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Modal Logics Based on Mathematical
Morphology for Qualitative Spatial
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Isabelle Bloch
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Département TSI - CNRS URA 820
46 rue Barrault, 75013 Paris, France
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ABSTRACT. We propose in this paper to construct modal logics based on mathematical morphol-
ogy. The contribution of this paper is twofold. First we show that mathematical morphology
can be used to define modal operators in the context of normal modal logics. We propose defini-
tions of modal operators as algebraic dilations and erosions, based on the notion of adjunction.
We detail the particular case of morphological dilations and erosions, and of there composi-
tions, as opening and closing. An extension to the fuzzy case is also proposed. Then we show
how this can be interpreted for spatial reasoning by using qualitative symbolic representations
of spatial relationships (topological and metric ones) derived from mathematical morphology.
This allows to establish some links between numerical and symbolic representations of spatial
knowledge.

KEYWORDS: Modal Logics, Mathematical Morphology, Adjunction, Dilation, Erosion, Spatial
Relations, Qualitative Spatial Reasoning.

1. Introduction

When looking at the algebraic properties of mathematical morphology operators
on the one hand, and of modal logic operators on the other hand, several similari-
ties can be shown, and suggest that links between both theories are worth to be in-
vestigated. We propose in this paper to define a pair of modal operators (�,�) as
morphological erosion and dilation. Extending the work presented in [BLO 00c], we
address the more general case of algebraic dilations and erosions and define (�,�) as
an adjunction, which is a fundamental notion in mathematical morphology [HEI 90].

Mathematical morphology provides tools for spatial reasoning at several levels.
The notion of structuring element captures the local spatial context and leads to anal-
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400 JANCL – 12/2002. Spatial Logics

ysis of a scene using operators involving the neighborhood of each point. At a more
global level, several spatial relations between spatial entities can be expressed as mor-
phological operations, in particular using dilations. Therefore mathematical morphol-
ogy leads also to structural analysis of a scene.

The importance of relationships between objects has been highlighted in very dif-
ferent types of works: in vision, for identifying shapes and objects, in database sys-
tem management, for supporting spatial data and queries, in artificial intelligence, for
planning and reasoning about spatial properties of objects, in cognitive and perceptual
psychology, in geography, for geographic information systems, etc.

Usually vision and image processing make use of quantitative representations of
spatial relationships. In artificial intelligence, mainly symbolic representations are de-
veloped (see [VIE 97] for a survey). Limitations of purely qualitative reasoning have
already been stressed in [DUT 91], as well as the interest of adding semiquantitative
extension to qualitative value (as done in the fuzzy set theory for linguistic variables
[ZAD 75, DUB 80]) for deriving useful and practical conclusions (as for recognition).
An example can be found in [GUE 96] based on Allen’s intervals. Purely quanti-
tative representations are limited in the case of imprecise statements, and of knowl-
edge expressed in linguistic terms. On the other hand, communication about spatial
knowledge is often simpler in a linguistic way, as stressed in [DEN 96]. For instance
reasoning with words about geographical information is becoming an important field
[GUE 98]. In [BLO 00b] we proposed to integrate both quantitative and qualitative
knowledge, using semiquantitative interpretation of fuzzy sets. As already mentioned
in [FRE 75], this allows to provide a computational representation and interpretation
of imprecise spatial constraints, expressed in a linguistic way, possibly including quan-
titative knowledge. In this paper, spatial relationships have been derived from mor-
phological operations applied to reference objects and represented as spatial fuzzy
sets.

Until now mathematical morphology has been used mainly for quantitative rep-
resentations of spatial relations. For qualitative spatial reasoning, several symbolic
approaches have been developed, but mathematical morphology has not been used in
this context to our knowledge. In this paper we show how modal operators based on
morphological operators can be used for symbolic representations of spatial relations.

The lattice structure of formulas is briefly recalled in Section 2. In Section 3, we
show that modal operators can be constructed from morphological dilations and ero-
sions, as introduced in [BLO 00c]. In Section 4, we introduce a new way to build
modal operators, from the notion of adjunction and from algebraic dilations and ero-
sions. Morphological dilation and erosion constitute a particular case. We show that
conversely, any modal logic which satisfies a number of axioms can be characterized
in terms of algebraic dilations and erosions. In Section 5 we define modal operators
from morphological opening and closing. An extension to the fuzzy case is proposed
in Section 6. Then we show how this can be interpreted for spatial reasoning by
using qualitative representations of spatial relationships derived from mathematical
morphology (Section 7). This allows to establish some links between numerical and
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Modal logics & mathematical morphology 401

symbolic representations of spatial knowledge. The interest of such links has been for
instance highlighted in [DEN 96] in the context of spatial cognition.

In a similar way as in [JEA 94], the modal operators are used here for represent-
ing spatial relationships, while classical predicates represent the semantic part of the
information. In [JEA 94], inclusion and adjacency are considered. Here we consider
more spatial relationships, including metric ones, and model all of them using mathe-
matical morphology. This is an original aspect of our work, which has not been used
in a logical setting until now, although the modal flavor of mathematical morphology
has been briefly mentioned in [AIE 99], but without further development.

2. Notations and lattice structure

Let PS be a finite set of propositional symbols. The language is generated by PS,
the usual connectives, and modal operators that will be defined in the following. The
set of formulas is denoted by Φ. We will use standard Kripke’s semantics and denote
by M a model composed of a set of worlds Ω, a binary relationR between worlds and
a truth valuation. For any ϕ in Φ, Mod(ϕ) = {ω ∈ Ω | ω |= ϕ} is the set of worlds
in which ϕ is satisfied in the model M. For any subset B of Ω, we define B |= ϕ as
∀ω ∈ B,ω |= ϕ (i.e. B ⊆Mod(ϕ)).

Morphological operations on logical formulas have been proposed in [BLO 00d],
by exploiting equivalences between logical and set theoretical notions and by identi-
fying a formula ϕ (and all equivalent formulas) with Mod(ϕ).

Considering the inclusion relation on 2Ω, (2Ω,⊆) is a complete lattice. Similarly a
lattice is defined on Φ≡, where Φ≡ denotes the quotient space of Φ by the equivalence
relation between formulas (with the equivalence defined as ϕ ≡ ψ iff Mod(ϕ) =
Mod(ψ)). In the following, this will be implicit assumed, and we will simply use
the notation Φ. Any subset {ϕi} of Φ has a supremum ∨iϕi, and an infimum ∧iϕi

(corresponding respectively to union and intersection in 2Ω). The greatest element is
� and the smallest one is ⊥ (corresponding respectively to 2Ω and ∅). This lattice
structure is important for the algebraic point of view of mathematical morphology, as
will be seen in Section 4. Indeed, it is the fundamental structure on which adjunctions
can then be defined.

We define a canonical formula ϕω associated with a world ω by:

Mod(ϕω) = {ω}. (1)

Let C be the subset of Φ containing all canonical formulas. The canonical formulas
are sup-generating, i.e:

∀ϕ ∈ Φ, ∃{ϕi} ⊆ C, ϕ ≡ ∨iϕi. (2)

The formulas ϕi are associated with the worlds ωi which satisfy ϕ: for all ωi such that
ωi |= ϕ, ϕi ≡ ϕωi . This decomposition will be used in some proofs, in particular in
Section 4.
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402 JANCL – 12/2002. Spatial Logics

3. Modal operators from morphological dilations and erosions

In this Section, we show that morphological erosions and dilations can be used for
defining modal operators � and � having several interesting properties.

3.1. Morphological dilation and erosion of formulas

Let us first recall the definitions of dilation and erosion of a set X (typically X ⊆
IRn) by a structuring element B in IRn, denoted respectively by DB(X) and EB(X)
[SER 82]:

DB(X) = {x ∈ IRn | Bx ∩X �= ∅}, (3)

EB(X) = {x ∈ IRn | Bx ⊂ X}, (4)

where Bx denotes the translation of B at x,

In these equations, B defines a neighborhood that is considered at each point. It
can also be seen as a relationship between points.

The most important properties of dilation and erosion are the following ones
[SER 82]:

– monotonicity: if X ⊆ Y , then DB(X) ⊆ DB(Y ) and EB(X) ⊆ EB(Y ); if
B ⊆ B′, thenDB(X) ⊆ DB′(X) and EB′(X) ⊆ EB(X);

– extensivity of dilation and anti-extensivity of erosion if the origin belongs to B:
X ⊆ DB(X), EB(X) ⊆ X ;

– iteration property: dilating (eroding) a set successively by two structuring ele-
ments is equivalent to perform one dilation (erosion) by the sum of the structuring
elements;

– dilation commutes with union and erosion with intersection;

– duality with respect to complementation: EB(X) = [DB(XC)]C .

Using the previous equivalences, and based on set definitions of morphological op-
erators [SER 82], dilation and erosion of a formula ϕ have been defined in [BLO 00d]
as follows:

Mod(DB(ϕ)) = {ω ∈ Ω | B(ω) ∩Mod(ϕ) �= ∅}, (5)

Mod(EB(ϕ)) = {ω ∈ Ω | B(ω) |= ϕ}. (6)

In these equations, the structuring elementB represents a relationship between worlds,
i.e. ω′ ∈ B(ω) iff ω′ satisfies some relationship to ω. The condition in Equation 5
expresses that the set of worlds in relation to ω should be consistent with ϕ, i.e.:

∃ω′ ∈ B(ω), ω′ |= ϕ.

The condition in Equation 6 is stronger and expresses that ϕ should be satisfied in all
worlds in relation to ω.
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Modal logics & mathematical morphology 403

The main properties of dilation and erosion also hold in the logical setting pro-
posed here. They are detailed in [BLO 00d].

These definitions are particular cases of the more general definition of algebraic
dilations and erosions that will be presented in Section 4.

3.2. Structuring element as accessibility relation

The structuring element B representing a relationship between worlds defines a
“neighborhood” of worlds. If it is symmetrical, it leads to symmetrical structuring
elements. If it is reflexive, it leads to structuring elements such that ω ∈ B(ω), which
leads to interesting properties, as will be seen later. Here we define this relationship
as an accessibility relation as in normal modal logics [HUG 68, CHE 80].

An interesting way to choose the relationship is to base it on distances between
worlds, which is an important information in spatial reasoning. This allows to define
sequences of increasing structuring elements defined as the balls of a distance. For
any distance δ between worlds, a structuring element of size n centered at ω takes the
following form:

Bn(ω) = {ω′ ∈ Ω | δ(ω, ω′) ≤ n}. (7)

For instance a distance equal to 1 can represent a connectivity relation between worlds,
defined for instance as a difference of one literal (i.e. one propositional symbol taking
different truth values in both worlds).

To illustrate this, we make use of a graph representation of worlds, where each
node represents a world and a link represents an elementary connection between two
worlds, i.e. being at distance 1 from each other. A ball of radius 1 centered at ω is
constituted by ω and the ends of the arcs originating in ω. This allows for an easy
visualization of the effects of transformations. Let us consider an example with three
propositional symbols a, b, c. The possible worlds are represented in Figure 1. Two
successive dilations of the formula ϕ = ¬a ∧ b ∧ c are shown as well.

Another way to choose the relationship is to rely on an indistinguishability relation
between worlds [ORL 93, BAL 99], for instance based on spatial attributes of spatial
entities represented by these worlds. Interestingly enough, as shown in [ORL 93],
modal logics based on such relationships show some links with Pawlak’s work on
rough sets and rough logic [PAW 82, PAW 87], while rough sets can be constructed
from morphological operators as shown in [BLO 00a]. This consideration suggests
some further links to be exploited between these different approaches.

We define an accessibility relation from any structuring elementB as follows:

R(ω, ω′) iff ω′ ∈ B(ω). (8)

Conversely, a structuring element can be defined from an accessibility relation using
this equivalence.
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404 JANCL – 12/2002. Spatial Logics

a ∧ b ∧ c

¬a ∧ b ∧ c

a ∧ ¬b ∧ c

a ∧ b ∧ ¬c

¬a ∧ ¬b ∧ c

¬a ∧ b ∧ ¬c

a ∧ ¬b ∧ ¬c

¬a ∧ ¬b ∧ ¬c����
����

��������
��������

����

����

ϕ D1(ϕ) D2(ϕ)

���� ����

�
�
���

�
�
��

�
���......................................................................................................................................................................................................... .....

......

.......................................................................................................................................................... ......
......
......
......
......
......
......
....................................................................................................................................................................................................................................................................................................

Figure 1. Graph representation of possible worlds with 3 symbols and an example of
ϕ and two successive dilations. An arc between two nodes means that the correspond-
ing nodes are at distance 1.

The accessibility relation R is reflexive iff ∀ω ∈ Ω, ω ∈ B(ω). It is symmetrical
iff ∀(ω, ω′) ∈ Ω2, ω ∈ B(ω′) iff ω′ ∈ B(ω) (this is the case in the example of
Figure 1). In general, accessibility relations derived from a structuring element are
not transitive. Indeed in general if ω ′ ∈ B(ω) and ω′′ ∈ B(ω′), we do not necessarily
have ω′′ ∈ B(ω).

3.3. Modal logic from morphological dilations and erosions

Modal operators � and � are usually defined from an accessibility relation as
[CHE 80]:

M, ω |= �ϕ iff ∀ω′ ∈ Ω such that R(ω, ω′), then M, ω′ |= ϕ, (9)

M, ω |= �ϕ iff ∃ω′ ∈ Ω, R(ω, ω′) and M, ω′ |= ϕ, (10)

where M is a standard model related to R, that we will omit in the following in order
to simplify notations (it will be always implicitly related to the considered accessibility
relation).

Equation 9 can be rewritten as:

ω |= �ϕ ⇔ {ω′ ∈ Ω | R(ω, ω′)} |= ϕ

⇔ {ω′ ∈ Ω | ω′ ∈ B(ω)} |= ϕ

⇔ B(ω) |= ϕ,

which corresponds exactly to the definition of the erosion of a formula as defined in
Equation 6.
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Modal logics & mathematical morphology 405

Similarly, Equation 10 can be rewritten as:

ω |= �ϕ ⇔ {ω′ ∈ Ω | R(ω, ω′)} ∩Mod(ϕ) �= ∅
⇔ {ω′ ∈ Ω | ω′ ∈ B(ω)} ∩Mod(ϕ) �= ∅
⇔ B(ω) ∩Mod(ϕ) �= ∅,

which exactly corresponds to a dilation according to Equation 5.

This shows that we can define modal operators based on an accessibility relation
as erosion and dilation with a structuring element:

�ϕ ≡ EB(ϕ), (11)

�ϕ ≡ DB(ϕ). (12)

3.4. Properties

Theorem 1 of [BLO 00c] summarizes the axioms and inference rules that are satis-
fied by these modal operators, based on properties of morphological operators and on
equivalences between set theoretical and logical concepts. They are detailed below.

THEOREM 1. — The modal logic built from morphological erosions and dilations
has the following theorems and rules of inference (we use similar notations as in
[CHE 80]):

– T: �ϕ→ ϕ andϕ→ �ϕ if ∀ω ∈ Ω, ω ∈ B(ω) (reflexive accessibility relation).

– Df: �ϕ↔ ¬�¬ϕ and �ϕ↔ ¬�¬ϕ.

– D: �ϕ→ �ϕ iff R is serial (or in other words, ∀ω ∈ Ω, B(ω) �= ∅).

– B: ��ϕ→ ϕ and ϕ→ ��ϕ.

– 5c: ��ϕ→ �ϕ and �ϕ→ ��ϕ if ∀ω ∈ Ω, ω ∈ B(ω).
– 4c: ��ϕ→ �ϕ and �ϕ→ ��ϕ if ∀ω ∈ Ω, ω ∈ B(ω).
– N: �� and ¬� ⊥.

– M: �(ϕ ∧ ψ) → (�ϕ ∧ �ψ) and (�ϕ ∨ �ψ) → �(ϕ ∨ ψ).
– M’: �(ϕ ∧ ψ) → (�ϕ ∧ �ψ) and (�ϕ ∨ �ψ) → �(ϕ ∨ ψ).
– C: (�ϕ ∧ �ψ) → �(ϕ ∧ ψ) and �(ϕ ∨ ψ) → (�ϕ ∨ �ψ).
– R: (�ϕ ∧ �ψ) ↔ �(ϕ ∧ ψ) and �(ϕ ∨ ψ) ↔ (�ϕ ∨ �ψ).
– RN:

ϕ

�ϕ
.

– RM:
ϕ→ ψ

�ϕ→ �ψ
and

ϕ→ ψ

�ϕ→ �ψ
.
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406 JANCL – 12/2002. Spatial Logics

– RR:
(ϕ ∧ ϕ′) → ψ

(�ϕ ∧ �ϕ′) → �ψ
and

(ϕ ∨ ϕ′) → ψ

(�ϕ ∨ �ϕ′) → �ψ
.

– RE:
ϕ↔ ψ

�ϕ↔ �ψ
and

ϕ↔ ψ

�ϕ↔ �ψ
.

– K: �(ϕ→ ψ) → (�ϕ→ �ψ) and by duality (¬�ϕ ∧ �ψ) → �(¬ϕ ∧ ψ).

PROOF. — These properties are deduced from the algebraic properties of morpho-
logical operators, using the equivalences between set theoretical concepts and logical
ones:

– T comes from the anti-extensivity of erosion and from the extensivity of dilation
for structuring elements derived from a reflexive relation.

– Df corresponds to the duality between erosion and dilation with respect to com-
plementation (negation of formulas).

– D holds iff the accessibility relation is serial, i.e. ∀ω ∈ Ω, ∃ω ′ ∈ Ω, R(ω, ω′),
which is equivalent to ∀ω ∈ Ω, B(ω) �= ∅. This is in particular true if R is reflexive
(and then D can be simply derived from T).

– B comes from the extensivity of closing (dilation followed by an erosion) and
from the anti-extensivity of opening (erosion followed by a dilation).

– 5c is T applied to �ϕ.

– 4c is T applied to �ϕ. It corresponds to the fact that accessibility relations
constructed from structuring elements are weakly dense, i.e. we have ∀(ω, ω ′) ∈
Ω2, R(ω, ω′) → ∃ω′′ ∈ Ω, R(ω, ω′′) ∧ R(ω′′, ω′). Indeed, at least if the relation is
reflexive, if we have ω ′ ∈ B(ω) then ∃ω′′ ∈ B(ω) ∩ B(ω′). Dual expressions hold
for �.

– M, C and R come from the fundamental property of dilation (respectively ero-
sion) which commutes with union or disjunction (respectively with intersection or
conjunction).

– Increasingness of both operators leads to RM (monotonicity).

– RR is deduced from RM and R, and RE from RM applied to ϕ → ψ and to
ψ → ϕ.

– Dilatation does not commute with intersection and only an inclusion holds, lead-
ing to M’. Similarly, erosion does not commute with union.

– RN is derived from N and RR (see e.g. [CHE 80]).

– Since K is not directly derived from a property that is usually found in textbooks
about mathematical morphology, we give here the main lines of the proof. From
((ϕ → ψ) ∧ ϕ) → ψ we deduce, using monotonicity, �((ϕ → ψ) ∧ ϕ) → �ψ, and
using M and C, (�(ϕ → ψ) ∧ �ϕ) → �ψ. Using classical rules of propositional
logic, we deduce �(ϕ→ ψ) → (�ϕ→ �ψ).
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Modal logics & mathematical morphology 407

Since the proposed system contains Df, N, C and is closed by RM, it is a normal
modal logic [CHE 80].

THEOREM 2. — On the contrary, the following expressions are not satisfied in gen-
eral:

– 5: �ϕ → ��ϕ (since the dilation followed by an erosion is a closing which
does not necessarily contains the dilation).

– 4: �ϕ→ ��ϕ (since eroding a region twice produces a smaller region).

PROOF. — 5 is not satisfied because accessibility relations derived from structur-
ing elements are in general not Euclidean, i.e. the following property does not hold:
∀(ω, ω′, ω′′) ∈ Ω3, R(ω, ω′) ∧R(ω, ω′′) → R(ω′, ω′′). Let us consider the example
of Figure 1 and show a counter-example: let

ϕ ≡ (a ∧ b ∧ c) ∨ (¬a ∧ b ∧ c) ∨ (a ∧ ¬b ∧ c).

Then we have:
�ϕ ≡ a ∨ b ∨ c

and
��ϕ ≡ (a ∧ b) ∨ (b ∧ c) ∨ (a ∧ c)

and �ϕ→ ��ϕ does not hold.

Similarly, 4 is not satisfied since in general R is not transitive and we can have
R(ω, ω′) ∧R(ω′, ω′′) but ¬R(ω, ω′′).

Let us now denote by �n the iteration of n times � (i.e. n erosions by the same
structuring element). Since the succession of n erosions by a structuring element is
equivalent to one erosion by a larger structuring element, of size n (iterativity property
of erosion), �n is a new modal operator, constructed as in Equation 11. In a similar
way, we denote by �n the iteration of n times �, which is again a new modal operator,
due to iterativity property of dilation, constructed as in Equation 12 with a structuring
element of size n. We set �1 = � and �1 = �.

We also have the following theorems:

– �n�n′
ϕ↔ �n+n′

ϕ, and �n�n′
ϕ↔ �n+n′

ϕ (iterativity properties of dilation
and erosion).

– ����ϕ ↔ ��ϕ, and ����ϕ ↔ ��ϕ (idempotence of opening and clos-
ing). This is actually a theorem from any KB logic: ����ϕ → ��ϕ is B applied
to ��ϕ and ��ϕ→ ����ϕ comes from B applied to �ϕ and from RM.

– More generally, we derive from properties of opening and closing the following
theorems:

�n�n�n′
�n′

ϕ↔ �max(n,n′)�max(n,n′)ϕ,

and
�n�n�n′

�n′
ϕ↔ �max(n,n′)�max(n,n′)ϕ.
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408 JANCL – 12/2002. Spatial Logics

– For n < n′, the following expressions are theorems: �nϕ → �n′
ϕ, �n′

ϕ →
�nϕ, �n�nϕ→ �n′

�n′
ϕ, �n′

�n′
ϕ→ �n�nϕ.

4. Modal operators from adjunction

In this Section, we consider the more general framework of algebraic erosions and
dilations and the fundamental property of adjunction [HEI 90].

4.1. Adjunction, algebraic erosions and dilations

Algebraic erosions and dilations are defined as operations in a lattice that commute
with infimum and supremum respectively. We do not make any additional assumption,
and in particular we do not refer to any structuring element.

Generalizing the definitions of [BLO 00d], we define here an algebraic dilation δ
on Φ as an operation which commutes with disjunction, and an algebraic erosion ε
as an operation which commutes with conjunction, i.e. we have the two following
expressions for any family {ϕi}:

δ(∨iϕi) ≡ ∨iδ(ϕi), (13)

ε(∧iϕi) ≡ ∧iε(ϕi). (14)

One of the fundamental properties in the algebraic framework is the one of adjunc-
tion [HEI 90]. A pair of operators (ε, δ) on sets is an adjunction iff ∀(X,Y ), δ(X) ⊆
Y iff X ⊆ ε(Y ). It can be proved that if (ε, δ) is an adjunction, then ε is an algebraic
erosion and δ is an algebraic dilation.

In this Section, we use similar concepts on Φ for defining modal operators. A pair
of modal operators (�,�′) is an adjunction on Φ iff:

∀(ϕ, ψ) ∈ Φ2, |= (�′ϕ→ ψ ≡ ϕ→ �ψ), (15)

or in other words:
ϕ→ �ψ

�′ϕ→ ψ
and

�′ϕ→ ψ

ϕ→ �ψ
.

In terms of worlds, this can also be expressed as:

∀(ϕ, ψ) ∈ Φ2, Mod(�′ϕ) ⊆Mod(ψ) iff Mod(ϕ) ⊆Mod(�ψ). (16)

At this point, we use the notation (�,�′) instead of the classical notation (�,�)
because, as will be seen later, the two operators are not necessarily dual. In general
they are two different modal operators.
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Modal logics & mathematical morphology 409

THEOREM 3. — If (�,�′) is an adjunction on Φ, then � is an algebraic erosion,
and �′ is an algebraic dilation, i.e. for any family {ϕi}, we have:

� ∧i ϕi ≡ ∧i�ϕi, (17)

�′ ∨i ϕi ≡ ∨i�
′ϕi. (18)

These equivalences are also true for empty families, since we have � ′⊥ ≡ ⊥.

The proof is similar as the one for adjunctions on sets (see e.g. [HEI 90]).

4.2. Properties

THEOREM 4. — Let (�,�′) be an adjunction on the lattice of logical formulas.
The modal logic based on these operators has the following theorems and rules of
inference (we use similar notations as in Theorem 1 but � has to be replaced by � ′):
B, N, M, M’, C, R, RN, RM, RR, RE, K.

The proof is derived mainly from Theorem 3, from Equations 2 and 15-18 and
from the following result:

THEOREM 5. — We can write � and �′ as:

�ϕ ≡ ∨{ψ ∈ Φ, �′ψ → ϕ}, (19)

�′ϕ ≡ ∧{ψ ∈ Φ, ϕ→ �ψ}. (20)

Again formulas are considered up to the equivalence relation, and therefore ∨ and
∧ are taken over a finite family.

PROOF (OF THEOREM 4). — More precisely, M, C and R are deduced from The-
orem 3. This proposition implies RM, which leads to RR and RE. RM can also be
deduced from Theorem 5. K is deduced from monotonicity, M, C and classical rules
of propositional logics, as for Theorem 1. M’ is deduced from increasingness. B is
deduced from Equations 19 and 20. N is obtained by applying the commutativity of
� with conjunction and of �′ with disjunction on empty families. RN can be deduced
from N and RR (see e.g. [CHE 80]).

THEOREM 6. — T, 5c and 4c are not always satisfied, and we have the following
results:

– T if ∀ω ∈ Ω, ω |= �′ϕω,

– 5c if ∀ω ∈ Ω, ω |= �′ϕω,

– 4c if ∀ω ∈ Ω, ω |= �′ϕω.

PROOF. — T is simply obtained by reasoning on canonical decomposition and by
using the commutativity of �′ with disjunction. By applying T to �ϕ and � ′ϕ we
deduce 5c and 4c.
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410 JANCL – 12/2002. Spatial Logics

Note that the condition on B for T in Theorem 1 corresponds to the one above,
and we have B(ω) = Mod(�ϕω).

THEOREM 7. — We have the two following additional theorems:

– ��′�ϕ↔ �ϕ and �′��′ϕ↔ �′ϕ.

– �′��′�ϕ↔ �′�ϕ and ��′��′ϕ↔ ��′ϕ.

PROOF. — The proof is straightforward by using B and monotonicity.

THEOREM 8. — Let (�,�′) be an adjunction on Φ. Let �∗ϕ ≡ ¬�¬ϕ and �′∗ϕ ≡
¬�′¬ϕ. Then (�′

∗,�∗) is an adjunction.

This property expresses a kind of duality between both operators.

Note that we do not always have:

– Df: �′ϕ↔ ¬�¬ϕ and �ϕ↔ ¬�′¬ϕ.

– D: �ϕ→ �′ϕ.

THEOREM 9. — Df is satisfied by an adjunction (�,� ′) if and only if �′ satisfies
the following property:

∀(ω, ω′) ∈ Ω2, ω |= �′ϕω′ iff ω′ |= �′ϕω. (21)

D is satisfied by an adjunction (�,�′) if and only if �′ satisfies one of the two follow-
ing properties:

∀ω ∈ Ω, ω |= �′ϕω (22)

or

∀(ω, ω′) ∈ Ω2, ω |= �′ϕω′ iff ω′ |= �′ϕω and {ω′, ω′ |= �′ϕω} �= ∅. (23)

The last result means in particular that we can have D without having T.

In cases where Df is satisfied, then we note simply � instead of � ′.

THEOREM 10. — The operators (�,�) defined by Equations 11 and 12 build an
adjunction.

This shows that modal operators derived from morphological erosions and dila-
tions are particular cases of modal operators derived from algebraic erosions and dila-
tions.

The results obtained in this section show that the use of general algebraic dilations
and erosions defined from the adjunction property lead to the properties of normal
modal logics. This justifies the use of Kripke’s semantics in Section 3, introduced for
the particular case of morphological dilations and erosions. This also guarantees a
completeness result.
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Modal logics & mathematical morphology 411

4.3. Characterizing modal logics in terms of morphological operators

Conversely, the following result shows that modal operators satisfying some ax-
ioms can be expressed in morphological terms.

THEOREM 11. — If two modal operators � and � satisfy B and RM, then (�,�) is
an adjunction on Φ, � is an algebraic erosion and � is an algebraic dilation.

PROOF. — Let us assume that �ϕ → ψ. Monotonicity (RM) implies ��ϕ → �ψ.
From B we derive ϕ → ��ϕ and thus ϕ → �ψ. Similarly if ϕ → �ψ we derive
from B and RM �ϕ → ψ. (�,�) is therefore an adjunction on Φ, and Theorem 3
leads to the conclusion that � is an algebraic erosion and � is an algebraic dilation.

THEOREM 12. — Moreover, if we define a relationR between worlds byR(ω, ω ′) iff
ω |= �ϕω′ , where ϕω is a canonical formula associated with ω (Mod(ϕω) = {ω}),
then � and � are exactly given by:

Mod(�ϕ) = {ω ∈ Ω | ∀ω′, R(ω′, ω) ⇒ ω′ |= ϕ}, (24)

Mod(�ϕ) = {ω ∈ Ω | ∃ω′, R(ω, ω′), ω′ |= ϕ}. (25)

PROOF. — The proof is directly derived from the decomposition of a formula in
canonical formulas (Equation 2).

These equations are similar to the ones used in Section 3 for defining modal op-
erators from an accessibility relation and a structuring element, except that here we
consider R(ω, ω′) for one operator, and R(ω ′, ω) for the other. If R is symmetrical,
both are equivalent. In cases where the structuring element (and the accessibility re-
lation) is not symmetrical, we consider its symmetrical in one of the operations (note
that this is not the standard convention used in mathematical morphology in [SER 82]
and in Section 3, but the one used in the algebraic framework of adjunctions).

The operators proposed in Section 3 (and [BLO 00c]) are therefore particular cases
of the more general expressions proposed here based on adjunctions. This corresponds
to the same levels as in the case of set operations: the most general dilations and ero-
sions are the operations that commute with union and intersection respectively (as used
in this section). If they are moreover invariant by translation (in the spatial domain),
then there exists a structuring element B such that these operations are expressed un-
der their morphological form as in Section 3 [SER 82, SER 88]. This property of
invariance by translation is often a requirement in spatial information processing.

5. Modal operators from morphological opening and closing

Morphological opening and closing of a formula are defined in [BLO 00d] simi-
larly as for sets [SER 82]:

O(ϕ) ≡ DB(EB(ϕ)), C(ϕ) ≡ EB(DB(ϕ)). (26)
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412 JANCL – 12/2002. Spatial Logics

These operators are dual from each other, as dilation and erosion are, increasing
and idempotent. Moreover, opening is anti-extensive and closing is extensive.

We can define modal operators from them as:

�ϕ ≡ O(ϕ), (27)

�ϕ ≡ C(ϕ). (28)

Unfortunately, this leads to weaker properties than operators derived from erosion
and dilation. This comes partly from the fact that no accessibility relation can be
derived from opening and closing as easily as from erosion and dilation.

However, it would be interesting to link this approach with the topological inter-
pretation of modal logic as proposed in [AIE 99], since opening and closing are related
to the notions of topological interior and closure. Note that considering erosion and
dilation only leads to a pre-topology (where closure is not idempotent).

Another interesting direction could be to consider the neighborhood semantics
[AIE 99], where here the neighborhoods of ω would be all elements of the setN(ω) =
{B(ω′) | ω′ ∈ Ω and ω ∈ B(ω′)}. With this semantics, we can prove:

ω |= �ϕ⇔ ∃ω′ ∈ Ω | B(ω′) ∈ N(ω) and B(ω′) |= ϕ. (29)

The proof of this expression comes from the following rewriting of opening:

Mod(�ϕ) = Mod(O(ϕ)) = {ω ∈ Ω | ∃ω′ ∈ Ω, ω ∈ B(ω′) and B(ω′) |= ϕ}.
(30)

Kripke’s semantics can be seen as a particular case, where the neighborhood of ω
is reduced to the singleton {B(ω)}.

THEOREM 13. — The modal logic constructed from opening and closing satisfies T,
Df, D, 4, 4c, 5c, N, M, M’, RM, RE, but not 5, B, K, C, R, RR.

PROOF. — T is guaranteed by extensivity of closing and anti-extensivity of opening
(whatever the structuring element). Df is the expression of duality of both operations.
D is deduced from T. 4 and 4c are deduced from idempotence of opening and clos-
ing. 4 corresponds to a fundamental property of interior operator, which goes with the
topological interpretation of some modal logics [BEN 95, AIE 99]. 5c is again guar-
anteed from anti-extensivity of opening. M and M’ are deduced from M, M’ and C
for dilation and erosion. RM expresses monotonicity, derived from the composition of
two monotonic operations. B is satisfied only for formulas that are open with respect
to the considered structuring element, i.e. in very particular cases.

The fact that K is not satisfied goes with the interpretation in terms of neighbor-
hood semantics, which leads to a weaker logic, where RM (monotonicity) is satisfied,
but not K in general [AIE 99].
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Modal logics & mathematical morphology 413

6. Extension to the fuzzy case

In this Section, we consider fuzzy formulas, i.e. formulas ϕ for which Mod(ϕ)
is a fuzzy subset of Ω. Several definitions of mathematical morphology on fuzzy
sets with fuzzy structuring elements have been proposed in the literature (see e.g.
[BLO 93, BLO 95, SIN 92, BAE 93, BAE 95, SIN 97]). Here we use the approach
of [BLO 95] using t-norms and t-conorms as fuzzy intersection and fuzzy union 1.
However, what follows applies as well if other definitions are used. Erosion of a
fuzzy set µ by a fuzzy structuring element ν, both defined in a space S (for instance
S = IRn), is defined as:

∀x ∈ S, Eν(µ)(x) = inf
y∈S

T [c(ν(y − x)), µ(y)], (31)

where T is a t-conorm and c a fuzzy complementation 2. By duality with respect to the
complementation c, fuzzy dilation is then defined as:

∀x ∈ S, Dν(µ)(x) = sup
y∈S

t[ν(y − x), µ(y)], (32)

where t is the t-norm associated with the t-conorm T with respect to the complemen-
tation c .

These definitions guarantee that most properties of dilation and erosion are pre-
served when extended to fuzzy sets. Extensivity of closing, anti-extensivity of open-
ing, and idempotence of these operations are satisfied only for specific t-norms and
t-conorms, as Lukasiewicz operators (see [BLO 95] for further details).

Modal operators in the fuzzy case can then be constructed from fuzzy erosion
and dilation in a similar way as in the crisp case using Equations 11 and 12. The
fuzzy structuring element can be interpreted as a fuzzy relation between worlds. The
properties of this fuzzy modal logic are the same as in the crisp case, since fuzzy
dilations and erosions have the same properties as the binary ones.

This extension can also be considered from the algebraic point of view of adjunc-
tion, based on the results of [DEN 00] and on a definition of fuzzy erosion in terms of
residual implication.

The use of fuzzy structuring elements will appear as particularly useful for ex-
pressing intrinsically vague spatial relationships such as directional relative position.

It could be also interesting to relate this approach to the possibilistic logic proposed
for belief fusion in [BOL 95], and to similarity-based reasoning [EST 97, DUB 97].

1. A triangular norm (or t-norm) is a function from [0, 1] × [0, 1] into [0, 1] which is com-
mutative, associative, increasing, and for which 1 is unit element and 0 is null element
[MEN 42, SCH 63]. Examples of t-norms are min, product, etc. [DUB 80].
2. A fuzzy complementation is a function c from [0, 1] into [0, 1] such that c(0) = 1, c(1) = 0,
c is involutive: ∀x ∈ [0, 1], c(c(x)) = x, and c is strictly decreasing.
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414 JANCL – 12/2002. Spatial Logics

7. Qualitative representation of spatial relationships

For qualitative spatial reasoning, worlds can represent spatial entities, like regions
of the space. Formulas then represent combinations of such entities, and define re-
gions, objects, etc., which may be not connected. For instance, if a formula ϕ is a
symbolic representation of a region X of the space, it can be interpreted for instance
as “the object we are looking at is inX”. In an epistemic interpretation, it could repre-
sent the belief of an agent that the object is in X . The interest of such representations
could be also to deal in a qualitative way with any kind of spatial entities, without
referring to points.

Using these interpretations, if ϕ represents some knowledge or belief about a re-
gion X of the space, then �ϕ represents a restriction of X . If we are looking at an
object in X , then �ϕ is a necessary region for this object. Similarly, �ϕ represents
an extension ofX , and a possible region for the object. In an epistemic interpretation,
�ϕ can represent the belief of an agent that the object is necessarily in the erosion
of X while �ϕ is the belief that it is possibly in the dilation of X . Interpretations in
terms of rough regions are also possible.

In this Section, we address the problem of qualitative representation of spatial re-
lationships between regions or objects represented by logical formulas. According
to the semantical hierarchy of Kuipers [KUI 88], we consider topological and met-
ric relationships (corresponding to levels 3 and 4 of this hierarchy). Many authors
have stressed the importance of topological relationships, e.g. [ALL 83, VAR 96,
RAN 92, COH 97, ASH 95, CLE 97, KUI 78, PUL 88]. But distances and direc-
tional relative position (constituting the metric relationships) are also important, e.g.
[PEU 88, DUT 91, KUI 88, GAP 94, KRI 93, WAN 99, LIU 98].

In previous works, we have shown that several spatial relationships can be ex-
pressed using morphological dilation or fuzzy dilation, as distances [BLO 99c], adja-
cency [BLO 97], directional relative position [BLO 99a, BLO 99b]. Spatial represen-
tations of these relationships have been proposed in [BLO 00b]. Now, we propose to
use the modal operators introduced in this paper to provide symbolic and qualitative
representations of such spatial knowledge.

7.1. Topological relationships

Let us first consider topological relationships. Let ϕ and ψ be two formulas rep-
resenting two regions X and Y of the space. Note that all what follows holds in both
crisp and fuzzy cases. Simple topological relations such as inclusion, exclusion, in-
tersection do not call for more operators than the standard ones of propositional logic
(see e.g. [BEN 95]). But other relations such that X is a tangential part of Y can
benefit from the morphological modal operators. Such a relationship can be expressed
as:

ϕ→ ψ and �ϕ ∧ ¬ψ consistent, (33)
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Modal logics & mathematical morphology 415

or, equivalently,
ϕ→ ψ and ϕ ∧ ¬�ψ consistent. (34)

Indeed, if X is a tangential part of Y , it is included in Y but its dilation is not, and
equivalently it is not included in the erosion of Y , as illustrated in Figure 2.

X / ϕ

Y / 

D(X) / 

ψ
E(Y) / ψ

ϕ

Figure 2. Illustration of tangential part relationship, and its expression in terms of
dilation and erosion.

In a similar way, a relation such that X is a non tangential part of Y is expressed
as:

ϕ→ ψ and �ϕ→ ψ, (35)

or, equivalently,
ϕ→ ψ and ϕ→ �ψ, (36)

(i.e. in order to verify that X is a non tangential part of Y , we have to prove these
relations).

If we also want X to be a proper part, we have to add the following condition:

¬ϕ ∧ ψ consistent. (37)

Let us now consider adjacency (or external connection). Saying thatX is adjacent
to Y means that they do not intersect and as soon as one region is dilated, it has a non
empty intersection with the other. In symbolic terms, this relation can be expressed
as:

ϕ ∧ φ inconsistent and �ϕ ∧ ψ consistent and ϕ ∧ �ψ consistent. (38)

Actually, this expression holds in a discrete domain. If ϕ and ψ represent spatial
entities in a continuous spatial domain, some problems may occur if these entities are
closed sets and have parts of local dimension less than the dimension of the space (see
[BLO 97] for a complete discussion). Such problems can be avoided if the entities
are reduced to regular ones, i.e. that are equal to the closure of their interior. Using
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416 JANCL – 12/2002. Spatial Logics

the topological interpretation of modal logic, this amounts to deal with formulas for
which we can prove ϕ↔ ��ϕ.

It could be interesting to link these types of representations with the ones de-
veloped in the community of mereology and mereotopology, where such relations
are defined respectively from parthood and connection predicates [ASH 95, RAN 92,
COH 97, VAR 96, REN 01]. Interestingly enough, erosion is defined from inclusion
(i.e. a parthood relationship) and dilation from intersection (i.e. a connection rela-
tionship). Some axioms of these domains could be expressed in terms of dilation.
For instance from a parthood postulate P (X,Y ) between two spatial entities X and
Y and from dilation D, tangential proper part could be defined as TPP (X,Y ) =
P (X,Y ) ∧ ¬P (Y,X)∧ ¬P (D(X), Y ). Further links certainly deserve to be investi-
gated, in particular with the work presented in [COH 97, CRI 00, GAL 00], etc.

7.2. Metric relationships

Distances and directional position are important relationships in order to describe
a scene by means of the spatial arrangement of the objects, and to account for the
structural information of the scene in spatial reasoning.

7.2.1. Distances

Distances between objects X and Y can be expressed in different forms, as the
distance between X and Y is equal to n, the distance between X and Y is less (re-
spectively greater) than n, the distance between X and Y is between n1 and n2.
Several distances can be related to morphological dilation, as minimum distance and
Hausdorff distance. We used these relations as a basis for defining distances between
fuzzy sets in [BLO 99c]. For instance for the minimum distance, denoted by dmin, the
following equations hold, whereDn denotes the dilation of size n:

dmin(X,Y ) = min{n ∈ IN, Dn(X) ∩ Y �= ∅ and Dn(Y ) ∩X �= ∅}, (39)

dmin(X,Y ) = n⇔{ ∀m < n,Dm(X) ∩ Y = Dm(Y ) ∩X = ∅
and Dn(X) ∩ Y �= ∅, Dn(Y ) ∩X �= ∅. (40)

dmin(X,Y ) ≤ n⇔ Dn(X) ∩ Y �= ∅, Dn(Y ) ∩X �= ∅. (41)

dmin(X,Y ) ≥ n⇔ ∀m < n,Dm(X) ∩ Y = Dm(Y ) ∩X = ∅. (42)

n1 ≤ dmin(X,Y ) ≤ n2 ⇔{ ∀m < n1, D
m(X) ∩ Y = Dm(Y ) ∩X = ∅

and Dn2(X) ∩ Y �= ∅, Dn2(Y ) ∩X �= ∅. (43)

The proof of these equations involves extensivity of dilation (for such structuring el-
ements), and increasingness with respect to the structuring element. They can be
extended to the fuzzy case by using fuzzy dilation [BLO 99c, BLO 00b].
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Modal logics & mathematical morphology 417

Similarly for the Hausdorff distance dHaus, we have:

dHaus(X,Y ) = min{n ∈ IN, Y ⊆ Dn(X) and X ⊆ Dn(Y )}, (44)

and similar equations for the other types of distance information.

Now, the translation into a logical formalism is straightforward. Expressing that
dmin(X,Y ) = n leads to:

{ ∀m < n,�mϕ ∧ ψ inconsistent and �mψ ∧ ϕ inconsistent
and �nϕ ∧ ψ consistent and �nψ ∧ ϕ consistent.

(45)

Expressions like dmin(X,Y ) ≤ n translate into:

�nϕ ∧ ψ consistent and �nψ ∧ ϕ consistent. (46)

Expressions like dmin(X,Y ) ≥ n translate into:

∀m < n,�mϕ ∧ ψ inconsistent and �mψ ∧ ϕ inconsistent. (47)

Expressions like n1 ≤ dmin(X,Y ) ≤ n2 translate into:
{ ∀m < n1,�

mϕ ∧ ψ inconsistent and �mψ ∧ ϕ inconsistent
and �n2ϕ ∧ ψ consistent and �n2ψ ∧ ϕ consistent.

(48)

The proof of these equations involves mainly T and the results on � n at the end of
Section 3.

Similarly for Hausdorff distance, we translate dHaus(X,Y ) = n by:
{ ∀m < n,ψ ∧ ¬�mϕ consistent or ϕ ∧ ¬�mψ consistent

and ψ → �nϕ and ϕ→ �nψ.
(49)

The first condition corresponds to dHaus(X,Y ) ≥ n and the second one to
dHaus(X,Y ) ≤ n.

Let us consider an example of possible use of these representations for spatial
reasoning. If we are looking at an object represented by ψ in an area which is at a
distance in an interval [n1, n2] of a region represented by ϕ, this corresponds to a
minimum distance greater than n1 and to a Hausdorff distance less than n2. This is
illustrated in Figure 3.

Then we have to check the following relation:

ψ → ¬�n1ϕ ∧ �n2ϕ, (50)

or equivalently:
ψ → �n1¬ϕ ∧ �n2ϕ. (51)

This expresses in a symbolic way an imprecise knowledge about distances represented
as an interval. If we consider a fuzzy interval, this extends directly by means of fuzzy
dilation (see [BLO 00b] for detailed expressions of these dilations).
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418 JANCL – 12/2002. Spatial Logics

n1

n2

n1

n2

ϕ

ϕ

ϕ

ψ

Figure 3. Illustration of a distance relation expressed by an interval.

These expressions show how we can convert distance information, which is usu-
ally defined in an analytical way, into algebraic expressions through mathematical
morphology, and then into logical expressions through morphological expressions of
modal operators.

7.2.2. Directional relative position

Contrary to the previous relationships, relative directional position (like object X
is on the right of object Y ) is an intrinsically vague information, for which the fuzzy
set framework is appropriate for defining formally such relationships with good prop-
erties. To the best of our knowledge, almost all existing methods for defining fuzzy
relative directional spatial position rely on angle measurements between points of the
two objects of interest [KRI 93, MIY 94, KEL 95, MAT 99], and concern 2D objects
(sometimes with possible extension to 3D). These approaches cannot easily be used
for defining a fuzzy set in the space corresponding to the area where a directional
relationship to an object is satisfied, nor to translate such information in a symbolic
setting. Here we rely on the approach we proposed in [BLO 99a], which is completely
different and more suitable to this task, since the relationship is defined directly in the
considered space (spatial domain). It consists in dilating the reference object X with
a particular structuring element, of radial form, having high membership values along
lines in the desired direction, and decreasing membership values when going away
from this direction. This dilation provides a fuzzy area of the space, based on which
the relation of any other object toX can be assessed (for instance using pattern match-
ing).

Let us denote by Dd the dilation corresponding to a directional information in
the direction d, and by �d the associated modal operator. Expressing that an object
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Modal logics & mathematical morphology 419

represented by ψ has to be in direction d with respect to a region represented by ϕ
amounts to check the following relation:

ψ → �dϕ. (52)

In the fuzzy case, this relation can hold to some degree.

This formulation directly inherits the properties of directional relative position de-
fined from dilation (see [BLO 99b] for details), such as invariance with respect to
geometrical transformations. It also has a behavior that fits well the intuition if the
distance to the reference object increases, and in case of concavities.

Usually for spatial reasoning several relationships have to be used together. This
aspect can benefit from the developments in information fusion, both in a numerical
and in a logical setting.

8. Conclusion

We proposed in this paper definitions of modal operators from mathematical mor-
phology and the fundamental concept of adjunction. Conversely, we have shown that
some modal logics can be characterized in terms of mathematical morphology. We
discussed the properties of the proposed operators and their usefulness for deriving
qualitative representations of spatial relationships, since several spatial relationships
can be expressed in terms of mathematical morphology. Extensions to the fuzzy case
are possible based on fuzzy mathematical morphology and need to be further exploited
for dealing with imprecisely defined spatial entities and with vague relations. The
proposed approach can be related to the possibilistic logic proposed for belief fusion
in [BOL 99], and to similarity-based reasoning [EST 97]. Operators based on other
morphological operators could also be investigated, based on algebraic opening and
closing, or filters. The proposed modal logic, derived from links established between
theories that were so far disconnected3, merges the advantages of logical represen-
tations, of modal operators which allow to express in a common language different
types of spatial knowledge, and of mathematical morphology which provides a unified
framework for representing local spatial knowledge as well as relationships between
spatial entities. We expect that this can be further exploited for spatial reasoning and
for merging qualitative and quantitative aspects.
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3. These links between both theories are also currently studied by J. van Benthem et al. [BEN ]
in particular in the framework of linear logic and arrow logic.
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