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Abstract. With the aim of estimating the growth of tomatoes dur-
ing the agricultural season, we propose to segment tomatoes in images
acquired in open field, and to derive their size from the segmentation
results obtained in pairs of images acquired each day. To cope with
difficult conditions such as occlusion, poor contrast and movement of
tomatoes and leaves, we propose to base the segmentation of an image
on the result obtained on the image of the previous day, guaranteeing
temporal consistency, and to incorporate a shape constraint in the seg-
mentation procedure, assuming that the image of a tomato is approxi-
mately an ellipse, guaranteeing spatial consistency. This is achieved with
a parametric deformable model with shape constraint. Results obtained
over three agricultural seasons are very good for images with limited
occlusion, with an average relative distance between the automatic and
manual segmentations of 6.46 % (expressed as percentage of the size of
tomato).

Keywords: Image segmentation · Parametric active contours · Shape
constraint · Precision agriculture

1 Introduction

Optimal harvesting date and predicted yield are valuable information when farm-
ing open field tomatoes, making harvest planning and work at the processing
plant much easier. Monitoring tomatoes during their early stages of growth is
also interesting to assess plant stress or abnormal development. Satellite data
and crop growth modeling are generally used for estimating the yield of a
large region [10,13]. However, satellite data are affected by adverse climatic
conditions (clouds, etc.) resulting in inaccurate predictions [10]. Crop growth
modeling, which integrates information regarding the cultivated plant, soil and
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weather conditions, considers the ideal case with no infected plant. Recent stud-
ies have concentrated on combining these two approaches [19]. Nevertheless these
methods depend on the quality of the different parameters involved (vegetation
indices, soil and weather information) and they are not accurate enough to detect
abnormal development.

In this work, we present a different approach where we intend to monitor the
growth of tomatoes and measure their size in an open field. For this purpose, two
cameras are installed in the field and two images are captured at regular intervals.
In order to avoid a complete 3D reconstruction, we assume that a tomato can be
approximated by a sphere in the 3D space, which projects into an ellipse in the
image plane. Hence, the first part of our system aims at detecting and segmenting
the tomatoes in both images, using elliptic approximations. Then, the second
part aims at estimating the sphere radius, using the camera parameters. An
estimate of the yield is obtained from this information. In this paper, we focus
on the segmentation procedure only.

Computer vision algorithms have been applied in the agricultural domain in
order to replace human operators with an automated system. They have been
used to grade and sort agricultural products [4,7,11], to detect weeds in a field
[2,9,18], and to model the growth of fruits and then predict the yield [1,14]. In [1],
the yield of an apple orchard is estimated using only the density of flowers. In [14],
only 5 images captured at different stages of the apple maturation are studied
in order to predict the yield. These methods [1,14] are limited to a controlled
environment (apple orchards) where complex scenarios such as occlusions are not
considered. Moreover, in [1] the observed scene is modified by placing a black
cloth behind the tree in order to simplify the image processing tasks. However,
to the best of our knowledge, there has not been any related work where the
growth of a fruit or vegetable cultivated in open fields is studied based on the
images captured during the entire agricultural season.

Since there is little growth of a tomato during a given day, only one image
per day is analyzed in this work, thus creating a series of approximately 20–
30 images. One of the difficulties of the segmentation part is occlusion: most
of the tomatoes are partially hidden by other tomatoes and/or leaves (Fig. 1).
Moreover, color information is not of much use as tomatoes are red only at the
end of the ripening. Also, another difficulty is a very low contrast in some cases
due to shadows.

In this work, the segmentation should be as automatic as possible. However,
we assume that an operator validates each obtained segmentation. If the result
is poor, the operator rejects it. Indeed, given the difficulties, the segmentation
is a very challenging task, and a manual validation is preferable. This approach
enables us to use the segmentation done in the ith image (if validated) as a
reference for the segmentation of the same tomato in the (i + 1)th image.

In order to segment the tomatoes, we use a parametric active contour model,
which allows us to introduce a priori knowledge on the shape of the object to be
segmented, thus making the segmentation more robust to noise and occlusion.
Using an elliptic shape constraint is consistent with our prior assumption.
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Fig. 1. Two successive images of the tomato S = 7.

The main steps of the segmentation algorithm are as follows: first, gradient
information is used in order to find the candidate contour points and propose
several elliptic approximations using the RANSAC algorithm. Secondly, region
information is added, enabling us to select the best ellipse for the initialization
of the active contour and finding the regions of potential occlusions. Thirdly,
the active contour with elliptic constraint is applied. Finally, four ellipse esti-
mates are computed. The operator has only to select the best one as the final
segmentation.

The original features of the proposed algorithm include the approximation
of the tomatoes as ellipses and the conditioning of the computation of the image
energy by the non-occluded regions. These features allow coping with occlusions
and local loss of contour and edges.

We present the active contour model with shape constraint in Sect. 2 and the
different steps of the segmentation algorithm in Sect. 3. Section 4 discusses the
experimental results. A brief discussion on the second part of the system which
aims at estimating the radius of the tomatoes is presented in Sect. 5. This paper
extends our premilinary work in [15].

2 Active Contour with an Elliptical Shape Prior

Parametric active contour model or snake was originally introduced in [8] in
order to detect a boundary of an object in an image. This algorithm deforms
the contour iteratively from its initial position towards the edges of an object
by minimizing an energy functional. The energy functional associated with the
contour v is usually composed of three terms:

ET (v) = EInt(v) + EIm(v) + EExt(v), (1)

where EInt(v) is the internal energy controlling the smoothness of the curve and
EIm(v) is the energy derived from image data. The external energy EExt(v)
can express contextual information, such as shape information. The authors in
[6] used Legendre moments to define an affine invariant shape prior in a region
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based active contour. In our case, the region information is significant but not
stable enough due to the presence of leaves (occlusions) and other tomatoes of
similar intensity profile. In [3], Fourier descriptors are used in order to align the
active contour with the reference curve of suitable shape and orientation. In our
work, the tomato in each image is assumed to have an ellipse shape, which is
included as a constraint in a parametric active contour model.

Let us define the reference ellipse as ze. This ellipse is estimated from the
evolving contour z. Both curves are expressed in polar coordinates with the
origin at the center of ze:

ze(θ) = re(θ)ejθ, z(θ) = r(θ)ejθ, θ ∈ [0, 2π]. (2)

Our energy functional with an elliptic shape regularization is defined as:

ET (r, re) =
∫ 2π

0

α

2
|r′(θ)|2dθ +

∫ 2π

0

EIm(r(θ)ejθ)dθ +
ψ

2

∫ 2π

0

|r(θ) − re(θ)|2dθ.

(3)

In the above equation, the first term represents the internal energy which controls
the variations of r and makes it regular. The second term is a classical image
energy calculated from the gradient vector flow [17]. The last term restricts the
evolving contour to be close to the reference ellipse. The parameter α controls the
smoothness of the curve, and ψ controls the influence of the shape prior on the
total energy. Note that instead of modifying a 2-D vector v(s) = (x(s), y(s)) as
in the classical active contour model, only a 1-D vector r(θ) is modified for each
value of the parameter θ. Moreover, the shape constraint makes the usual second
derivative term in the internal energy useless, and is therefore not included in
the proposed energy functional.

The minimum of ET is obtained in two steps: first, a least square estimate
of the ellipse ze is computed from the initial contour z0. Then, the evolving
contour z is computed by minimizing ET while assuming ze fixed. From the
evolving contour z so obtained, the parameters of the least square estimate of
the ellipse ze are regularly updated. This two-step iterative process is repeated,
in order to obtain the minimum of ET .

The minimization of ET with respect to r is equivalent to solving the follow-
ing Euler equation:

− αr′′(θ) + ∇EIm(θ) · n(θ) + ψ(r(θ) − re(θ)) = 0, (4)

where n(θ) = [cos θ, sin θ]T .
To find iteratively a solution of this equation, we introduce a time variable,

and the resulting equation is discretized using finite differences, as in the case of
the classical active contours.

3 Detailed Algorithm

In this section, we present an algorithm which allows us to follow the growth of
a tomato, which has been manually segmented in the first image (i = 1).
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Let us denote by imi+1 the (i+1)th image of the tomato S. In the rest of this
paper, an ellipse centered at [xc, yc], whose semi major and minor axes lengths
are a and b, respectively, and which has a rotation angle of ϕ, is represented as
Ell = [xc, yc, a, b, ϕ]. The tomato approximated by an ellipse in imi is repre-
sented as Elli = [xci, yci, ai, bi, ϕi]. In our sequential approach, the computation
of the contour in the (i + 1)th image is based on both the information in imi+1

and the contour of the tomato in the ith image. The temporal regularization
(assuming little growth and movement of the tomato during a day) and the
spatial regularization (tomato modeled as a sphere in the 3D space) are used
throughout the segmentation procedure.

3.1 Pre-processing

As mentioned above, the color information is not of much use. However, the
edges of tomatoes are more prominent in the red component of the image, and
hence only this component is considered. The original image is cropped around
the position (xci, yci), resulting in a smaller image (imSi+1

c ). The contrast is
enhanced by a contrast stretching transformation.

3.2 Updating the Tomato Position

Due to its increasing weight, the tomato tends to fall towards the ground (Fig. 2).
Its position in imSi+1

c is calculated using pattern matching. The bright areas,
that may correspond to the tomato, are extracted by convolving the cropped
image with a binary mask representing a white disk of radius χri where ri =
ai+bi

2 and χ is a constant determined empirically (χ = 1.25 in our experiments).
The local maxima Ci+1

c = {(xk, yk), k = 1, ..., kn} are then extracted. From
these kn points, the one Cm = (xm, ym), which is the closest to (xci, yci), is
selected as the new location of the tomato center (Fig. 2(b)).

A new cropped image imSi+1 is then extracted from imi+1, centered at
Cm = (xm, ym). The size of this new image is adapted to the size of the tomato
(derived from ai and bi) so that we restrict the region to be analyzed as much
as possible, thus reducing the computation cost of the next steps. The contrast
stretching transformation is applied to imSi+1.

3.3 Elliptic Approximations

In order to obtain an initial contour for the active contour model, we first com-
pute ln points which may lie on the boundary of the tomato. From these ln
points, a RANSAC estimate is used to obtain several candidate ellipses. Finally,
one of these ellipses is selected as the initial contour based on additional region
information and size regularization.

Let us take Cm as the origin of the polar coordinate system. Then we select
ln points Pl = ple

jθl , where l = 1, ..., ln, 0 < θl < 2π, that satisfy the following
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Fig. 2. Updating the position of the tomato: previous position (xci, yci) in red, candi-
date positions Ci+1

c in magenta and blue, and new position Cm in blue (Color figure
online).

three conditions:

0.5ri < pl < 1.5ri (5)
| arg(∇imSi+1(Pl)) − θl| ≤ π

8 (6)
|∇imSi+1(Pl)| > η (7)

where ∇imSi+1(Pl) is the gradient at Pl in imSi+1 and η is a constant whose
value is determined experimentally (η = 0.2). The above conditions select the
points of strong gradient whose direction is within an acceptable limit with
respect to the vector normal to the circle with radius ri. The threshold values
have been set experimentally. As shown in Fig. 4(a), most points lying on the
boundary of the tomato have been correctly detected along with some additional
points lying on the leaves.

A least square estimate of an ellipse calculated from all ln points might
result in a contour far away from the actual boundary because of the detection
of irrelevant points. Therefore, we use a RANSAC [5] estimate based on an ellip-
tic model in order to compute several candidate ellipses. Note that the spatial
(tomato modeled as an ellipse) and temporal (parameters of the model) regular-
ization has been used in this step to increase the robustness of the segmentation
procedure.

Under normal circumstances, the size and the orientation of the tomato in
imSi+1 are supposed to be close to the ones in imSi. This information is incorpo-
rated in the RANSAC estimation and only the ellipses whose parameters satisfy
the following conditions are considered:

−0.1 < ai+1−ai

ai < 0.2,−0.1 < bi+1−bi

bi < 0.2 (8)

−0.1 < SAi+1−SAi

SAi < 0.25 (9)

|Ecci+1−Ecci

Ecci | < 0.1 (10)

|ϕi+1−ϕi

ϕi | < 0.2 (11)
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Fig. 3. Evolution of a. The abscissa represents the image number (i), and the ordinate

represents ai+1−ai

ai . The solid horizontal red lines show the selected threshold values
(Color figure online).

where SAi+1 and SAi represent the surface of the ellipses in imSi+1 and imSi

respectively. The eccentricity (Ecc = a
b ) for the two ellipses is denoted by Ecci+1

and Ecci respectively.
Negative variations for a and b (Eq. 8) are possible because of the movement

of the tomato with respect to the camera or because of the variation in the
orientation, as tomatoes are actually not perfect spherical objects. Equation 9
restricts the apparent size of the tomato while Eq. 10 restricts the admissible
values for eccentricity, thus controlling the apparent shape of the tomato.

The threshold values in Eqs. 8–11 have been determined after studying the
parameters of the ellipses obtained from the manual segmentation of five toma-
toes. For example, Fig. 3 shows the relative evolution of the length of semi-major
axis a of the ellipses. Most of the measurements are situated within the limits
defined above. Note that the dissymmetry in the lower and upper bounds in
Eqs. 8–9 is due to the fact that tomatoes are supposed to grow during the agri-
cultural season.

From the N ellipses computed using the RANSAC algorithm, a total of Na

ellipses, with Na < N , are retained, corresponding to the Na ellipses with the
largest number of inliers (Fig. 4(b)).

3.4 Adding Region Information

A region growing algorithm is applied in order to add region information and
determine the best initialization for the active contour among the Na ellipses
Elli+1

u , where u = 1, ..., Na. Moreover, potential occlusions are also derived from
this information.

Let us denote by ωu the binary image representing the region inside the
ellipse Elli+1

u . We apply a classical region growing algorithm starting from ωseed

and limiting the growing to ωlimit, where:

ωseed =
Na⋂
u=1

ωu, ωlimit =
Na⋃
u=1

ωu. (12)

The final region is denoted by ωt (Fig. 4(c)).
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We define τm as:
τm = min

u=1,2,....Na

τ(u), (13)

with

τ(u) =
|ωu ∩ (1 − ωt)| + |(1 − ωu) ∩ ωt|

|ωu ∩ ωt| , (14)

where |A| represents the cardinality of a set A. The ratio τ(u) measures the
consistency between the segmentation obtained through the contour analysis ωu

and the region analysis ωt. It reaches a minimum (zero) when ωu and ωt match
perfectly.

Let us denote by ai+1
u and bi+1

u the semi-axis lengths of the candidate
ellipse Elli+1

u , u ∈ [1, Na]. We select the ellipse v (Fig. 4(d)) that minimizes[(
ai+1

u − ai)2 + (bi+1
u − bi

)2]
under the condition τ(v) ≤ 1.1 τm. Thus, we have

obtained the initial contour by combining the results obtained using two differ-
ent segmentation methods, one based on boundary information and the other
based on region information. The selected ellipse Elli+1

v is chosen among the
ones for which both results are consistent, leading to a better robustness with
respect to occlusions. Moreover, another regularization condition is added, which
imposes that the size and shape of the ellipse in imSi+1 are close to the ones in
imSi.

The next step aims at finding the regions where occlusions could disturb the
behavior of the active contour. For example, the region in which the tomato is
attached to the plant has a different intensity from the one of the tomato.

Let Ellte denote the ellipse which covers the convex hull of ωt and which
minimizes the number of pixels inside the ellipse Ellte and not belonging to
the region ωt (Fig. 4(e)). Let ωte be the region inside Ellte. Then, the region of
occlusion ωoc can be computed as ωoc = ωte ∩ ωc

t .
Using morphological operations (erosion followed by reconstruction by dila-

tion), small regions are removed from ωoc, so that the resulting ωoc corresponds to
actual leaves causing the occlusions (Fig. 4(f)). Apart from detecting the “head”
of the tomato, any other additional occlusion (mostly due to leaves) can also be
detected using this approach (Fig. 4(f)).

3.5 Applying Active Contours

The active contour (Sect. 2) is applied with the following initialization Elli+1
vc =

[xci+1
v , yci+1

v , 0.95ai+1
v , 0.95bi+1

v , ϕi+1
v ]. Indeed, the movement of the curve z is

smoother and faster if initialized inside the tomato. For the first nstart iterations,
the parameter ψ is set to zero, so that z moves towards the most prominent
contours. Then the shape constraint is introduced for nellipse iterations (ψ �= 0)
in order to guarantee robustness with respect to occlusion. Finally, the shape
constraint is relaxed (ψ = 0) for a few nend iterations, which guarantees reaching
the boundary more accurately, as a tomato is not a perfect ellipse.

Note that the image forces are not considered in the region of occlusion ωoc,
in every step of this process.
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Fig. 4. (a,b) Points of strong gradient and ellipses detected using the RANSAC esti-
mate. (c,d) ωt: region representing tomato, Elli+1

v : selected initial ellipse. (e,f) Ellte:
convex hull of ωt and region of potential occlusion ωoc.

As explained in Sect. 2, the reference ellipse ze is regularly updated, every
nshape iterations. A least square estimate calculated from all the points of the
curve z is not relevant, because some of them may lie on false contours (e.g.
leaves). So, the following algorithm aims at selecting a subset of points that
actually lie on the boundary of the tomato.

We use a polar coordinate system with the origin at the center of the current
reference ellipse ze. As in Sect. 2, let us denote by z(θ) = r(θ)ejθ a point of
the evolving curve, ze(θ) = re(θ)ejθ the corresponding point on the reference
ellipse, ne(θ) the vector normal to the ellipse ze, and zq(θ) = rq(θ)ejθ the point
that maximizes the gradient module for 0 < rq(θ) < 1.1re(θ). The point z(θ) is
selected as a point lying on the boundary of the tomato if it satisfies the following
conditions:

|∇imSi+1(z(θ)) · ne(θ)| > Γ (15)

|∇imSi+1(z(θ)) · ne(θ)|
|∇imSi+1(z(θ))| > 0.75 (16)

d(zq(θ), z(θ)) < dmax (17)

where · represents the vector dot product.
The first condition ensures that the magnitude of the gradient vector pro-

jected onto the normal of the ellipse is strong. The threshold Γ is determined
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Fig. 5. (a,b) Active contour with shape constraint. (c,d) Two different sets of points
Ph and P′

h. (e,f) Final ellipse estimates for two different images (Color figure online).

automatically [12]. The second condition ensures that the direction of the gradi-
ent is close to the vector normal to the ellipse. The last condition (dmax = 2 in
our experiments) imposes that the considered point is a meaningful local maxi-
mum of the gradient. Finally, the parameters of the reference ellipse are updated
by calculating a least square approximation from the subset of points lying on
the evolving contour z selected using the above conditions (Fig. 5(a)).

3.6 Refining the Results

A least square estimate of an ellipse from z (Fig. 5(b)) is generally not relevant
as outliers may be present due to occlusion. So, again, a selection procedure
is applied. A first subset of points Ph (Fig. 5(c)) is obtained by using criteria
similar to the ones described in Sect. 3.5 (Eqs. 15–17). Then, another subset P′

h is
computed by relaxing the condition related to the gradient direction (Fig. 5(d)).

Then four ellipses are computed as follows:

1. A least square approximation Elli+1
f1 = [xci+1

f1 , yci+1
f1 , ai+1

f1 , bi+1
f1 , ϕi+1

f1 ] is com-
puted from all the points of z.
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2. Another estimate Elli+1
f2 = [xci+1

f2 , yci+1
f2 , ai+1

f2 , bi+1
f2 , ϕi+1

f2 ] is obtained from P′
h

using the RANSAC algorithm with the following conditions:

0.9ai+1
f1 < ai+1

f2 < 1.1ai+1
f1 (18)

0.9bi+1
f1 < bi+1

f2 < 1.1bi+1
f1 (19)

3. A least square approximation Elli+1
f3 is obtained from the subset Ph.

4. A weighted least square estimate Elli+1
f4 is obtained where the points of Ph

are assigned a higher weight (0.75) and the other points of z a lower weight
(0.25). This is done in order to give importance to the points that are surely
on the boundary of the tomato.

If the images have a good contrast, and little or no occlusion, all the four ellipses
will be almost identical (Fig. 5(e)). However, in case of occlusions and poor
contrast, the four ellipses may be different (Fig. 5(f)), and the user selects the
best one.

4 Results

Two cameras (Pentax Optio W80) were installed in an open field of tomatoes.
The same setup was used for three agricultural seasons (April-August, 2011, 2012
and 2013). We have identified 21 tomatoes, covering different sites and different
seasons, thus ensuring variability (614 images in total). The tomatoes were iden-
tified manually by observing the images of the entire agricultural season. Due to
the severe occlusions, only a limited number of tomatoes were visible in most of
the images of a given season. Therefore, only the tomatoes which were visible in
more than 10 consecutive images were studied.

As discussed earlier, one of the main challenges of the segmentation is the
occlusion and the poor quality of the images due to the poor illumination and/or
shadow. Moreover, for the images acquired in the 2013 agricultural season (S =
12, .., 21) the size of the tomatoes was significantly smaller as compared to the
one observed during the agricultural seasons in 2011 and 2012 (S = 1, ..., 11).
This is due to the variation in the external climatic conditions. Also, in some
images, a shadow created by the leaves (or the tomato itself) can be observed
(S = 8, 12). As a result, a portion of the contour is not clear and distinct. This
results in an ambiguity on the position of the contour. Given this ambiguity,
even a manual segmentation is a challenging task on this portion of the contour.
Moreover, a blurred contour was observed in some images of some sequences
(S = 3, 13, 18, 19, 20), due to the presence of additional neighboring tomatoes in
the background.

The data set contains images of varying contrast and degree of occlusions.
Obviously, it is impossible to obtain a reliable segmentation, even manually, in
case of severe occlusion. Consequently we studied experimentally the effect of the
percentage of occlusion on the final estimation of the radius of a spherical object
(considering the complete system, segmentation and partial 3D reconstruction).
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In our experiments, the percentage P of occlusion corresponds to the occlusion
of an arc with subtended angle equal to 2πP

100 . For less than 30 % occlusion,
the variation in the estimated radius was very small, and for more than 30 %
occlusion, significant change in the values of the estimated radius was observed.
Thus, we identified three different categories:

– Category 1, containing images with an amount of occlusion P less than 30 %
for which the estimation is very robust with respect to segmentation impreci-
sion,

– Category 2, with 30% < P < 50% which is more prone to segmentation error,
– Category 3, with P > 50% for which it is impossible to perform a reliable

segmentation.

The percentage of occlusion was determined manually by selecting the end points
of the occluded elliptic arc. Note that the percentage of occlusion was computed
only to evaluate the segmentation procedure, and this is not a part of the algo-
rithm.

The obtained segmentations A were compared with the manual segmenta-
tions M (approximated by ellipses) by computing the average Di

mean and maxi-
mal Di

max distances between A and M for the ith image (expressed in pixels). In
order to better interpret the results, the maximum and mean distances between
two contours are normalized by the size of the tomato as:

Di
meanR =

Di
mean

ri
100,Di

maxR =
Di

max

ri
100. (20)

For this project, DmeanR < 10% is considered as the acceptable limit of error
in order to follow the growth of tomatoes.

For the images of category 1, good results (Table 1) were obtained even in
the presence of occlusion by nearby leaves/branches and tomatoes (Figs. 6(a)
and 6(b)). In some images captured at the beginning of the season, when the
size is very small, the occlusion due to leaves present on the “head” of the tomato
results in an ambiguity on the position of the actual contour (Fig. 6(c)). Also,
in some images (Fig. 6(d)), due to a shadow effect on a portion of the contour,
the intensity profiles of the tomato and the adjacent leaves are nearly identical,
resulting in a very low contrast. Such cases may result in comparatively high
distance measures even in the absence of any occlusion.

Due to the smaller size of tomatoes in sequences S = 12, ..., 21, higher dis-
tances were observed in these sequences (since the distances Di

meanR and Di
maxR

are normalized by the size ri of the tomato). For example, Fig. 6(e) shows the
obtained segmentation Ellf4 on the 3rd image of sequence S = 17. The distances
normalized by the size of the tomato are DmeanR = 9.89 % and DmaxR = 26.60 %.
However, the distances expressed in pixels are significantly lower (Dmean = 2,
Dmax = 5.38 pixels). For most of the sequences a low μDmeanR

along with lower
σDmeanR

demonstrates the robustness of the proposed method. However, for some
sequences (S = 13, 17, 18) higher values of μDmeanR

and σDmeanR
were observed

mainly due to the false detection of the position of the tomato (Sect. 3.2), or
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Fig. 6. Final segmentation Ellf4 (red) obtained on images of category 1, and values
of (DmeanR, DmaxR) with respect to the manual segmentation (in cyan) (Color figure
online).

Fig. 7. Final segmentation Ellf4 (red) obtained on images of category 2 (Color figure
online).

due to the small size of the tomato, as discussed previously. For the sequence
S = 11, all the images suffer from poor contrast and noise due to the shadow
created by leaves. As a result, even a manual segmentation is a challenging task
in this sequence.
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Table 1. Mean (μ) and standard deviation (σ) of DmeanR and DmaxR by comparing
ellipse Ellf4 and Ellopt with the manual segmentation M . Only the images belonging
to category 1 (i.e. with a low amount of occlusion) have been considered.

Ellf4 Ellopt

N1
S μDmeanR

σDmeanR
μDmaxR

σDmaxR
μDmeanR

σDmeanR
μDmaxR

σDmaxR

S=1 26 1.72 0.77 5.06 2.76 1.34 0.68 3.76 2.21

S=2 4 1.85 0.46 5.45 1.91 1.57 0.40 4.43 0.88

S=3 21 3.4 2.24 9.79 6.88 2.87 2.05 8.40 6.58

S=4 14 2.73 1.92 7.81 5.71 2.20 1.77 6.28 5.34

S=5 5 4.81 1.3 13.05 3.56 4.54 1.14 12.44 3.46

S=6 0 - - - - - - - -

S= 7 25 1.88 0.65 4.81 1.97 1.7 0.49 4.61 1.62

S=8 20 6.07 5.75 15.41 10.61 5.4 4.88 14.9 10.37

S=9 1 5.26 0 11.86 0 5.24 0.00 11.86 0.00

S=10 5 2.25 0.56 6.59 2.25 1.75 0.36 4.40 1.25

S=11 4 11.81 4.99 32.66 11.39 10.18 5.38 29.21 14.74

S=12 19 4.74 1.33 11.69 3.23 4.25 1.34 11.1 3.44

S=13 5 41.5 16.55 84.98 27.57 40.48 16.18 83.51 26.85

S=14 4 9.57 2.35 29.48 7.3 9.18 2.57 28.06 7.84

S=15 0 - - - - - - - -

S= 16 21 4.68 1.08 10.22 2.74 4.46 1.18 10.12 2.68

S=17 20 11.78 2.44 26.75 4.21 11.56 2.48 26.85 4.04

S=18 23 14.18 20.06 35.76 33.83 13.94 20.09 35.15 33.42

S=19 0 - - - - - - - -

S= 20 5 8.76 5.38 20.05 14.93 6.88 2.3 13.65 2.98

S=21 25 7.34 3.18 16.56 8.93 7.12 3.15 15.76 8.94

For the images of category 2 containing a significant amount of occlu-
sion, DmeanR is significantly higher than for images of category 1. This is
because of heavy occlusions along with the poor quality of images (effects due
to shadow and/or presence of other tomatoes). However, in some sequences
(S = 1, 2, 5, 6, 8, 9, 15, 18, 20, 21) an average DmeanR of less than 10 % was
observed. This is because of the good contrast on the non-occluded arc in these
images, which results in a good segmentation. Finally, good results were obtained
on 73 % of the images (Fig. 7), where DmeanR < 10% even in the presence of
severe occlusions.

In the results presented so far, Ellf4 was compared with the manual segmen-
tation. However Ellf4 is not necessarily the best ellipse, and was selected here for
illustrative purpose only. Due to the variation in the contrast and occlusion, there
is not a single ellipse (among the four ellipse estimates) which represents a good
segmentation for all the images. Let us denote by Ellopt the ellipse, among the
four ellipse estimates (Ellf1, Ellf2, Ellf3 and Ellf4), for which μDmeanR

is mini-
mum. Table 1 shows the distribution of DmeanR and DmaxR for ellipse Ellopt. It
can be observed that the values of DmeanR and DmaxR for Ellopt are lower than
for those of Ellf4. The operator selects Ellopt as the final segmentation.
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5 Estimating the Size of the Tomato

From the obtained segmentation in both images and the camera parameters,
we then estimate the size of the tomatoes. However, determining the image
point pairs which correspond to the same point in the 3D space is a challenging
task given the complexity of the scene. Instead we simplify the size estimation
procedure by exploiting the spherical hypothesis.

The contour of the tomato is approximated by an ellipse whose parameters
are calculated using the procedure presented above. Then, the sphere center in
the 3D space is computed using triangulation from the centers of the ellipse
calculated in both images. Next, the 3D space points situated on the contour of
the tomato are computed using properties of projective geometry, independently
from each image. Finally, a joint optimization procedure enables us to estimate
the sphere radius.

In order to evaluate the size estimation procedure, the size of tomatoes
observed in laboratory was measured. Since a tomato is not a perfect sphere,
two reference values were measured manually and compared with the estimated
radius of the sphere. For the manually segmented tomatoes observed in labo-
ratory, we found that the relative percentage error between the largest of the
reference value and the estimated radius was less than 5 % in 91 % of the cases.
For the tomatoes cultivated in the open field, the relative percentage error was
less than 10 % in 80 % of the cases [16]. The errors are mainly caused by the
imperfect segmentation, due to shadowing effect and the poor quality of the
images.

6 Conclusions

We presented a segmentation procedure used to monitor the growth of tomatoes
from images acquired in an open field. Starting from an approximate computa-
tion of the position of the center of the tomato, segmentation algorithms based on
contour and region information are proposed and combined, in order to deter-
mine a first estimate of the contour. Then, a parametric active contour with
shape constraint is applied and four ellipse estimates representing the tomatoes
are obtained. In all the steps of this process, a priori knowledge about the shape
and the size of the tomatoes is modeled and incorporated as regularization terms,
leading to a better robustness. It is supposed that the operator selects, at the
end of the process for each image, the ellipse corresponding to the best elliptic
estimation of the actual contour.

The segmentation of tomatoes is a challenging task due to the presence of
occlusion and variation in contrast. In order to evaluate the robustness of the
proposed algorithm, the entire image set was divided into three categories based
on the amount of occlusion. For the images with an acceptable level of occlusion,
good results were obtained on most (87 %) of images where DmeanR was less than
10 %. Also, the low standard deviation for DmeanR indicates the robustness of
the proposed algorithm. Good results with DmeanR < 10% were obtained on
73 % of the images that contain a significant amount of occlusion.
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For the moment, it has been assumed that an operator manually selects one
ellipse as the final segmentation. In future work, we wish to provide automatically
the best representation of the tomato. Also, in some images, the position of the
tomato is not detected correctly due to the presence of other tomatoes nearby.
This could be improved by updating the position of the tomato globally by
considering also the movement of adjacent tomatoes. One possible improvement
for the active contour model is to restrict the size of the reference ellipse, as
there is little growth between two consecutive images.
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