original

formulation (Peli, 1990), we introduce two variants. First, the con-

trast is computed within a small local window and not by consider-

ing coefficient-wise magnitude because as shown by Li et al. (2005)

a smooth gain enhances better the contrast with less halo artifacts.
econdly, CÎ
t is considered rather than CI

t . Fig. 4a and b shows two ex-

mples of activity maps at scale 0 computed using CI
t and CÎ

t , respec-

ively. While Fig. 4a shows very similar activity values for noise and

tructures, in Fig. 4b the underlying anatomical structures are well

ighlighted and this type of activity maps is preferred here.

Given the activity maps at each scale, the relative gain functions

re computed as follows:

t (zi) =

⎧⎨
⎩(γt − 1)

(
1 − At (zi)

αt

)2

+ 1 if At (zi) < αt

1 otherwise

(14)

here γ t is the maximal gain at scale t, αt is the activity cut off value

eyond which the coefficients D(zi) are not enhanced. The cut off val-

es are defined as follows:

t = min(cĀt , max(At )) (15)

here Āt is the average activity at scale t, and c is a constant value,

efined by the user, that avoids to take into account aberrant activity

alues and is set to 25 in the validation tests.

As for the maximal gain parameters, they are initially set by lin-

arly ranging their values from 6 at the finest scale to 3 at the coars-

st one. Empirically, these are ideal parameters when the amount of

oise is very low. However, in our context of interest, this case rarely

ccurs. The actual gain values are then semi-automatically computed

s follows:

t = gt − (gt − gk−1)w̄t (16)

here gt are the initial ideal gain values, k is the number of scales

here k = 6) and w̄t is the average value of the LNC-map at t. The ini-

ial gain values tend to be preserved if the noise is absent at a given

cale, i.e. w̄t 	 0. On the contrary, when w̄t 	 1, then γ t is set equal

o the gain at the coarsest scale, i.e. the lowest one. The initial val-

es gt are defined by taking into account the property of full body X-

ays; they should probably be changed to apply the algorithm to other

mages.

Finally, the problem of defining the maximal gain parameters is

implified. Indeed, only one set needs to be fixed for all the images

nd, then, the values are automatically adjusted according to the im-

ge content. The fully enhanced band-pass images are obtained by

pplying the coefficient-wise multiplication between input detail co-

fficients and the gain maps (Eq. (14)).

.4. Overview and computational load of the proposed method

The main steps of the proposed method are summarized here.

he noise standard deviation image σ is estimated from the in-

ut I by using the percentile method (Section 2.2) and used in
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Table 2

Main steps and related parameters of the proposed method.

Percentile method - High pass filter = D0 of the IUWT;

- Percentile value = 10%;

- Square block half size = 7.

XNLM filter - Square patch P half size = 2;

- Square window � half size = 7;

- h = 2σ 2, σ estimated by the percentile method.

NC maps - Automatically estimated from DI
0 and DÎ

0.

Boosting - Max gain value = 6.0;
- Min gain value = 3.0;
- Number of scales = 6;
- Cut off value = average level activity ×25.
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Fig. 5. Standard PHD5000 phantom with annotated ROIs used to compute the follow-

ing measures: SNR from region 1; CNR from regions 2 and 3; DYN from regions 4 and

5. See text for the detailed definitions.
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q. (5), which computes the patch distances. The denoised image
ˆ is obtained (Section 2.3) and then both I and Î are encoded into

and-pass images Dt and low frequency residuals Lk by using the

UWT (Section 3.1). Then, the gain functions (Eq. (14)) are computed

y using the activity maps (Eq. (13)) and the semi-automatically

efined gain parameters. The LNC-maps (Section 3.2) are used in

q. (9) to weight the contribution of the input noisy coefficients and

he fully boosted coefficients. Finally, the enhanced image is obtained

y adding the output detail levels (Eq. (8)). Table 2 reports the set-

ing of the main parameters in the most relevant steps of the pro-

osed method. All the parameters are either automatically estimated,

r fixed experimentally once for all, i.e. the same values are used in

ll our tests.

As for the computational load, it takes on average 2 minutes to

ompletely process a full body EOS image, which contains about 14

illions of pixels, in a not optimized MATLAB based environment.

he main computational load is due to the XNLM filter, while the

ther operations are computationally comparable to those of a con-

entional MS contrast enhancement method multiplied by two be-

ause we decompose two images and not one. Finally, since the XNLM

lter is coded using integral images, an estimation is that the pro-

osed framework could be efficiently implemented in a C++ oriented

nvironment and using parallel programming.

. Experimental results

.1. Dataset

The proposed method is validated on X-ray EOS data that are en-

oded on 16 bits. EOS is a stereo-radiographic system based on a slot

canning principle and it uses the multiwire gaseous detector that

as been conceived from Georges Charpak’s2 researches (Charpak

t al., 1968). The detector amplifies the X-rays that pass through the

ody of a scanned patient by means of electronic avalanche in the gas,

hich allows keeping the dose low. Moreover, a wide range of differ-

nt tissues is covered, from cartilage to bones in thick regions. The ac-

uisition parameter setting changes depending on the type of exam

nd morphotype of the patient. These parameters are the peak kilo

oltage output of the X-ray images generator (kV), X-ray tube current

n mA (mA), and exposure time C ∈ {1, 2, . . . , 8}, where bigger values

tand for longer exposure time. The input signal strength associated

ith a parameter setting is indicated in Air Kerma dose value, i.e. the

bsorbed energy by unit mass of air, which is measured in μGy.

Both phantom and clinical EOS images are used for the validation

f the proposed method, denoted by LNCE (local noise containment

nhancement), that is compared with three other methods. Two of

hese approaches are simplifications of the proposed one as they con-

ist of fully enhancing the input (DI
t ) or the denoised (DÎ

t ) band-pass

mages, and are denoted by NE (noise enhancement) and DE (de-

oised enhancement), respectively. Note that the method DE is sim-
2 1992 Physics Nobel Laureate.

a

r

m

lar to the one that we have proposed in Irrera et al. (2013) with the

ifference that manual tuning of the filter parameters is avoided as

resented in Section 2.3. The third method is a EOS proprietary algo-

ithm, denoted by EOSE, that is used by default for exams in clinical

outine. It contains the noise at the two finest levels of a IUWT de-

omposition according to predefined thresholds on the noise level.

herefore, EOSE exploits parametric noise containment maps. This

ethod is more relevant for our study than others from the literature

ecause the parameters of the gain functions used to modify the de-

ail coefficients have been chosen by taking into account the opinion

f EOS users. Moreover, note that the choice of the default EOS algo-

ithm is justified by the interest in heterogeneous clinical data. The

valuation on specific types of exams, e.g. follow-up in pediatrics, is

eyond the scope of this paper.

.2. Validation on phantom images

We evaluate the image quality on the standard PHD5000 phan-

om (Fig. 5) according to different signal strengths, and interposing

etween the X-ray tube and the phantom a polymethyl methacry-

ate (PMMA) block of various thicknesses. The samples of the dataset

re reported in Table 3, where the thickness of the PMMA block is

ndicated in cm and the signal strength represented by the entrance

ose in μGy. The measures of image quality computed over the in-

ut images are also indicated. These experiments simulate the acqui-

ition conditions of typical clinical cases. For example, the samples

10 cm; 10 μGy}, {10 cm; 71μGy} and {10cm; 215μGy} are acquired

ith {60kV; 83mA; 4C}, {83kV; 200mA; 4C} and {100kV; 280mA;

C}, respectively. These parameters are used in the following exams:

ollow-up of the full spine, diagnostic full spine and pelvis. The sam-

les at 10 cm correspond to the pediatric morphotype and those at

0 cm to the normal adult one.

The signal to noise ratio (SNR) is equal to the average signal in a

heoretically constant region (ROI 1 in Fig. 5) divided by the standard

eviation of its gray levels. The SNR is indirectly related to the amount

f signal that reaches the detector: Table 3 shows that lower PMMA

hickness and/or stronger input signal values (e.g. {10cm, 215μGy})

roduce higher SNR measures. The first line in Table 4 shows the

verage percent increase of SNR of the post-processed images with

espect to the input data. The values are negative for each tested

ethod, which is expected given the SNR definition. Indeed, while
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Table 3

Samples of the phantom dataset described by

the thickness of the PMMA block in cm, the en-

trance dose in μGy and the SNR, CNR and DYN

values computed over the input image.

cm μGy SNR CNR DYN (%)

10 10 47.25 1.35 49

10 67 116.47 4.29 53

10 71 126.02 4.23 53

10 75 110.73 4.24 53

10 215 190.71 7.47 52

15 65 108.51 2.44 40

15 87 115.30 3.01 41

15 89 116.84 2.98 42

15 100 123.53 2.80 42

15 102 132.75 2.95 41

15 136 165.43 3.78 41

20 16 37.63 0.53 30

20 109 117.90 1.96 33

20 454 180.01 2.59 33

25 109 97.13 1.16 26

25 136 98.24 1.26 26

30 33 27.39 0.20 19

30 566 128.46 1.14 22

Table 4

Average SNR, CNR and DYN improvements on phantom images.

NE (%) DE (%) LNCE (%) EOSE (%)

(SNRo − SNRi)/SNRi −81.0 −28.9 −69.5 −72.9

(CNRo − CNRi)/CNRi −20.9 281.9 43.7 −21.5

(DYNo − DYNi)/DYNi 53.8 53.0 53.5 32.8
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the standard deviation increases to optimize the contrast balance for

the whole image, the average signal remains approximately the same.

These results indicate that DE is the best option in terms of SNR,

which is logical because it fully enhances an image that has been

filtered, while the other solutions only contain the noise (LNCE and

EOSE) or simply do not take it into account (NE). However, since the

SNR is measured in a void region, it gives no information on how re-

gions of interest are processed.

The contrast to noise ratio (CNR) gives a deeper insight on image

quality than the SNR because it is computed as:

NR = Ī(R2) − Ī(R3)

σ (I(R3))
(17)

where Ī(R j) and σ (I(R j)) are, respectively, the mean and standard

deviation of the gray levels in a region R j and R2 and R3 are, re-

spectively, an object of interest (a disk, see region 2 in Fig. 5) and

nearby background (see region 3 in Fig. 5). The CNR quantifies the

compromise between increasing the visibility of an object of interest

and boosting the noise. The second line in Table 4 shows the average

percent increase of CNR of the post-processed images with respect to

the input data. Positive values prove a good balance between contrast

and noise, while negative ones mean over-shooting, i.e. the gain of

contrast is not sufficient to compensate the increase of noise. Table 4

indicates that both NE and EOSE present over-shooting. While this is

predictable with NE, because the noise is not contained at all, it is less

expected for EOSE. According to our tests, there is not over-shooting

when EOSE is used to process low signal or thick PMMA block in-

stances (e.g. PMMA ≥ 20cm), but it is present in the other cases. This

problem is common with methods that use parametric noise contain-

ment maps because they do not provide sufficient flexibility. On the

other hand, LNCE overcomes this drawback, because, exception made

for one case ({10cm, 215μGy}), there is no over-shooting. Neverthe-

less, the results obtained when the images are processed with DE are

significantly better. While the CNR measures on the disks describe
he increase of visibility of low and medium detail levels, no conclu-

ions concerning fine structures can be deduced.

The dynamic range (DYN) is computed as Ī(R4) − Ī(R5) where R4

s the most absorbing region (number 4 in Fig. 5) and R5 is the least

bsorbing one (number 5 in Fig. 5). It represents how well the gray

evel dynamic is exploited and is expressed as percentage on the to-

al number of gray levels, i.e. 65535 in EOS images. Table 3 shows that

he dynamic range depends on the thickness, while it is practically

naffected by the signal strength. The third line in Table 4 shows the

verage percent increase of DYN of the post-processed images with

espect to the input data. These results show that the methods NE, DE

nd LNCE have very similar scores, because they use the same boost-

ng technique (Section 3.3), and they perform better than EOSE.

The high resolution grid at the center of the phantom (Fig. 5) is

sed to evaluate the spatial resolution of a system. The resolution is

easured in line pairs per millimeter (lp/mm) and associated with

he finest set of visible lines on the grid. It depends then on the signal

trength and PMMA block thickness, in addition to detector proper-

ies. This section verifies whether the compared methods preserve

he spatial resolution computed over the input image. The input im-

ge manually windowed in the region of the resolution grid is com-

ared to DE and LNCE. Note that the study of NE is unnecessary be-

ause, since the image is fully enhanced, it is not possible to reduce

he resolution, and a part of our tests, not included in this paper, have

ndicated that EOSE does not cause a resolution loss. Fig. 6 presents

wo of our experiments with 10cm PMMA: the columns, from left to

ight, show the resolution grid from the input image with manual

indowing, DE and LNCE; the lowest and highest signal strengths of

he sample at 10cm are considered, i.e. 10μGy and 215μGy (respec-

ively the first and second rows in Fig. 6). The arrows point at the

nest set of visible lines. The images show that DE causes a spatial

esolution loss, while LNCE does not. They also show that the grade

f the decrease depends on the signal strength. Indeed, with 10μGy

he DE resolution is 1.4 lp/mm versus 1.8 lp/mm and with 215μGy 1.8

p/mm versus 2.0 lp/mm. This is due to the XNLM filter effectiveness

n restoring the lines: the stronger the signal the easier to capture the

imilarity between patches is. Similar results are obtained by con-

ucting the same tests with thicker PMMA blocks.

Finally, these results on phantom images indicate that by applying

filter and, then, enhancing the contrast of the resulting image (DE)

he quality in terms of SNR, CNR and DYN is very good, but this entails

lso a loss of spatial resolution that may be a problem for some clin-

cal applications. On the other hand, the proposed algorithm (LNCE)

vercomes this drawback and, at the same time, offers a good com-

romise between detail enhancement and noise containment.

.3. Validation on clinical images

The clinical database consists of 130 images that have been ran-

omly selected among anonymous data. These images present pa-

ients of different ages and sizes as well as a wide range of type of ex-

ms (full spine, lower limbs, diagnostic, follow-up). This is the logical

ransposition of the tests conducted on the phantom to the clinical

ontext.

In digital radiography two measures are often used to quantify

he quality of clinical images: the average local variance (ALV) (Chang

nd Wu, 1998) and the contrast improvement index (CII) (Laine et al.,

995). The ALV is the average of variance values associated with small

indows (5 × 5 pixels in this paper). The ALV measure is computed in

hree disjoint regions of the pixel space: smooth (ALVS), detail (ALVD)

nd edge (ALVE). Generally, low values of ALVS and ALVE are pre-

erred because they quantify the noise enhancement and the pres-

nce of halo artifacts, respectively. Similarly, high ALVD means good

etails processing. In the original approach (Chang and Wu, 1998) the

egions are defined by applying user-defined thresholds to the local

ariance image of the input. However, threshold values are not easy to
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Fig. 6. Resolution grid of the phantom: top row = 10 μGy and bottom row = 215 μGy; columns from left to right = IN, DE and LNCE. For each example, the arrows indicate the

finest, clearly visible, set of lines.
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efine given the signal-dependent noise. As a consequence, the ALV

elates to contrast but it is not a pure measure of it, and therefore

hould be used along with visual comparison.

Rather than using a generic detail region, this paper proposes to

se anatomically significant regions. For each image of the clinical

ataset, regions associated with the following diagnostically signif-

cant structures are manually defined: lumbar spine (A1), thoracic

pine (A2), proximal femur (A3), lungs (A4) and knees (A5). This ap-

roach permits to quantify the contrast in anatomical ROI and, hence,

o understand how the performances of an algorithm depend on the

eatures of anatomical structures of interest. However, the contrast

easures over these regions are influenced by the presence of noise

oo. Therefore, the noise contribution is quantified by measuring the

LV in a void region (A0), i.e. with no signal of interest. Two examples

re shown in Fig. 7. Using these measures, we define the anatomy

ontrast (AC) as follows:

C = 1

K

(∑
i>0

Ai

)
− A0 (18)

here K is the number of previously defined anatomic classes that

ppear in the image, and Ai = 0 if the relative object is outside the

eld of view. The first term of the equation relates to the amount of

ontrast in anatomical ROI. However, since it is biased by the presence

f noise, another term that relates to noise only, i.e. A0, is subtracted.

t would be interesting to compute this measure for each considered

natomic ROI i, but this would require defining A0 in a void region of

ean signal comparable to that of ROI i. Since such a region may not

lways be present, e.g. for the lungs in the most of cases, this test has

ot been performed.

The CII quantifies the improvement in terms of contrast on an

nhanced image Y with respect to the initial one. Since it only re-

uires using the same techniques for quantifying the contrast in in-
ut and enhanced images, it can be used straightly with the pro-

osed anatomical ALV. First, the CII is computed for each anatom-

cal ROI in the image to evaluate. The average of these values is

hen computed to obtain the Signal CII (SCII). Similarly, the Noise CII

NCII) is computed as NCII = A0
Y /A0

I . Finally, we define an unbiased

II (UCII) as: UCII = SCII − NCII. This measure allows quantifying the

ver-shooting in clinical images. A negative value of UCII means that

he noise is more enhanced than the signal, i.e. the higher visibility

f structures comes at the price of an excessive boosting of noisy co-

fficients, while positive values of UCII indicate a relative higher en-

ancement of relevant information. Finally, a visual comparison per-

its to verify the coherence between computed measures and to val-

date them.

Fig. 8 reports the ALV measures computed from the regions in

ig. 7 and are used to compare the four image enhancement meth-

ds considered.

In the ROI A0, a significant increase of the noise with NE can

e noted on both full spine (Fig. 8a) and lower limbs (Fig. 8b) im-

ges. Indeed, considering the full spine sample (Fig. 8a) the ALV in

egion A0 increases with respect to the input by: ×20.84 (NE), ×2.20

DE), ×9.02 (LNCE) and ×9.67 (EOSE). These results are coherent with

he analysis conducted on phantom SNR (Section 4.2): DE limits the

oise impact better than the noise containment method, whereas NE

hould be discarded because it excessively boosts the noise.

Into the lumbar spine, the ALV increases with respect to the input

y: ×18.83 (NE), ×6.27 (DE), ×13.35 (LNCE) and ×8.38 (EOSE). The

rst observation is that the relative improvement of ALV given by NE

s similar to the one revealed in region A0. Therefore, even if NE gets

he highest score in A1, it is not reliable because it depends only on

oise. On the contrary, the other algorithms do not show this trend.

NCE is better than DE and EOSE. However, the analysis needs to

e completed with visual comparison to counterbalance the relative

ontributions in terms of signal and noise. Fig. 9 shows, in the first
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Fig. 7. Examples of manually segmented regions used for computing anatomic ALV:

red = A0, green = A1, blue = A2, yellow = A3, magenta = A4, cyan = A5. (For inter-

pretation of the references to color in this figure legend, the reader is referred to the

web version of this article.)

Table 5

Average AC and UCII values computed over clinical images processed

with the compared algorithms.

IN NE DE LNCE EOSE

AC 2.01 25.14 3.79 11.45 5.69

UCII 0 −3.09 1.80 1.37 −1.16
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row, the visual rendering of the vertebrae L4 and L5 over IN, DE, LNCE

and EOSE, and, in the second row, the magnitude of the Sobel gradient

computed over these images. Refining the input image demands ex-

tensive user interaction to actually make structures of interest appear

therefore slowing down the process of diagnosis. This is also an issue

from an image quality point of view because it is very difficult to find

the optimal balance between noise boosting and structure visibility

with manual contrast setting. Moreover, given the low visibility of the

edges, tasks such as automatic segmentation of spine structures be-

come very challenging, whereas the post-processed images limit the

need for manual interaction. On the other hand both DE and LNCE

(Fig. 9b and c) have better brightness than EOSE (Fig. 9d), which may

demand user interaction to be properly studied. The medium and low

frequency structures of the spine are preserved with DE, but high fre-

quencies are lost in the vertebral body, as shown by magnitude of

gradient of DE and LNCE in Fig. 9f and g, respectively. While DE re-

turns a quite regular image that could be more adapted for instance

to the automatic detection of the vertebral body, LNCE suits better

for diagnosis because it reflects the textured nature of the bones. The

higher ALV value obtained with LNCE is a further proof in this dis-

cussion. Finally, note that the gradient magnitude is extremely low
Fig. 8. ALV measures in anatomical ROI computed from the images in (a) Fig. 7a; (b) Fig. 7b.

NE, DE, LNCE and EOSE.
n the tissues surrounding the vertebral body, while it is not inside

f it. This means that the LNCE enhances actual information of inter-

st and the contribution of noise to the obtained ALV value is neg-

igible. In the thoracic spine, the ALV increases with respect to the

nput by: ×18.87 (NE), ×5.34 (DE), ×12.80 (LNCE) and ×8.58 (EOSE).

hese values are very similar to those obtained in the lumbar spine

egion because the type of structure belongs to the same category, i.e.

ertebrae.

In the lungs, the ALV increases with respect to the input by:

12.82 (NE), ×8.28 (DE), ×11.30 (LNCE) and ×7.16 (EOSE). The lungs

re a low density area and rich in medium and low frequency struc-

ures, which explains why the performances of DE and EOSE are com-

arable. Moreover, it is logical that NE and LNCE have similar perfor-

ances as the noise in this region is almost absent.

In the proximal femur of the full spine exam, the ALV increases

ith respect to the input by: ×18.15 (NE), ×2.20 (DE), ×9.59 (LNCE)

nd ×8.86 (EOSE). The same trend can be noted as for region A1,

ut the ALV score obtained with DE is significantly lower than LNCE.

wo aspects explain this result. First the proximal femur is poorer in

edium and low frequency structures than the vertebrae. Indeed, the

nly structures of this type are the femur edges and the cotyloid cav-

ty, i.e. where the femur meets the pelvis. Secondly, as observed by

nalyzing the high resolution grid of the phantom (Section 4.2), the

ow amount of signal makes it more difficult to detect redundancy

nd, so, to preserve high frequency details. Therefore, A3 is a typi-

al region where LNCE is preferred if a diagnostic image quality is

esired.

Finally in the knee area, the ALV increases with respect to the in-

ut by: ×17.78 (NE), ×4.97 (DE), ×12.22 (LNCE) and ×9.61 (EOSE).

ig. 10 shows that the most important information in the knee is the

one texture. Note that DE is not adapted to this region as shown by

he significantly lower ALV value obtained with DE compared to the

ne obtained with LNCE.

The observations derived from the samples in Fig. 7 hold for the

hole set of data on which we have computed ALV measures. In proof

f this, the average AC and UCII measures on the totality of the dataset

re reported in Table 5. The highest value of AC is obtained with NE.

owever, this is mainly due to a strong noise contribution in anatom-

cal ROI. This is confirmed by the value of UCII that is largely smaller

han zero meaning that the over-shooting is too important to actually

ake NE into consideration. The algorithms DE and LNCE allow avoid-

ng over-shooting and can be, in our opinion, alternatives to answer

ifferent clinical needs. Indeed, DE could be more adapted for tasks

uch as automatic bone segmentation, because it is more regular than
For each of the anatomical ROI on the x-axis, the ALV measures are computed over IN,
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Fig. 9. Visual comparison of vertebrae L4 and L5 in A1: top row = images and bottom row = related Sobel gradient magnitudes; columns from left to right = IN, DE, LNCE amd

EOSE.

Fig. 10. Visual comparison of knee in A5: top row = images and bottom row = related Sobel gradient magnitudes; columns from left to right = IN, DE, LNCE and EOSE.
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NCE while preserving edges. However, a noise containment oriented

ethod is more suitable to be presented to clinicians for medical

maging aided diagnosis, which is confirmed by the higher AC value

hen using LNCE. Finally LNCE outperforms parametric noise con-

ainment methods. Indeed, with respect to EOSE, the anatomical con-

rast doubles while avoiding over-shooting. Moreover, the analysis

n the regions Ai show that LNCE adapts well to the heterogeneous

eatures of tissues present in a full body image, which supports the

obustness of the proposed method.

.4. Quantitative evaluation by a radiologist

The last part of the validation is dedicated to quantify the contri-

ution of the proposed method to clinical routine. According to the

esults from the previous sections, the study focuses on noise con-

ainment based approaches, i.e. compare LNCE to EOSE. The applica-
ion of DE to object segmentation is not studied as it would require

omparing different segmentation techniques, which is beyond the

cope of this paper. For this purpose we have worked in collaboration

ith a radiologist at the AP-HP, Cochin hospital in Paris (France). We

ave considered a set composed by 10 patients, between 54 and 81

ears old, having Body Mass Index (BMI) between 20.28 and 28.93

orresponding to normal and overweight adults. None of the patients

resents particular pathology. Therefore, only the visibility of a set

f diagnostically relevant structures of the human skeletal apparatus

as been evaluated.

In practice, the radiologist has assigned a vote to each structure

hat is representative of its degree of visibility. The votes go from 0,

eaning that the structure is not visible at all, to 5, meaning that the

tructure is perfectly visible. Given the interest in a full body diagno-

is, different anatomical regions have been examined and the follow-

ng list of structures retained:
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Table 6

Average votes assigned by a radiologist to anatomical structures.

C f
1

C f
2

C f
3

C f
4

C f
5

C f
6

EOSE 3.8 3.9 3.0 2.5 1.0 2.7

LNCE 4.5 4.4 3.5 3.1 1.5 3.2

C l
1 C l

2 C l
3 C l

4 C l
5 C l

6 C l
7 C l

8 C l
9

EOSE 2.9 4.9 4.9 3.6 2.1 4.0 4.0 4.4 4.2

LNCE 3.6 4.9 5.0 4.3 2.7 4.3 4.1 4.6 4.6

T f
1

T f
2

T f
3

T f
4

T f
5

T f
6

EOSE 2.6 3.8 3.5 1.4 2.1 2.7

LNCE 3.3 4.6 4.2 1.9 2.9 3.7

T l
1 T l

2 T l
3 T l

4 T l
5 T l

6

EOSE 1.6 4.5 4.2 1.8 2.1 3.0

LNCE 2.2 4.8 4.4 2.1 2.8 3.7

L f
1

L f
2

L f
3

L f
4

L f
5

L f
6

L f
7

EOSE 4.3 4.1 4.0 1.4 3.4 1.8 2.6

LNCE 4.8 4.6 4.0 2.1 4.3 2.3 2.8

Ll
1 Ll

2 Ll
3 Ll

4 Ll
5 Ll

6 Ll
7 Ll

8

EOSE 2.6 4.2 4.7 2.2 3.7 2.6 3.6 3.1

LNCE 3.5 4.9 4.7 2.9 4.4 3.4 3.9 3.8

P1 P2 P3 P4 P5 P6 P7 P8

EOSE 2.2 3.0 4.0 4.0 5.0 4.4 4.3 4.9

LNCE 2.4 3.9 5.0 4.6 5.0 4.9 5.0 5.0

K1 K2 K3 K4 K5 K6

EOSE 3.5 4.90 5.0 5.0 5.0 5.0

LNCE 4.1 4.90 5.0 5.0 5.0 5.0

Table 7

Regional qualitative measures for each evaluated anatomical ROI.

C f C l T f , T l L f Ll P K

EOSE 56% 78% 54% 57% 62% 67% 80% 95%

LNCE 67% 85% 69% 67% 71% 79% 90% 97%

Gain +11 +7 +15 +10 +9 +12 +10 +2
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• Frontal cervical spine (C f ): spinous process (1), vertebral body (2),

intervertebral disc (3), zygapophyseal joint (4), transverse process

(5), pedicle (6).

• Lateral cervical spine(Cl): median atlanto axial joint (1), interver-

tebral disc (2), vertebral body (3), transverse process (4), uncus

(5), pedicle (6), lamina (7), posterior interapophyseal joints (8),

spinous process (9).

• Frontal thoracic spine (T f ): spinous process (1), vertebral body

(2), intervertebral disc (3), transverse process (4), costovertebral

joints (5), pedicle (6).

• Lateral thoracic spine (T l): spinous process (1), vertebral body

(2), intervertebral disc (3), transverse process (4), posterior inter-

apophyseal joints (5), pedicle (6).

• Frontal lumbar spine (L f ): spinous process (1), vertebral body (2),

intervertebral disc (3), transverse process (4), pedicle (5), poste-

rior interapophyseal joints (6), sacrum (7).

• Lateral lumbar spine (Ll): spinous process (1), vertebral body (2),

intervertebral disc (3), transverse process (4), pedicle (5), poste-

rior interapophyseal joints (6), intervertebral foramina (7), lamina

(8).

• Pelvis (P): sacrum (1), sacroiliac joint (2), cotyloid cavity (3), pubic

symphysis (4), hip bones (5), hip joint (6), ischium (7), femur (8).

• Knee (K): patella (1), femoro-tibial joint (2), medial and lateral in-

tercondylar tubercles (3), condyles (4), fibula (5), tibial plateau (6).

In total, 56 structures have been taken into account. The average

votes for each structure evaluated over LNCE and EOSE are reported

in Table 6. Regional qualitative measures can be defined from these

votes to derive summarized evaluations. An anatomical region is con-

sidered perfectly visible as long as all the structures therein get a vote

of 5/5. Then, a percentage is assigned to the anatomical ROI by com-

paring the total of the votes to the ideal optimum. Table 7 reports the

average scores and points gained by the proposed method. These re-
ults show that the proposed method enhances the visibility of osteo-

rticular structures. Note that the two algorithms have similar perfor-

ances for structures that are surrounded by thin soft tissues, e.g. the

nees.

The spine is a complex area because of the strong superposition

f tissues and the projection of a rotated 3D volume on a 2D plane.

ince in all areas of the spine the votes of LNCE are greater than EOSE

nes, the proposed method is more appropriate in facilitating the vis-

bility in challenging cases. However, some objects remain difficult

o see. For example, in most of the cases the transverse process is

nly slightly visible (C f
5
, T f

4
, T l

4
and L f

4
). Globally, about 10 points are

ained with respect to EOSE in the spine. The image quality in the

elvis improves significantly with the proposed method. Indeed, by

sing EOSE the image is of good quality (80%), but LNCE renders al-

ost a perfect image (90%). This is due to the fact that the structures

n the pelvis are quite regular and, therefore, easy to extract with the

roposed method, even if the signal is low. The only problematic ob-

ect is the sacrum (P1) because it is covered by a lot of soft tissues.

inally, for what concerns the knee, the improvement is negligible

nd only the patella (K1) is easier to delimit with LNCE. Indeed, the

core is almost perfect because the absorption is very low. Then, in

his region, it would be more interesting to compare the two algo-

ithms in pathological cases that, for example, concern the health of

he bone tissue.

In conclusion, this diagnostic feedback highlights the value of the

ethod, which can hence be considered as promising for a potential

se in clinical routine.

. Conclusion

In this paper we proposed a method for improving the quality of

-ray digital images. This method has proved to be robust to changes

n the input signal strength, patient morphotype and features of the

ultiple tissues that are in the field of view. We have first adapted the

lassical NLM filter to digital X-ray images and, by relying on an auto-

atic noise level estimation, our approach does not require manual

arameter tuning. The filtered images have been used as oracles to

efine non parametric noise containment maps that, when applied

n a multiscale contrast enhancement framework, allow optimizing

he trade-off between improvement of the visibility of anatomical

tructures and noise reduction. A significant number of tests on both

hantoms and clinical images have shown that the proposed method

s better suited than others for visual inspection for diagnosis, even

hen compared to an algorithm used to process EOS images in clini-

al routine.

Despite the good results, the choice of adapting the NLM for the

atch-based filter could be discussed. Indeed, recent works show that

etter denoising quality can be achieved with the Non Local Bayes

lter (Lebrun et al., 2013), which currently represents the state of

he art denoising algorithm. However, this method is computation-

lly expensive because it demands to learn twice a local Gaussian

odel for each patch (Lebrun et al., 2013). Therefore, the eventual im-

rovement on the quality of the estimated noise containment maps

hould be counterbalanced with the increase in computational load,

hich is an important aspect in clinical routine. Moreover, it has been

ointed out in Section 4.4 that some structures remain very difficult

o see. This is related to the conditions of the acquisition and no ma-

or improvement could be achieved by using more complex methods.

or these reasons, future works will focus on aspects related to the

linical evaluation rather than improving the method. For example, it

ould be interesting to quantify how much the entrance dose can be

educed and still get an image quality convenient for diagnosis. Fur-

hermore, our results suggest that the approach DE could be used for

pplications such as automatic segmentation or registration, but this

emains to be more accurately evaluated.
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