
Image and Vision Computing 28 (2010) 317–328
Contents lists available at ScienceDirect

Image and Vision Computing

journal homepage: www.elsevier .com/ locate / imavis
Automatic cleaning and segmentation of web images based on colors to build
learning databases

Christophe Millet a,b,*, Isabelle Bloch b, Patrick Hède a, Pierre-Alain Moëllic a

a CEA, LIST, Laboratoire d’ingénierie de la connaissance multimédia multilingue, 18 Route du Panorama, BP6, F-92265 Fontenay-aux-Roses, France
b ENST (GET Télécom Paris), CNRS UMR 5141 LTCI, Paris, France
a r t i c l e i n f o

Article history:
Received 7 August 2007
Accepted 1 June 2009

Keywords:
Semantics
Web images
Automatic segmentation
Sorting images
0262-8856/$ - see front matter � 2009 Elsevier B.V. A
doi:10.1016/j.imavis.2009.06.005

* Corresponding author. Address: CEA, LIST, Lab
connaissance multimédia multilingue, 18 Route d
Fontenay-aux-Roses, France. Tel.: +33 1 46 54 81 37;

E-mail addresses: chr.millet@gmail.com (C. Millet)
(I. Bloch), patrick.hede@cea.fr (P. Hède), pierre-alain.m
a b s t r a c t

This article proposes a method to segment Internet images, that is, a group of images corresponding to a
specific object (the query) containing a significant amount of irrelevant images. The segmentation algo-
rithm we propose is a combination of two distinct methods based on color. The first one considers all
images to classify pixels into two sets: object pixels and background pixels. The second method segments
images individually by trying to find a central object. The final segmentation is obtained by intersecting
the results from both. The segmentation results are then used to re-rank images and display a clean set of
images illustrating the query. The algorithm is tested on various queries for animals, natural and man-
made objects, and results are discussed, showing that the obtained segmentation results are suitable
for object learning.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

Whereas many recent publications reported good improve-
ments in object learning [1–3], there is still the bottleneck that
their learning databases have been manually and carefully con-
structed, cleaned and annotated, and are therefore limited in size
because of the human time and cost required to do so. For example,
the Corel database [2] contains about 60,000 images, the Caltech
database [4] contains about 30,000 images for 256 objects and
the IAPR TC-12 benchmark for the ImageCLEFphoto evaluation
campaign [5] uses 20,000 photographs.

On the other hand, Web image search engines on the Internet
(e.g. Google, Yahoo!, Ask) now give access to more than two bil-
lions of images. However, these images have been indexed only
with the text surrounding the images in the web pages, which of-
ten leads to inaccurate annotation and subsequently brings a lot of
noise when retrieving images. A quick study on the 50 first images
of 50 queries using a simple word to retrieve animals or man-made
objects showed that for Google and Yahoo!, the two most used im-
age search engines, the average noise is about 50%: half of the
images returned are not related to the query.

As an attempt to make Internet users label images from the
Web, Carnegie Mellon University created ESP game [6] to make a
game out of labeling. In order to increase the relevancy and objec-
ll rights reserved.

oratoire d’ingénierie de la
u Panorama, BP6, F-92265
fax: +33 1 46 54 75 80.

, isabelle.bloch@enst.fr
oellic@cea.fr (P.-A. Moëllic).
tivity of their annotations, two randomly selected players have to
agree on the same keyword describing an image for it to be ac-
cepted. The ESP game has labeled about 30,000 images so far,
which is still far away from the 2 billions of images over the Inter-
net. Furthermore, the data are not made available to the public, so
there is still a need for automatic grabbing of images from the
Internet.

The same researchers later developed another game, Peeka-
boom [7], oriented toward manual segmentation of web images.
One player is given an image and a label (that was manually attrib-
uted during the ESP game), and has to select the region of the im-
age corresponding to that label while the second player tries to
guess the label. The segmentation processed is stopped when the
label is guessed. The same data as in the ESP game are used, so
again, for now, there is no more than 30,000 images available.

Another issue in using directly images from the Internet is that
even for those images which are relevant, further filtering and pro-
cessing is needed if we want to use them for object learning:

� the position of the object in the image is unknown, and manual
segmentation would be too long to do, so we need automatic
segmentation,

� some images are relevant, but the object of interest can be too
small to allow proper feature extraction, which makes them use-
less for learning,

� on the contrary, the photography can have been taken too close
to the object, so that only a part of it is visible (Fig. 1).

In this article, we propose several automatic segmentation algo-
rithms that are designed to segment web images, that is a group of

http://dx.doi.org/10.1016/j.imavis.2009.06.005
mailto:chr.millet@gmail.com
mailto:isabelle.bloch@enst.fr
mailto:patrick.hede@cea.fr
mailto:pierre-alain.moellic@cea.fr
http://www.sciencedirect.com/science/journal/02628856
http://www.elsevier.com/locate/imavis

318 C. Millet et al. / Image and Vision Computing 28 (2010) 317–328
images resulting from one given text query, based on the following
hypotheses:

� The object is centered in the image. By center, we mean that
most pixels of the object are contained in a window, centered
in the image, and whose width and height are about one half
or three quarters of the image width and height. This seems like
a strong hypothesis, but it is actually verified by most relevant
images.

� The object has well determined colors. Instead of segmenting a
set of images corresponding to dog, we will consider images
from the queries German shepherd, golden retriever, etc. that
are subspecies of dog. This makes sense in the framework devel-
oped by Popescu [8], where he demonstrates that reformulating
a query into multiple queries using its hyponyms in the Word-
Net hierarchy [9] gives better performances in terms of precision
than the initial query.

We do not make the assumption that all images are relevant
when segmenting, and try to deal with irrelevant images after
the segmentation process. The capacity to reject irrelevant images
using the segmentation results will be used to evaluate our seg-
mentation algorithms. In order to do so, we rank the images
according to some properties of their segmentation results: objects
that are the largest, the closest to the center, and entirely con-
tained in the image are favored. We then compute the precision
on the first 20 images.

We first describe what queries we use to grab images from the
Internet in Section 2 as well as some prefiltering we apply on
images to remove cliparts. We then explain our segmentation algo-
rithm (Section 5) as a combination of two other segmentation
strategies: a segmentation that considers all the images to guess
the colors of the object and those of the background (Section 3),
and a method that segments each image individually by trying to
extract a central object (Section 4). An algorithm to re-rank images
given the segmentation results is developed in Section 6, and re-
sults are evaluated in Section 7, discussing on the precision of
the 20 ‘‘best” images and the quality of the segmentation.
2. Grabbing images from the Internet

2.1. Which keywords to use?

There are basically three scenarios for grabbing images, related
to the existence of a specific color for the query:

� The query is a natural object that is a leaf in the WordNet hier-
archy (e.g. Granny Smith, toy poodle). This query is accurate
enough to have one unique color, and is used as is for querying
images.
Fig. 1. Illustration of images that should be rejected if we consider using them for conc
feature extraction, and in the picture on the right, we only have a partial view of the ob
� The query is a natural object that is not a leaf on the WordNet
hierarchy (e.g. apple, dog). This object has hyponyms and we
use all the object’s hyponyms that are leaf nodes as queries,
which corresponds to the previous scenario. The set of images
for each hyponym is processed independently from the others,
and all sets are eventually merged.

� The query is a man-made object (e.g. car, mug, house). Most
man-made objects exist in many colors, and therefore have no
specific color. In this case, we specify the color in the query,
run queries for each color as in the first scenario, process each
set of images independently, and eventually gather all results.

In this article, we will only consider queries that are leaves in
the WordNet ontology, since any other query is, with our method-
ology, equivalent to querying for several leaves.

In order to improve precision, as detailed in [8], the category of
the concept is added to the query. For example, the query ‘‘golden
retriever” dog will be used to search for golden retrievers. This also
helps disambiguating queries: jaguar cat and jaguar car are differ-
ent concepts, and querying only for jaguar returns images of both
concepts mixed together. The word we use for the category is an
hypernym of the concept in the WordNet hierarchy, but is not al-
ways the direct hypernym, because this is not always a good choice
to refine the query. With the above example of golden retriever,
adding the direct hypernym would form the query ‘‘golden re-
triever” retriever, which in most (if not all) web image search en-
gines returns the same images as the query ‘‘golden retriever”.
Therefore, we choose generic names for category. These names
are very limited and are chosen manually: e.g. dog, cat, fish, horse,
zebra.

For each concept, we run one query for each synonym corre-
sponding to that concept in the WordNet ontology and group all
the resulting images in the same set. For example, horned viper,
cerastes, sand viper, horned asp and Cerastes cornutus are all the
same kind of snake according to WordNet. In practice, the number
of images returned by a web search engine is limited to 1000, and
we have decided to keep the first 300 images: we need enough
images so that our re-ranking and selection of the first 20 images
makes sense, and on the contrary, taking too many images in-
creases the computational time and decreases the raw precision.

2.2. Removing cliparts

We decide to concentrate on photographs, and we therefore
process the images to remove cliparts. What we mean by cliparts
are computer drawn images that can easily be identified as such
(excluding realistic rendering) and screen shots (see Fig. 2).

Images that contain both photography and clipart elements are
considered as photographs by convention. These images are for
example the photography of an object that has been displayed on
a white background, or a photography to which a frame has been
ept learning. In the picture on the left, the zebras in the pictures are too small for
ject.

Table 1
Number of cliparts among the first 100 images for several queries on Google Image
Search.

Bald eagle 11%
Bengal tiger 24%
Castor canadensis 19%
Cerastes 4%
Common dolphin 20%
Common zebra 7%
Dromedary 26%

Mean 15.9%

Table 2
Comparison of the precision (in %) computed on the first 20 images returned by our
algorithm and by Yahoo! image search, on which our algorithm is based. There are
two columns for Yahoo!, all takes into account all relevant images while good only
considers the images where the object occupies at least 10% of the image, that is the
kind of images that are of a quality comparable to those returned by our re-ranking
algorithm. Twenty queries are considered: 10 animals and 10 man-made objects. We
observe an average increase of about 20% for animals and for man-made objects when
comparing images of similar qualities.

Animals Yahoo! Re-
ranking

Man-made Yahoo! Re-
ranking

All Good All Good

Bald eagle 90 60 100 Black shirt 55 55 90
Bengal tiger 100 100 100 Blue mug 65 65 80
Bull 75 60 75 Boeing 777 60 60 90
Cerastes 75 70 80 Eiffel tower 100 95 80
Common

dolphin
90 65 90 Fire engine 50 50 85

Common
zebra

100 80 100 Red bottle 40 35 65

Dromedary 70 60 80 Sun glasses 75 40 85
Ewe 90 65 100 White

Porsche
55 55 95

German
Shepherd

95 90 100 Wood table 75 75 80

Monarch
butterfly

90 70 100 Yellow
Ferrari

70 70 95

Average
animals

87.5 72 92.5 Average
man-made

64.5 60 84.5

C. Millet et al. / Image and Vision Computing 28 (2010) 317–328 319
added. Cliparts actually represent a significant part of the images
resulting from our queries. A quick evaluation on some queries
we considered in this article (Tables 1 and 2) shows that up to
one quarter of the first 100 resulting images can be cliparts.

In order to detect cliparts, we convert the color image into grey-
scale and build its histogram by sampling the values between 0
and 255. We noticed that greyscale histograms of cliparts consist
of several peaks that correspond to the colors used in the image,
whereas the greyscale histograms of photographs tend to be more
continuous, even when they have about the same number of col-
ors. This is illustrated in Fig. 3.

The task of recognizing a clipart is therefore done by finding and
analyzing the peaks of an image greyscale histogram H. We first
look for the position p of the maximum of this histogram:

p ¼ argmaxx2½0;255�ðHðxÞÞ

and then compute a standard deviation r2 around this point. Be-
cause of the extremities (0 and 255), we computed two standard
deviations: one on the left side of the peak and one on the right side.
If both sides can be computed, we consider the average.

r2 ¼

Pp�1

x¼p�5
rðxÞ if p > 250

Ppþ5

x¼pþ1
rðxÞ if p < 5

1
2 �

Pp�1

x¼p�5
rðxÞ;

Ppþ5

x¼pþ1
rðxÞ

 !
otherwise

8>>>>>>>>><
>>>>>>>>>:

where

rðxÞ ¼ HðxÞ
HðpÞ � ðx� pÞ
� �2

If the standard deviation is small, that means we have a peak, and
the image should be classified as a clipart. If the standard deviation
is high, we classify the image as a photography. In order to deal
with the images that have both photography and clipart elements,
we propose to divide the image into 16 parts: four horizontally
and four vertically. For example, let us imagine an image with a
black frame all around the image. If we consider the image as a
whole, the greyscale histogram will have a peak corresponding to
that black color, and the image will be classified as a clipart. If we
first divide the image into 4� 4 parts, the 12 parts that are on the
border of the image will have that peak, but the four parts in the
center will have a histogram corresponding to that of a photogra-
phy, and will be classified as such. The whole image is eventually
classified as a clipart if all 16 parts have been classified as cliparts,
and as a photography otherwise.
Fig. 2. Examples of cliparts found for the query ‘‘bald eagle” on Google Images. Fou
representation of the animal, a map of where the animal can be found, a screenshot o
statistics from scientific studies on the animal.
In practice, we found that most cliparts have a standard devia-
tion r2 of 5 or less, whereas it is 40 or more for most photographs.
We evaluated the proposed algorithm on a database of 11,252 pho-
tos and 5402 cliparts from the Internet and obtained the best re-
sults using 15 as a threshold: an image is a clipart if all its 16
sub-images verify r2 < 15 and a photography otherwise. Using this
threshold, 99.78% of the photographs and 93.02% of the cliparts
were correctly classified.
r common kinds of cliparts are shown here: (from left to right) a hand drawn
f a website proposing information related to that animal, and a representation of

Fig. 3. Comparison of the greyscale histograms of a clipart and a photograph that
have about the same number of colors.

Fig. 4. Schema of the method proposed in this article: algorithm 1 is described in Section
Section 5.

320 C. Millet et al. / Image and Vision Computing 28 (2010) 317–328
The results are similar to what is reported in the literature [10]
on a different test database of about 5000 images, but these meth-
ods use machine learning and various features whereas our meth-
od is designed to be fast, using a very simple feature and a single
threshold.

We will now describe and discuss the three fully automatic seg-
mentation algorithms that we propose in this article to deal with
the collected images in the following Sections 3–5. A schema of
the three proposed segmentation algorithms is shown in Fig. 4.

3. Global segmentation: segmentation considering all images

3.1. Previous experiments

In [11], we considered using object color names to automati-
cally locate the object in the image. Given the name of an object,
the names of the colors in which the object can appear were auto-
3, algorithm 2 in Section 4 and the final segmentation, algorithm 3, is explained in

C. Millet et al. / Image and Vision Computing 28 (2010) 317–328 321
matically determined using either a text based method, finding
what are the most co-occurrent colors in a text corpus – we used
the web for our experiments – or with an image based method,
downloading images of that object, and finding the most common
colors that appear in the center of the image.

We then defined a function that matches color names and pixel
values in the HSV color space. Then, an image can be segmented
using one or more color names. For example, it is possible to seg-
ment the image of a zebra using both colors white and black.

The main issue of the algorithm based on the names of colors is
that the use of the names limits the possibilities of the segmenta-
tion. For example, this algorithm cannot segment any brown ani-
mal that appears on a brown background, as shown in Fig. 5.
They are different shades of brown, but for this algorithm, they
all belong to the single color name brown.

It would be possible to define more color names, such as dark
brown, light brown, reddish brown and associate them with pixel
values in the HSV space, but it seems difficult to automatically ob-
tain with such accuracy the colors of an object. Moreover, with
only 11 colors it is not always easy to determine the colors of an
object. For example, the color of a dolphin seems to be some color
between blue and grey, but blue is also the color of the water they
are in.

We worked on extending that algorithm so that it does not use
color names anymore, but directly pixel values. Doing so, the text
based method to know the color of an object cannot be used, but
the image based method still can be, which is the one of the two
methods that performed best according to our experiments in [11].

The following algorithm solves the second type of problem
(stop using color names) while the first one (Fig. 5) is addressed
in Section 4.

3.2. Algorithm

The first algorithm consists in taking into account all the images
grabbed from the Internet corresponding to the same query in or-
der to identify which pixels are object pixels and which ones are
background pixels, in order to be able to locate the object of inter-
est in any image supposed to contain that object. The segmentation
algorithm described here is similar to the one based on color
names [11], but instead of being limited to 11 colors, we have
125 colors and it can easily be extended to more colors. Another
difference is that background pixels are also taken into account
as negative contributions.

It consists of the following steps:

(1) Each plane of the RGB color space is quantized into five val-
ues. Therefore, we work with 125 colors instead of the 11
colors previously mentioned.
Fig. 5. Example of a bad segmentation when using color names: the whole image is
considered as the result of the segmentation using the colors brown. The Bengal
tiger and the background in the image are seen by the algorithm as the same color
name: brown.
(2) A central window is defined as a window whose width and
height are half of the image width and height.

(3) For each image, we build two 125-bins RGB histograms: his-
tocenter for the pixels contained in the central window and
histoborder for the pixels contained outside of this window.

(4) Both histograms are normalized by the number of pixels
considered (i.e. the surface) so that they can be compared.

(5) For each possible ðr; g; bÞ value, we compute a score Sðr; g; bÞ
over all images that is increased by one when, for an image,
histocenterðr; g; bÞ > histoborderðr; g; bÞ, and decreased by
one otherwise.

(6) Eventually, a ðr; g; bÞ value is considered as an object color if
Sðr; g; bÞ > maxðSÞ

5 , and as a background color otherwise.
(7) The set of object colors pixels is then cleaned as described

thereafter to keep only one region in the image correspond-
ing to the object.

Cleaning an image is a process that allows us, from a set of
points of the image that have a given colors to obtain a connected
region with a smooth shape and no hole. This is done with several
steps, using mathematical morphology:

(1) Remove noise or small thin objects, using an opening by a
structuring element of size 1.

(2) Apply a closing by a structuring element of size 5 to merge
close object regions together.

(3) Select the largest region.
(4) Remove holes, defined by background pixels entirely sur-

rounded by object pixels, based upon the assumption that
the objects have no hole, which is the case for most objects.

This process is illustrated in Fig. 6.

3.3. Results and discussion

In comparison with our previous work on segmenting an object
in images using color names [11], the resulting segmentation is
more accurate. Using color names is meaningful for us, but for
the computer it limited the number of colors to consider to 11.
Among those 11 colors, typically 1 or 2 where selected as ‘‘object
colors” used to segment an object, but it was not clearly deter-
mined how to know if 1 or 2 colors were to be considered. The
new algorithm we presented here considers 125 colors, and could
easily be extended to more. The number of colors to consider as
‘‘object colors” is automatically determined (step vi), usually above
10 but that number depends greatly on the object being studied.

Fig. 7 shows an example of the limitations caused by the use of
color names. The small zebra is considered as being composed of
mainly light brown and dark brown pixels.

However, as expected, this algorithm still has an issue that ap-
peared also in our previous algorithm using color names [11]: it
cannot distinguish easily an object in an image where the pixels
of its background are defined as object pixels because the same col-
or was often found in objects of other images. This is illustrated in
Fig. 8: the color of the brown background is also found as being a
possible color for Bengal tigers in many other images and therefore
considered as part of the object.

The algorithm that we will introduce in the next section con-
centrates on solving that issue.

About the parameters, in the fifth step of the segmentation,
we tried introducing a factor k > 1, to increase S only if
histocenterðr; g; bÞ > k � histoborderðr; g; bÞ and decrease it if
histocenterðr; g; bÞ < ð1=kÞ � histoborderðr; g; bÞ in order to ignore
the colors for which a pixel is not clearly classified as object or
background, but this have in fact very little consequences on the
results.

Fig. 8. Result of the global segmentation algorithm for an image of Bengal tiger. This
algorithm has the issue that it cannot segment objects when the color of the
background is also a common color for the object, in other images.

Fig. 6. Cleaning a set of points matching the colors used for the segmentation to obtain a connected region. (a) Original image. (b) Pixels identified as ‘‘object pixels”. (c)
Opening on (b). (d) Closing on (c). (e) Keeping only the largest region from (d). (f) Filling holes in the object. (g) Corresponding final cleaned segmentation.

322 C. Millet et al. / Image and Vision Computing 28 (2010) 317–328
In the sixth step, using Sðr; g; bÞ > maxðSÞ
5 instead of Sðr; g; bÞ > 0 to

decide which colors are considered as object colors is another way
to ignore colors that are weakly classified as object colors, and have
more visible effects. Taking Sðr; g; bÞ > 0 as a threshold would
mean we consider that the number of object colors is potentially
equal or superior to the number of background colors. It is not
restrictive enough and led to parts of the background being consid-
ered as objects. Using a positive threshold is more restrictive on the
number of object colors. Making it depend on maxðSÞ instead of the
number of images (the biggest value that S can reach is the number
of images) ensures us that we keep at least one color. We tried sev-
eral threshold valued, and found out that Sðr; g; bÞ > maxðSÞ

10 or
Sðr; g; bÞ > maxðSÞ

5 (depending on the objects) offered a good compro-
mise whereas Sðr; g; bÞ > maxðSÞ

2 lacked some tolerance. A compari-
son of the effects of these different thresholds is shown in Fig. 9.

We notice that for Sðr; g; bÞ > 0 and Sðr; g; bÞ > maxðSÞ
10 , most of the

pixels on the zebras have been correctly recognized as object pix-
els, but there is also some noise from the background, for example
between the legs. For Sðr; g; bÞ > maxðSÞ

5 , there is less noise, and what
is remaining will be removed by the cleaning algorithm, but some
of the white stripes are missing (they will be recovered with the
opening of the cleaning algorithm). With the threshold
Sðr; g; bÞ > maxðSÞ

2 , there is almost no noise left, but the missing
stripes are more visible, and will not be recovered with the clean-
ing phase. Eventually, we decided empirically to use
Sðr; g; bÞ > maxðSÞ

5 as a threshold for all objects.
Fig. 7. Example of the segmentation of the image in Fig. 6 with the algorithm from
[11] using colors black and white. The pixels of the small zebra appear brown (light
brown for what we see as white and dark brown for what we see as black) and are
not considered as object pixels. Extending the definitions of the colors black and
white to include such pixels causes too broad segmentation results on other images
for other objects.
4. Individual segmentation

In this section, we propose to deal with the main issue from the
previous algorithm: how to segment an object in an image where
the object colors and the background colors are close to each
other? With the previous algorithm, it is difficult to segment a dark
brown object on a light brown background, if the light brown color
is the color of the object in many other images and has thus been
identified as object color.

4.1. Algorithm

The algorithm we propose here tries to segment a central object
in the image, regardless of what should be the colors of the object.
It aims particularly at being able to segment correctly images
where the colors of the object and of the background are close to
each others, such as the image in Fig. 8, for which the segmentation
algorithm developed in the previous section fails to separate the
object from its background.

The main difference with the previous algorithm is that this
one considers images individually and uses only one image to
learn the difference between object colors and background col-
ors, whereas the previous algorithm determined object colors

Fig. 9. Variation of the segmentation for different values of the threshold, and the number of colors considered as objects, out of the 125 colors from the RGB quantization. (a)
Original image. (b) Sðr; g; bÞ > 0: 37 object colors. (c) Sðr; g; bÞ > maxðSÞ

10 : 12 object colors. (d) Sðr; g; bÞ > maxðSÞ
5 : 8 object colors. (e) Sðr; g; bÞ > maxðSÞ

2 : 5 object colors. On this
particular example, the segmented region in (b) and (c) are very close because the 25 additional colors in (b) are in very small quantity in this image. The difference is more
obvious on other images, where it is often a part of the background that is considered as object with Sðr; g; bÞ > 0 but background with Sðr; g; bÞ > maxðSÞ

10 .

Fig. 10. Example of an improvement over the previous algorithm (see Fig. 8). The
fact that the brown background can also be the color of a Bengal tiger does not
matter for that algorithm.

C. Millet et al. / Image and Vision Computing 28 (2010) 317–328 323
and background colors on the basis of all the images correspond-
ing to the same concept. Since the object colors were determined
on several images, it was not problematic if for some images the
object was not very well centered, as long as in average, most
objects are centered. Therefore, what we called the central win-
dow was relatively small: only half of the image width and
height. On the contrary, in the algorithm we propose in this sec-
tion, there is no average over several images, and it is therefore
better to consider a bigger central window to find the objects.
Once these object and background colors are determined, the
segmentation process itself is the same.

The complete algorithm consists of the following steps:

(1) Quantify each plane of the RGB color space into five values.
(2) Define a central window, as a window whose width and

height are three quarters of the image width and height.
(3) Build two 125-bins RGB histograms: histocenter for the pix-

els contained in the central window and histoborder for the
pixels contained outside of this window.

(4) Normalize both histograms by the number of pixels consid-
ered (i.e. the surface) so that they can be compared.

(5) Classify each pixel according to its quantized ðr; g; bÞ
value: a pixel is considered as an object pixel if
histocenterðr; g; bÞ > histoborderðr; g; bÞ, and as a back-
ground pixel otherwise.

(6) Eventually, the resulting binary image is cleaned as
described in Section 3.2.

4.2. Results and discussion

First of all, our main goal is reached, since this algorithm can
segment an object when the background has a close color. For
example, a brown object on a (different) brown background can
be correctly located (Fig. 10), whereas this was not always possible
with the segmentation algorithm from the previous section (Fig. 8).

In our first experiments, we used a window whose width and
height were only half of the image width and height, as used for
the previous algorithm (Section 3). However, for many images,
there are significant parts of the object that are outside of this win-
dow, so that colors of the object appeared both inside and outside
of the window, and were not clearly identified as belonging to the
object. Increasing the window size gave better results for most
images. A comparison of the segmentation results obtained with
two different sizes of window is shown in Fig. 11.
It is questionable whether the best is to miss some part of the
object but include less background in the object, which is usually
what happens with a small central window, or to have a better
chance not to miss any part of the object, with the risk of obtaining
more background identified as object, with a larger central win-
dow. Though, in the following, we will be intersecting the result
of this segmentation with the result from the previous segmenta-
tion algorithm (both before the cleaning post-processing), and in
this case it is better to concentrate on having as many object parts
as possible, which makes us prefer the second option (a larger cen-
tral window).

The main issue of this algorithm for our application, as we sta-
ted before, is that it will segment any central object regardless of
the fact that the object is supposed to correspond to a given query
and be similar to other images from the same query. The consis-
tency between the various images grabbed for that query should
be taken into account in order to identify irrelevant images, as
we did in the first segmentation algorithm we presented, taking
all images into account to define object colors and background col-
ors. Combining the two algorithms would allow to take advantage
of both.
5. Combining global and individual segmentations

The idea now is to combine the algorithm from Section 3 that
uses all the images to determine the object colors and find objects
in images that have this color with the algorithm developed in Sec-
tion 4 that tries to find a central object in any image, able to deal
with the case where the background has a color close to that of
the object.

Fig. 11. Effect of the size of the central window on the segmentation. (a) Original image. (b, c) Pixels identified as objects with a window whose width and height are half of
the image width and height, and the resulting segmentation after cleaning. (d, e) Pixels identified as objects with a window whose width and height are three quarters of the
image width and height, and the resulting segmentation after cleaning. In (b, c) only the brown part of the eagle is identified as the object. In (d, e) some white parts of the
eagle (the tail and part of the head) are also included in the object, but with the drawback of obtaining more background, on top of the image.

324 C. Millet et al. / Image and Vision Computing 28 (2010) 317–328
5.1. Algorithm

It is done by intersecting the previous two algorithms, just be-
fore the cleaning step. It can be written as a single algorithm in this
form:

(1) Each plane of the RGB color space is quantized into five
values.

(2) A small central window WS is defined as a window whose
width and height are half of the image width and height,
and a large central window WL whose width and height
are three quarters of the image width and height.

(3) For each image, we build two 125-bins RGB histograms:
histocenterS for the pixels contained in the central window
and histoborderS for the pixels contained outside of the win-
dow WS and also compute histocenterL and histoborderL with
the window WL.

(4) Each histogram is normalized by the number of pixels con-
sidered (i.e. the surface) so that they can be compared.

(5) For each ðr; g; bÞ value, we compute a score S that is
increased by one when, for an image, histocenterSðr; g; bÞ >
histoborderSðr; g; bÞ, and decrease by one otherwise.

(6) Eventually, a ðr; g; bÞ value is considered as an object color if
Sðr;g;bÞ> maxðSÞ

5 and histocenterLðr; g; bÞ > histoborderLðr; g; bÞ.
It is considered as a background color otherwise.

(7) Each pixel is classified as object or background.
Fig. 12. Comparison of merging before and after cleaning, for an irrelevant image of bea
algorithm. (c) Object pixels found by the algorithm that considers all images. (d) Resulting
to have a smaller image (d), since we will then favor objects with large surfaces during
(8) Eventually, the resulting binary image is cleaned as
described in Section 3.2.

This is equivalent to intersecting the object pixels obtained
from the two algorithms after the pixel classification step, and be-
fore the cleaning post processing.

5.2. Results and discussion

We tried intersecting the two segmentation algorithms before
or after the cleaning that uses mathematical morphology, and it
appeared that it is better to merge them before. For example, let
us consider the irrelevant image in Fig. 12, an image returned for
the query castor canadensis (beaver).

The two segmentation algorithms play their roles: the central
object segmentation finds that blue is a central color, and brown
is a background color, and therefore identifies the blue ball as
the central object. On the contrary, the algorithm that uses all
the images to determine the object colors finds that brown is an
object color whereas blue is not. Cleaning the image includes a step
removing holes, and for this segmentation, this leads to consider-
ing the whole image as the object, since the whole image is sur-
rounded by a border that has object colors. The intersection of
both segmentations is then equal to the central object segmenta-
tion, giving an object which is not of the right color. Intersecting
the two segmentations before the cleaning step gives a brown ob-
ver. (a) Original Image. (b) Object pixels found by the central object segmentation
segmentation if the merging is done before the cleaning step or (e) after. It is better

the re-ranking and filtering step.

Fig. 13. Comparison of the merged segmentation results with the global and the individual segmentations. (a) The global segmentation has kept the grey grass in the
segmentation and the intersection is equal to the individual segmentation which is included in the global segmentation. (b) The individual segmentation found that the grass
is centered in the image, and the global segmentation is better since it has the knowledge that the grass color is not a color of the zebra. In this case, the intersection is close to
the global segmentation. (c) Both individual and global segmentations include a part of the background, but not the same part. Therefore, the intersection gives a
segmentation that is better than both. (d) In this example, the individual segmentation is the best. The intersection does not contain any background part, but a part of the
zebra is missing.

C. Millet et al. / Image and Vision Computing 28 (2010) 317–328 325
ject, which is more consistent since we are looking for a beaver.
This example has been chosen to show well the effect of changing
the moment when we do the intersection. In most cases, the effect
is not that visible. We noticed, though, that merging the segmenta-
tions after the post-processing tended to find an object with parts
of the wrong colors that did not appear if we merged them before.

In most cases, one of the two segmentations that are merged
with this algorithm is included in the other, but the smaller seg-
mentation may be the individual or the global one, depending on
the image. Therefore, for these cases, the consequence of intersect-
ing the two segmentations is in fact to select the one of these two
segmentations that is the smaller, and often the better. In other
cases, both segmentations contain a part of the background, but
two different parts, and intersecting them allow to obtain a seg-
mentation that is better than the two others. This is illustrated in
Fig. 13.

We will try in the next section to define criteria to re-rank
images, allowing us to tag such image as irrelevant.
6. Re-ranking images

We extend the criteria that we developed and analyzed in [11]
to re-rank images regarding the shape and size of the segmentation
obtained. For a given segmented object in an image, we define sev-
eral variables:
� m is the region surface divided by the image surface. It is propor-
tional to the region size,

� B is the number of image border pixels included in the object
region divided by the total number of image border pixels. It
equals 0 if the object is totally included in the image, and
increases if the object touches the border of the image, meaning
that maybe there is only a part of the object in the image, as for
example in the right image in Fig. 1.

With m and B, we compute the following R score:

R ¼ ð1� BÞ � f ðmÞ with f ðmÞ ¼
1 if 0:2 6 m 6 0:6
m

0:2 if m < 0:2
1�m
0:4 if m > 0:6

8><
>:

Images are then sorted by decreasing order of R. An object with the
highest value of R is thus an object whose size is between 20% and
60% of the image size, and which is totally surrounded by a back-
ground, that is does not touches the borders of the image. In Millet
et al. [11] we also included a criterion that gave a better score to ob-
jects close to the center, but finding a centered object is now part of
the segmentation algorithm itself, and therefore is less relevant for
sorting images.

For the shape criterion B, the bounding box of the region can be
used rather than the border of the image, leading to better results
when there are many images to which frames were added. It only

326 C. Millet et al. / Image and Vision Computing 28 (2010) 317–328
causes worse results if the object has straight horizontal or vertical
lines in its shape, which usually does not occur in natural object
that we studied. If we want to extend our algorithm to man-made
objects with straight horizontal and vertical lines such as building,
monitors or shelves, implementing an algorithm to identify and re-
move frames would be the best solution.

There is still another issue in the above re-ranking strategy. Let
us suppose that we are re-ranking for example images of zebras.
The colors used for the segmentation are basically black and white
colors. With the above re-ranking, a black region, a white region
and a zebra of the same shape will have the same rank. In order
to give a better rank to regions that have both white and black in
a given proportion, we propose the following:

(1) Compute the median 125-bins RGB histogram HM of all seg-
mentation results. It is obtained by computing the median
value for each bin of the histogram among all the images.

(2) For each segmentation, compute the color similarity Cs, as
the histogram intersection between the histogram HI of
the image and the median histogram HM:
Fig. 14.
is 100%
Cs ¼
X125

k¼1

minðHIðkÞ;HMðkÞÞ
We then define the ranking score Rs ¼ Cs � R and consider that
the most relevant images are those with the highest ranking score.

7. Results

In this section we evaluate only the final segmentation algo-
rithm that is a combination of the two others and its associated
re-ranking. It is difficult to provide a subjective evaluation of this
algorithm, since we have to evaluate both the quality of the seg-
mentation, and the precision of the ‘‘best” images after re-ranking.
Therefore, we first discuss the first twenty images for three queries
shown in Figs. 14 to 16. We then quantify separately the perfor-
mances of the re-ranking and the segmentation on twenty queries:
10 animals and 10 man-made objects.

Two natural objects that are not uniform in colors are shown
here: zebra (Fig. 14) and Bengal tiger (Fig. 15). Traditional segmen-
tation algorithms usually fail on the segmentation of such objects.
Our segmentation has also been tested on a man-made object: yel-
low Ferrari (Fig. 16). The results, both in precision and segmenta-
tion, are very good for the animals. For the Ferraris, the precision
The 20 first segmentation results for the query common zebra. The precision
, the zebra shape has been found accurately in most images.
of the selected images is good, only the body of the car has been
kept in the segmentation. Wheels and windshields are missing be-
cause their black color has been mostly observed in the back-
ground. On this particular example, results could be improved by
taking the convex hull of these objects.

This algorithm works better in average than the one proposed
earlier in [11]: the quality of the segmentation is improved since
this algorithm can isolate better the object from its background,
even if their colors are close. The precision obtain after re-ranking
is also better.

However, for queries that come with too many noise when
grabbing the images on the Internet, it shows poor performances.
For example, we tried the query banana fruit expecting to obtain
a group of images corresponding to yellow bananas. The 20 ‘‘best”
images we obtain are shown in Fig. 17.

In fact, in the 100 first images from Yahoo! Image Search, after
removing cliparts, there are only 20 images that contain a yellow
central banana, which means that the noise is about 80%. Other
images are mainly about banana trees (or other trees), pictures
of several fruits together, or products derived from banana. For
the segmentation, yellow has been identified correctly as an object
color, but green, red and orange as well.

Our algorithm was based on the assumption that the noise is
50% or less. For yellow Ferrari, on the first 100 images, about 43%
does not show an image where one can recognize a yellow Ferrari.
The noise for the queries common zebra and Bengal tiger is much
less: around 10%. Therefore, choosing the right keywords to have
a good set of images to start with is a fundamental step that should
not be underestimated. In that sense, approaches like the ESP game
that we described in the introduction might prove useful in the
future.

7.1. Evaluation of the re-ranking

A picture is considered as relevant if the queried object can be
identified in the picture. Objects such as toy, sculptures or paint-
ings where the represented object is easily identified are also
judged relevant. Images were the object cannot be identified,
whether it is too far, too blur or the part shown is not characteristic
of the object, go in the irrelevant category. For example, pictures of
insides of the aircraft are not considered as relevant for the query
Boeing 777.
Fig. 15. The 20 first segmentation results for the query Bengal tiger. The precision is
100%: all images are related to Bengal tigers, and we have both head images and
body images.

Fig. 16. The 20 first segmentation results for the query yellow Ferrari. The color has
been added to the query, as explained in Section 2. The precision is 95%, the
irrelevant image is identified by a red frame.

C. Millet et al. / Image and Vision Computing 28 (2010) 317–328 327
First, let us remark that the precision of the images returned by
Yahoo! is already higher than the 50% announced in the introduc-
tion. This is a consequence of the way we ask queries, as explained
in Section 2. If we consider all images from Yahoo! as relevant,
without taking into account their qualities as possible images used
for learning, we measure an average increase in precision of 5% for
animals and 20% for man-made images. However, the aim of our
re-ranking algorithm is to select the best images for a learning
database, that is images where the object’s size is sufficient to al-
low feature extraction. It is therefore fairer to compare the preci-
sion of our algorithm with the images from Yahoo! where the
object occupies at least 10% of the image (our re-ranking algorithm
is set to favor objects whose size is between 20% and 60%). Consid-
ering only such images in Yahoo! as relevant, the increase in pre-
cision becomes 20.5% for animals and 24.5% for man-made objects.

The next part, on the evaluation of the segmentation, gives
some statistics on the usual size of the objects in the first 20 se-
lected images and what part of it are correctly segmented.

7.2. Evaluation of the segmentation

In this work, we are in the objective of using the segmentation
results to build a good database for object classification. Therefore,
Fig. 17. The 20 first segmentation results for the query banana fruit. A red frame
shows the irrelevant images. There were not enough yellow banana in the images to
allow the algorithm to identify yellow as the main color of interest. That happens
with queries where the proportion of irrelevant images from the Internet image
search engine is too high.
we are not aiming at obtaining a perfect segmentation, but rather a
segmentation that does not contain too much background in it, and
enough parts of the object to allow proper feature extraction, but
not necessarily the whole object. We can however evaluate our
segmentation algorithms as if the objective was to segment per-
fectly the objects, in order to see how it would perform in such
task.

In order to evaluate the quality of the segmentation, we manu-
ally segmented some images and compared them with the auto-
matic segmentation. The manual segmentation has been done
with SAIST (Semi-Automatic Image Segmentation Tool), a software
developed by the PRIP laboratory in Vienna [12]. It computes a
user-guided marker-based watershed segmentation.

For the ground truth, we selected any pixel that belongs to the
queried object as object, and the others as background. That is, if
two objects are present in the image, the two will be segmented,
even though our segmentation algorithm is designed to ideally find
only the larger of the two. If an object is occluded, for example a
horse occluded by a saddle, the occluding object is considered as
background, altering the shape of the occluded object.

Since we cannot possibly evaluate the segmentation on all the
300 images, because of the time it takes to manually segment
the images, we have chosen to evaluate the segmentation on the
relevant images among the first 20 images selected by our re-rank-
ing algorithm.

There are two measures to consider when evaluating the seg-
mentation of an object: the proportion of the object pixels that
are correctly retrieved M1, and the proportion of pixels that are
correct in the automatic segmentation M2. If we call SA the region
identified as the object by our algorithm and ST the ground truth,
we have:

M1 ¼
surfaceðSA \ STÞ

surfaceðSTÞ

M2 ¼
surfaceðSA \ STÞ

surfaceðSAÞ

The two measures are strongly linked. We can easily have
M1 ¼ 100% by considering the whole image as the automatic seg-
mentation, but then M2 equals (only) to the surface of the object di-
vided by the surface of the image. Therefore, the two measures
should be represented together. Their values for our 20 test queries
are shown in Fig. 18.

We see that except for some queries, we can expect in average
between 70% and 90% of correct pixels ðM2Þ in the automatic seg-
mentation, while having a retrieving accuracy ðM1Þ also between
70% and 90%.
Fig. 18. Segmentation results showing the proportion of the object pixels that are
correctly retrieved and the proportion of pixels that are correct in the automatic
segmentation for 20 queries: 10 animals and 10 man-made objects.

Fig. 19. Evaluation of the accuracy of the segmentation on 20 queries.

328 C. Millet et al. / Image and Vision Computing 28 (2010) 317–328
Deciding whether it is better to have a high M1 or a high M2 de-
pends on the considered application. If one considers using the
segmentation results for example for learning, then it is better to
have as less noise as possible in it, that is to maximize M2. In order
to evaluate, we have decided to use a measures that takes both into
account the rate of pixels correctly retrieved and the proportion of
the retrieved pixels that are correct. This measure is also often used
in segmentation evaluation:

MS ¼
surfaceðSA \ STÞ
surfaceðSA [STÞ

We compare it in Fig. 19 with the score that we would obtain if we
kept the whole image and considered it as the segmentation. This
score also represents the size of the objects in the image.

The obtained results are good: the measure goes on average
from about 30% for the full image to about 60% with our segmen-
tation algorithm. Specifically, it works well with objects with two
colors, be it stripes (zebra, Bengal tiger) patches (monarch butterfly)
or two clearly separated colors (textitbald eagle, German shepherd).
The task is more difficult for objects that have the same color than
their environment (cerastes, dolphin, dromedary). We notice better
results in general for animals than for man-made objects. This is
mainly because animals tend to have less variations in terms of
colors than man-made objects, making them easier to identify
when comparing all the images.

Eiffel tower is the query with the worst score. It is also the query
for which the objects have the smallest size. If we compare this re-
sult with Fig. 18, we understand that the segmentation results al-
ways contain most of the object, but the object represents only 40%
of the segmented region, meaning that the background occupies
the other 60%. The main reason why it did not perform well with
Eiffel tower is because our re-ranking algorithm is designed to favor
objects whose size is comprised between 20% and 60% of the image
size, and the Eiffel tower is a thin object which occupies 10%
according to Fig. 18.
8. Conclusion

We have developed an algorithm which deals with a set of
images containing both relevant images corresponding to a single
concept and irrelevant images. Such set is typically the result of
a web image query. Our algorithm automatically segments the
images, and decide which one are the most relevant. We are able
to increase the relevancy of the first 20 images, while providing a
segmentation. On average, 78% of the pixels in that segmentation
belong to the object, while 81% of the pixels belonging to the object
can be found in this segmentation.

The algorithm we proposed is based on color histograms, but
could work with texture histograms or any other histogram. We
are planning in further works to use the obtained filtered and seg-
mented images to automatically build databases for learning con-
cepts with images from the Internet.
References

[1] P. Duygulu, K. Barnard, J. de Freitas, D. Forsyth, Object recognition as machine
translation: learning a lexicon for a fixed image vocabulary, in: Proceedings of
the European Conference on Computer Vision, ECCV, 2002, pp. 97–112.
Available from: <http://citeseer.ist.psu.edu/duygulu02object.html>.

[2] J. Li, J.Z. Wang, Automatic linguistic indexing of pictures by a statistical
modeling approach, IEEE Transactions on Pattern Analysis and Machine
Intelligence 25 (9) (2003) 1075–1088.

[3] G. Carneiro, A.B. Chan, P.J. Moreno, N. Vasconcelos, Supervised learning of
semantic classes for image annotation and retrieval, IEEE Transactions on
Pattern Analysis and Machine Intelligence 29 (3) (2007) 394–410.

[4] G. Griffin, A. Holub, P. Perona, Caltech-256 object category dataset, Tech. Rep.
7694, California Institute of Technology, 2007. Available from: <http://
authors.library.caltech.edu/7694/>.

[5] M. Grubinger, P. Clough, H. Mller, T. Deselaers, The IAPR TC-12 benchmark: a
new evaluation resource for visual information systems, in: International
Workshop OntoImage 2006 Language Resources for Content-Based Image
Retrieval, 2006.

[6] L. von Ahn, L. Dabbish, Labeling images with a computer game, in: CHI’04:
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, ACM Press, New York, NY, USA, 2004, pp. 319–326.

[7] L. von Ahn, R. Liu, M. Blum, Peekaboom: a game for locating objects in images,
in: Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, ACM Press, New York, NY, USA, Montréal, Que., Canada, 2006, pp. 55–
64.

[8] A. Popescu, Image retrieval using a multilingual ontology, in: Proceedings of
Recherche d’Information Assistée par Ordinateur, RIAO 2007, Eighth
International Conference, May 30–June 1, Carnegie Mellon University,
Pittsburgh PA, USA, 2007.

[9] C. Fellbaum, WordNet – An Electronic Lexical Database, Bradford Books,
Cambridge, MA, USA, 1998.

[10] R. Lienhart, A. Hartmann, Classifying images on the web automatically, Journal
of Electronic Imaging 11 (2002) 445–454.

[11] C. Millet, I. Bloch, A. Popescu, Using the knowledge of object colors to segment
images and improve web image search, in: Proceedings of Recherche
d’Information Assistée par Ordinateur, RIAO 2007, Eighth International
Conference, May 30–June 1, Carnegie Mellon University, Pittsburgh PA, USA,
2007.

[12] A. Hanbury, Review of image annotation for the evaluation of computer vision
algorithms, Tech. Rep. PRIP-TR-102, PRIP, TU Wien, 2006.

http://citeseer.ist.psu.edu/duygulu02object.html
http://authors.library.caltech.edu/7694
http://authors.library.caltech.edu/7694

	Automatic cleaning and segmentation of web images based on colors to build learning databases
	Introduction
	Grabbing images from the Internet
	Which keywords to use?
	Removing cliparts

	Global segmentation: segmentation considering all images
	Previous experiments
	Algorithm
	Results and discussion

	Individual segmentation
	Algorithm
	Results and discussion

	Combining global and individual segmentations
	Algorithm
	Results and discussion

	Re-ranking images
	Results
	Evaluation of the re-ranking
	Evaluation of the segmentation

	Conclusion
	References

