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Abstract

This paper presents a new procedure to estimate the diffusion tensor from a sequence of diffusion-weighted images. The first step of
this procedure consists of the correction of the distortions usually induced by eddy-current related to the large diffusion-sensitizing
gradients. This correction algorithm relies on the maximization of mutual information to estimate the three parameters of a geometric
distortion model inferred from the acquisition principle. The second step of the procedure amounts to replacing the standard least
squares-based approach by the Geman–McLure M-estimator, in order to reduce outlier-related artefacts. Several experiments prove that
the whole procedure highly improves the quality of the final diffusion maps.
   2002 Elsevier Science B.V. All rights reserved.
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1 . Introduction could have been considered as a technical problem only.
When protons are placed into a static magnetic field (B0),

There is currently considerable interest in the use of they begin to precess (i.e. their magnetic vector rotates
MRI for imaging the apparent diffusion of water in aroundB0). A key point underlying MRI is the linear
biological tissues (Le Bihan et al. 2001). The physical relationship between the local field strength and the
process underlying this diffusion is the random walk frequency of the proton precession motion, which is the
motion of the molecules in a fluid: due to thermal frequency of the signal produced in the receiving antenna.
agitation, the molecules are constantly moving and collid- Adding a gradient toB0 encodes the spin localization into
ing with neighbors. When the fluid is embedded into the this frequency, which leads to images after Fourier trans-
complex geometry of biological tissue, however, the form. Without special preparation, the protons (spins)
collisions with cell membranes and macromolecules and precessing in a static magnetic field (B0) do not produce
the restriction to various compartments highly influence signal in the receiving antenna (inx–y plane) because of
this process. Hence, by probing the microscopic motion of lack of coherence between the individual precessions (they
tissular water, diffusion-weighted imaging provides a are all out of phase and hence have no net transverse
unique in vivo tool for studying the structure of biological component). By applying a 90 degree radio-frequency
tissue. In particular, this imaging modality gives access to (RF) pulse, the frequency of which matches the frequency
various information about the brain microstructures that of precession of protons, the spins can be made to be in
could be used to improve the interpretation of functional phase and have a net transverse component, producing
imaging studies. signal in an antenna. After the 90 degree RF pulse the

Diffusion-weighted MRI relies on a phenomenon that spins will again go out of phase, mainly because of the
effect of external field inhomogeneities. For static spins,
the dephasing caused by external field inhomogeneities can*Corresponding author.
be eliminated with a 180 degree pulse leading to what isE-mail addresses: mangin@shfj.cea.fr(J.-F. Mangin), http: / /www-

dsv.cea.fr /, http: / /anatomist.info(J.-F. Mangin). called a spin echo. This is not possible for spins undergo-
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ing diffusion because they are not static (their position if different volumes of the series are distorted relative to
fluctuates randomly because of the random character of the each other. Diffusion-weighted images, however, are often
thermal spin motion). The result is diffusion-related signal acquired using echo-planar imaging (EPI), to reduce
attenuation. acquisition time and artefacts related to physiological

While with standard MR sequences, the diffusion-re- motions. Unfortunately, this fast acquisition scheme is
lated signal attenuation is negligible, diffusion imaging highly sensitive to eddy currents induced by the large
sequences increase this effect with the addition of two diffusion gradients (Haselgrove and Moore, 1996). These
strong diffusion sensitizing gradient pulses (Stejskal and eddy currents can cause significant distortions in the phase-
Tanner, 1965). These additional gradients increase the encoding direction where the image bandwidth is quite low
attenuation of the signal produced by the spins that move (see Fig. 1). Since the degree and nature of this artefact
along the gradient direction. Within a simple isotropic typically vary both with the strength and orientation of the
medium like a glass of water, the attenuation is related to diffusion-sensitizing gradient, distortions can dramatically
an exponential of the medium property called the diffusion change the estimated diffusion tensor.
coefficient D (the standard coefficient of Fick’s law). By The methods for reducing the effects of eddy currents
using, for instance, an image without diffusion weighting may be divided into three categories. The first one simply
and one diffusion-weighted image, we can calculate aD consists of modifications of the gradient sequences (Alex-
value for each voxel. As a consequence of their spatial ander et al., 1997). This approach, however, seems in-
structure, however, many substances and biological tissues sufficient to get completely rid of artefacts. A second
exhibit anisotropic diffusion behavior: the computed diffu- family of approaches, which rely deeply on MR physics,
sion coefficient depends on the direction of the sensitizing require additional experimental data (Jezzard et al., 1998;
gradient. Therefore, when anisotropy of the 3D diffusion Horsfield, 1999). Since the eddy-current distortions do not
process is of interest, for instance for fiber bundle tracking rely on the subject’s head geometry, these cumbersome
(Poupon et al., 2001), a symmetric diffusion tensorD has additional acquisitions can be done on phantoms only
to be calculated for each voxel from a series of diffusion- during a calibration operation. Unfortunately, the obtained
weighted volumes (Basser et al., 1994a,b). Each such correction scheme has to be updated on a regular basis
volume is acquired with a different applied diffusion- because of some slow variations of the magnet (Bastin and
sensitizing gradient (Stejskal and Tanner, 1965). These Armitage, 2000).
gradients are applied in order to vary a symmetric matrixb The last kind of approaches are purely retrospective and

2(s /mm ) that depends on the gradient direction, strength can be considered as registration methods. They use a
and timing (Mattiello et al., 1994). The diffusion-sensitiz- distortion geometric model inferred from the acquisition
ing gradient affects the signal intensity of any given voxel principle, which leads to estimate a few parameters using a
in a manner that can be described by the linear equation standard similarity measure like cross-correlation (Hasel-

grove and Moore, 1996; Calamante, 1999; Bastin, 1999).
ln S(b)5 ln S(0)2D b 2 2D b 22D b 2D bxx xx xy xy xz xz yy yy Such simple similarity measures, however, are not suffi-

cient to perfectly take into account the complex dependen-22D b 2D b , (1)yz yz zz zz
cies embedded in Eq. (1) (Bastin and Armitage, 2000). In
this paper we propose to estimate the few parameters ofwhereS denotes the signal of the selected voxel. When a
the distortion geometric model using the mutual infor-sufficient number of differentb matrices is used (related to
mation as similarity measure in order to achieve a moreat least six different gradient directions), the diffusion
robust correction scheme (Maes, 1997; Wells III et al.,tensorD can be estimated. Such calculations are simple if
1996).each voxel in the different volumes represents the same

It should be understood that EPI imaging leads topoint in the anatomy of the subject, but can be impractical

Fig. 1. Example of eddy-current-related distortions (8 mm in the worst case) for two different diffusion sensitizing gradient magnitudes.
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another kind of distortion induced by susceptibility ar- 2 . Distortion correction
tefacts (Jezzard and Clare, 1999) that is not addressed in
this paper because it is not dependent on the diffusion In the following, echo-planar diffusion-weighted images
gradient. These distortions are non-linear and depend on were acquired in the axial plane. Blocks of eight contigu-
the subject’s head geometry. They have to be corrected to ous slices were acquired, each 2.8 mm thick. Seven blocks
relate functional MRI experiments performed with EPI were acquired covering the entire brain corresponding to
with standard high resolution anatomical images. Several 56 slice locations. For each slice location, 31 images were
registration schemes have been proposed for this purpose acquired; a T2-weighted image with no diffusion sensitiza-
using either a free deformation model with a high number tion followed by 5 diffusion sensitized sets (b values

2of parameters (Hellier and Barillot, 2000), or a more linearly incremented to a maximum value of 1000 s/mm )
constrained model taking into account a priori knowledge in each of 6 non-collinear directions. In order to improve
about the main distortion direction and a difference of the signal-to-noise ratio this was repeated 4 times, pro-
squares based similarity measure (Kybic et al., 2000). viding 124 images per slice location. The image resolution

This paper proposes a second improvement of the was 1283128, field of view 24 cm324 cm, TE584.4 ms,
standard calculation of the diffusion tensorD. The linearity TR52.5 s.
of Eq. (1) usually leads to a least squares-based regression For each slice, each acquisition is aligned with the first
method (Basser et al., 1994a). This approach, however, is image of the series, which is the standard T2-weighted
not robust to the various kinds of noises that can be image without diffusion sensitization. This alignment is
observed in diffusion-weighted data (Bastin et al., 1998; done one acquisition at a time, like for fMRI motion
Basser and Pajevic, 2000; Skare et al., 2000; Anderson, correction procedures. For convenience we use the nota-
2001). Non-Gaussian noise can stem for instance from tion that the image is in theXY plane, and the phase-
physiological motions (brain beat), subject motions (Atkin- encoding direction lies alongY. Simple considerations
son et al., 2000; Clark et al., 2000) or residual distortions. about MR physics lead to the following distortion model
While careful acquisition schemes including cardiac gating (Haselgrove and Moore, 1996):
(Dietrich et al., 2000) and navigator echo (Butts et al., • A residual gradient in the slice-encoding directionZ
1996; Clark et al., 2000) may reduce some of these produces uniform translation alongY.
problems, some weaknesses of the tensor diffusion model • A residual gradient in the frequency-encoding direction
lead to other regression problems: each voxel includes X produces a shear parallel toY (a translation linearly
several water compartments endowed with different diffu- related toX).
sion processes that are mixed up in the data (Clark and • A residual gradient in the phase-encoding directionY
LeBihan, 2000). Furthermore, the choice of the gradient produces a uniform scaling inY direction.
directions used by the MR sequence can lead to very Hence, the geometric model (see Fig. 2) can be written for
different estimation situations (Papadakis et al., 2000). each columnX as
Sophisticated restoration schemes dedicated to diffusion-Y95 SY 1T 1 T X, (2)0 1weighted data are bound to be developed in the future to
improve the situation using for instance anisotropic which amounts to a simple slice-dependent affine trans-
smoothing (Parker et al., 2000). In our opinion, however, formation (S is the scale factor,T a global translation, and0

these restoration methods cannot be perfect because of theT a shear). An additional global multiplicative correction1

poor quality of the raw data. Hence, in order to overcome by 1/S has to be applied to the slice intensities, which is
the influence of outliers on the tensor estimation, we done after estimation of (S, T , T ). This last correction0 1

propose the use of a standard robust M-estimator (Meer et stems from an energy conservation-based MR principle.
al., 1991). A comparison of the behaviour of both regres- In order to estimate the affine transformation, which
sion methods in the presence of various levels of corrupted brings a diffusion-weighted slice into spatial alignment
data proves the interest of the robust approach. An earlier with the standard T2-weighted slice, a similarity measure
shorter version of this paper was published in the MICCAI taking into account the complex dependence between
proceedings (Mangin et al., 2001). intensities embedded in Eq. (1) has to be chosen. The

Fig. 2. The simple geometric model of eddy-current-related distortions.
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purpose of this similarity measure is to return a value tribution (in practiceM 564, because of the few samples
indicating how well the two slices match given a certain leading to the joint histogram computation),i the intensityt

transformation (Maintz and Viergever, 1998; Hill et al., in the target image andi the intensity in the image to bea

2001). Ideally, by maximizing this similarity measure one aligned. The marginal probabilitiesp(i ) and p(i ) aret a

should find the affine transformation that registers the computed by row and column summation.
slices. The optimal transformation, however, usually de- Since 123 realignments have to be performed for each
pends on the chosen similarity measure and on the slice of the volume, a fast optimization scheme is required.
implementation of its optimization. The cross-correlation Fortunately, the use of a Parzen window leads to a rather
measure performs poorly on this problem (Bastin, 2001) smooth MI landscape around the global maximum (see
because the hypothesis of a linear relationship between the Fig. 3). In some cases, several maxima have been observed
T2-weighted intensities and the diffusion-weighted ones is near the global one. In such situations, however, we could
not verified (otherwise, diffusion imaging would be much not claim that the global maximum was a better solution
less interesting). Furthermore, an isoset in the T2-weighted than the surrounding maxima. Hence, Powell algorithm has
slice may correspond to a large range of values in the been used in the following to maximize MI (Powell,
diffusion-weighted slice. This T2-based isoset, indeed, 1964). A multiresolution approach, however, may be used
hides the large variability of the underlying diffusion in the future to get a more reliable selection of the optimal
tensors. Hence, the functional dependence assumed by the maximum (Pluim et al., 2001). For each new image, the
similarity measures based on weighted sums of isoset initial position is (1,0,0), namely the no distortion situa-
variances is not verified too (Woods et al., 1993; Roche et tion.
al., 1998). Thanks to the four repetitions embedded in our acquisi-

Therefore, we have chosen to rely on the mutual tion process, the accuracy and the robustness of the
information, which is a measure originating from infor- correction process can be evaluated. A first experiment
mation theory assuming the least about intensity depen- consists of comparing the results obtained using mutual
dence (Maes et al., 1997; Wells III et al., 1996). The information with the results obtained using another simi-
underlying concept is entropy. The entropy of an image larity measure: the correlation ratio (Roche et al., 1998).
can be thought of as a measure of dispersion in the This experiment aims at evaluating whether the arguments
distribution of the image gray values. Given two images A about intensity dependence leading to choose MI could be
and B, the definition of the mutual information MI(A,B) of supported by some experimental results. While similarity
these images is MI(A,B)5E(A)1E(B)2E(A,B) with E(A) measures like the cross correlation assuming a linear
and E(B) the entropies of the images A and B, respective- dependence between intensities are clearly ill-adapted to
ly, and E(A,B) their joint entropy. The joint entropy our problem, it was interesting to test an intermediate
E(A,B) measures the dispersion of the joint probability measure assuming a weaker relationship but less degrees
distribution p(a,b): the probability of the occurrence of of freedom than MI. Robustness, indeed, is usually ob-
gray value a in image A and gray value b in image B (at
the same position), for all a and b in the overlapping part
of A and B. The joint probability distribution should have
fewer and sharper peaks when the images are matched than
for any case of misalignment. Therefore maximization of
mutual information should correspond to the optimal affine

opt opt opttransformation (S , T , T ).0 1

Since the two images to be aligned are 1283128 slices
to be compared to the usual 3D situation, a Parzen window
is used to get a robust estimation of the joint intensity
distribution. This Parzen window is a truncated Gaussian
kernel sufficient to smooth the joint histogram. This
approach turned out to be crucial to prevent the maxi-
mization algorithm to be trapped in MI local maxima.
Hence, estimation of MI(S, T , T ) consists of a linear0 1

resampling of the image to be aligned according to Eq. (2),
followed by the application of the Parzen window to the
joint histogram. Then MI can be computed from

M21 M21 p(i , i )t a
]]]MI(S, T , T )5O O p(i , i ) log ,0 1 t a p(i ) p(i )i 50 i 50 t at a

Fig. 3. Orthogonal slices of the mutual information crossing at the global
where M is the sampling of the joint probability dis- maximum.
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tained when strong a priori knowledge is embedded in the In general, the correction was reproducible across the
similarity measure. four repetitions (see Fig. 4). The largest variability was

The correlation ratio is an asymmetrical similarity observed for the translation parameterT , which can be0

measure assuming a functional dependence between both understood from the shape of MI landscape (see Fig. 5).
image intensities (Roche et al., 1998). This measure, which MI isophotes, indeed, are rather cylindrical with a T0
has some link with the inter-modality measure proposed in oriented axis along which some local maxima can be
Woods et al. (1993), requires that the reference image be observed. An interesting result is the fact that the highest
partitioned into a number of intensity isosets, namely variability is obtained for the three repetitions of the pure
broken up into areas of similar intensity. Our local T2-weighted target (no sensitizing gradient) for which
implementation relies on a partition of the T2-weighted S 5 1, T 5 0 but T ±0. This observation tends to prove1 0

slice in 64 isosets corresponding to intensity ranges with that eddy currents have long-term trends that corrupt
equal length. These areas are placed over the transformed several consecutive acquisitions. Finally, the estimated
diffusion-weighted slice. Then the variance within each distortions fit well with the physical interpretation men-
area is calculated and the similarity measure is defined tioned above: thexy andyz gradients induce a scaling, the
from a weighted sum of the variances. The correlation ratio xz andyz gradients induce a global translation, and thexy
assumes that each intensity isoset in the reference image andxz gradients induce a shearing.
should correspond to a low dispersion intensity range in
the image to be aligned.

While both methods have given similar results, the 3 . Robust tensor estimation
variability across the four repetitions was higher for the
correlation ratio (see Fig. 4). This lower reproducibility The estimation of the diffusion tensor is done from
could be predicted since the functional relationship be- linear equation (1). TheB matrix in this equation depends
tween the two slices assumed by the correlation ratio is not only on the sequence, and can be computed from Bloch’s
verified. Therefore, this result tends to prove that mutual equations, either formally or numerically (Mattiello et al.,
information is more adapted to our problem. 1994, 1997). Each diffusion-weighted gradient choice

Fig. 4. Comparison between mutual information and correlation ratio for one gradient direction: (1,1,0). Reproducibility of the correction process across
the four repetitions in three gradient directions, (1,1,0), (1,0,1) and (0,1,1), with six different strengths.
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Fig. 5. Example of distortion correction.

leads to a differentB matrix. To get a solvable linear et al., 1994), this method becomes unreliable if some
system, at least six different directions of diffusion-weight- outliers are present in the data. The noise model underlying
ed gradients have to be chosen. In the simplest case with the least squares estimator, however, is deeply related to
only one gradient strength for each of six directions, the the Gaussian distribution. Unfortunately, MR artefacts and
linear system is made up of six equations and six unknown some weaknesses of the tensor model lead us to claim that
values to be estimated (the symmetric tensor components). the data do include some outliers relatively to this dis-
In such situations, the solution is straightforward. tribution. Robust regression methods can be used in such

In more realistic situations, however, more acquisitions situations (Meer et al., 1991). The M-estimators are the
are performed to improve the signal to noise ratio and a more popular robust methods. These estimators minimize
standard estimation procedure has to be designed. In the the sum of a symmetric, positive-definite functionr(e ) ofi

case of the data used in this paper, for instance, five the residualse , with a unique minimum ate 5 0. Ai i

different gradient strengths were used for each of six residual is defined as the difference between the data point
directions, leading to 30 equations. This scheme has been and the fitted value. For the least squares methodr(e )5i

2repeated four times leading to 120 equations. Another kind e . Several otherr functions have been proposed whichi

of dataset consists of using only one gradient strength but a reduce the influence of large residual values on the
lot of different directions (Frank, 2001). This choice estimated fit. We have chosen one of the most popular

2 2 2allows a minimal influence of the direction choice on the ones, the Geman–McLure estimatorr(e )5e /e 1C ,i i i

tensor estimation. This influence, indeed, stems from the whereC 51.48 medianhie ij. This estimator cancels outi i

fact that the tensor model is usually not sufficient to the influence of the large residuals located largely beyond
perfectly describe the actual diffusion process. This remark C becauser is flat outside a centered basin. In contrast,
concerns not only the problem of fiber crossing (Tuch et the least squares approach is mainly driven by these large
al., 2001; Mangin et al., 2002), but also the multi water residuals. The M-estimate of the diffusion tensor is ob-
compartment issue (Clark et al., 2000). Future work, tained by converting the minimization into an iterated
indeed, may lead to acknowledge a complex dependence weighted least squares problem. The initial guess is the
between the diffusion tensor and the gradient strength. solution of the standard least squares.
Anyway, when the model to be estimated is a single In order to compare the behaviour of the two estimators,
tensor, a second model has to be chosen for noise first, raw data have been corrupted with various levels of
then an estimator can be derived. outliers (of course some actual outliers are also present in

While tradition and ease of computation have made the these data). For a given experiment, a percentageP of the
least squares method the popular approach for the regres- 124 images is modified. For such images, an additional
sion analysis yielding the tensor matrix estimation (Basser errore is added to each voxel. This error is sampled from a

Fig. 6. Influence of outliers on the number of non-positive tensor matrices and on the direction of highest diffusion.
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Fig. 7. Left: raw T2-weighted image. Right: tensor fractional anisotropy (Pierpaoli and Basser, 1996) without and with distortion correction and robust
regressor. Fractional anisotropy is a ratio which measures the variability between the diffusion tensor eigenvalues. Without the corrections, thedistortions
in the Y directions create a layer of very anisotropic tensors. With the correction, this layer has almost disappeared and the boundary between grey and
white matter has been largely improved.

Gaussian distribution whose mean is the mean intensity estimation of the tensor matrix. Further work, however,
inside the brain, and whose standard deviation is a tenth of could still improve this procedure. For instance, the issue
the mean. Two measures computed for the voxels located of distortion correction in the presence of subject motion
inside the brain allow us to assess the effect of these remains completely open, like in the case of functional
outliers. The first one is the number of non-positive MRI. Nevertheless, our new procedure already highly
estimated tensors, which have no physical interpretation. improves the quality of the diffusion map which is
Such situations can occur because no positivity constraint illustrated by anisotropy images in Fig. 7. The whole
is embedded in the fitting process. The second measure is scheme has been applied with success to more than 100
the mean angular variation between the direction of highest datasets, including numerous clinical cases.
diffusion according to the tensors estimated with and The basic tenet underlying our procedure is the robust-
without outliers. This direction corresponds to the tensor ness to outliers that can bias either cross-correlation-based
eigenvector associated with the largest eigenvalue. The realignment procedures or least squares-based tensor esti-
evolution of these measures relative to the percentage of mation. While this tenet is very usual in the field of
outliers P is proposed in Fig. 6. The superiority of the computer vision, the field of MR physics is much more
Geman–McLure estimator is straightforward. used to least squares-based approaches that are bound to

It should be noted that a simple way of adding a fail with poor data. Therefore, we think that the field of
positivity constraint into the tensor estimation would diffusion imaging may become in a near future propitious
consist in projecting the estimated tensor on the manifold for rich collaborations between the two research fields.
of positive tensors. Unfortunately, this approach would Foreseeable development of MR diffusion imaging will
amount to replacing negative eigenvalues with zero, which rapidly call for re-evaluation of the procedure proposed in
would lead to non-definite tensor with no more physical this paper. The apparition of ultrafast parallel imaging
meaning. In our opinion, the existence of a few non- approaches using several coils (Bammer et al., 2001) and
positive tensors may stem from some weaknesses of the high angular resolution imaging sequences (Frank, 2001;
tensor model, which is too simple to account for the Tuch et al., 1999, 2001), indeed, will father new post-
complexity of the diffusion process occurring into a brain processing challenges.
voxel. Therefore the future of diffusion imaging is in the
design of more sophisticated models inferred for instance
from higher sampling of the sensitizing gradient direction R eferences
(Frank, 2001; Tuch et al., 1999, 2001). Whatever the
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