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Abstract: The problem of mined area reduction is addressed in this paper. Pieces of information collected using 
airborne multispectral scanners and airborne full polarimetric SAR, together with context information, all 
integrated in a geographical information system, are classified and combined in order to find indicators of mine 
presence and mine absence and provide image analysts with adequate tools to interpret mined scenes during the 
area reduction process. The paper contains a broad description of the whole problem and of the developed method 
and focuses on classification and data fusion tools based on the belief function framework and fuzzy sets theory.  
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1. Introduction 
 
Antipersonnel landmines affect at least 84 countries and 8 
areas not internationally recognized as independent 
states (ICBL, 2005). Thanks to the Mine Ban Treaty, mine 
clearing operations have been organized in a more 
controlled and effective way, yet mine clearance remains 
a slow and resource demanding process. It is estimated 
that, on average, a deminer clears 10 m2 during a working 
day using conventional tools such as metal detectors and 
prodders. Thus, humanitarian mine clearance operations 
must be understood and designed correctly, providing 
efficient aid to innocent people who may be severely 
injured by this dreadful pollution. The recommendations 
made during the Standing Committee on Mine Clearance, 
Mine Risk Education and Mine Action Technologies state 
that: 1) technologists should avoid building technologies 
based on assumed needs and should work interactively 
with end-users, 2) appropriate technologies could save 
human lives and increase mine action efficiency, and 3) 
nothing is more important than understanding the 
working environment (Acheroy, M., 2003; JMU). Besides 
the very long time needed to clear polluted terrain, actual 
demining campaigns show that the false alarm rate is 
very large, the threat of plastic mines (which cannot be 
detected by metal detectors) is not negligible and the 
variety of mine clearance scenarios is high, depending on 
the country, the region, the climate etc. These facts prove 
that the humanitarian mine detection is a very complex 
problem. In addition, the experience shows that it will be 
a long process to achieve a mine-free world, so the 
concept of a mine-free world is evolving softly toward the 
concept of a mine impact-free world, although a mine-
free world remains the final goal of the Mine Ban Treaty. 

By this, the first priority of mine action becomes in 
allowing affected regions to reach their level of socio-
economic standards. This new vision increases the 
importance of tools that facilitate prioritization and 
contribute to a rational and efficient distribution of the 
available resources. Several information management 
systems are developed and used. An example is the 
Information Management System for Mine Action – 
IMSMA (IMSMA, 1999), developed thanks to the Geneva 
International Centre for Humanitarian Demining 
(GICHD) and in use in more than 40 affected countries. 
Other examples are systems completing IMSMA, such as 
the EODIS system (Askelin, J.-I., 1999) developed by 
SWEDEC in Sweden and the PARADIS system (Delhay, 
S., Lacroix, V. & Idrissa, M, 2005) developed by the Royal 
Military Academy (RMA) in Belgium. Possible entries of 
such management systems are danger and risk 
assessment maps provided by the Space and airborne 
Mined Area Reduction Tools (SMART) project (SMART 
consortium, 2004; Acheroy, M., 2005), funded by the 
European Commission and described in this paper. The 
maps, obtained using data fusion, synthesize the 
knowledge gathered from the existing data. In the 
framework of SMART, the fusion module, detailed in this 
paper, is a very important step, since it allows taking the 
best benefit from all available data, and of the large 
efforts made in the scientific community to design 
detectors and classifiers adapted to these data. It has 
proven to be a required step before constructing risk 
maps. This is an improvement in comparison to existing 
information management systems in this area. In 
particular, the proposed approach exploits all available 
data and knowledge and automatically adapts to the 
quality of the detectors and classifier outputs.  
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Fig. 1. The global SMART approach; Det – detector, Cl - 
classifier, M – number of detectors, N – number of 
classifiers, ChD – change detection. 
 
In Section 2, the SMART approach to the problem of 
mined area reduction and the image processing tools are 
described. Section 3 summarizes the available 
information for fusion in SMART, with the example of 
Glinska Poljana site, defines the decision space and 
discusses the knowledge modeling issue. Section 4 
presents different fusion strategies applied in SMART. 
Section 5 addresses additional knowledge inclusion and 
spatial regularization. Results are discussed in Section 6, 
while Section 7 briefly explains final SMART steps, i.e. 
formation of the danger maps, and first validation results. 
 
2. Area reduction: the SMART approach 
 
2.1. Overview of the approach  
 The aim of area reduction is to find which mine-
suspected areas do not contain mines and this task is 
recognized as a mine action activity that should result in 
reduction in time and resources. Several well-known 
methods are in use to perform area reduction, especially 
using mechanical means. These expensive methods 
change and damage the environment and the ecosystem 
most of the time. To avoid this, some approaches have 
been developed that acquire the necessary information 
remotely, from air or space, using appropriate sensors 
associated with context information collected from the 
field and integrated in a geographical information system 
(GIS). The SMART project, funded by the European 
Commission/DG/INFSO, is among these approaches, and 
it is applied to Croatia. The goal of this project is to 
provide the human analyst with the SMART system, i.e. a 
GIS-based system augmented with dedicated tools and 
methods designed to use multispectral and radar data in 
order to assist in his interpretation of the possibly mined 
scene during the area reduction process. The usefulness 
of such image processing tools to help photo-
interpretation is, at first place, in the possibility to process 
automatically a large amount of data and help a visual 
analysis (SMART consortium, 2004). The use of SMART 
includes a field survey and an archive analysis in order to 

collect knowledge about the site, a satellite data 
collection, a flight campaign to record the data and the 
exploitation of the SMART tools by an operator to detect 
indicators of presence or absence of mine-suspected 
areas. With the help of a data fusion module based on 
belief functions and fuzzy sets, the operator prepares 
thematic maps synthesizing all the knowledge gathered 
with these indicators. These maps of indicators can be 
transformed into risk maps showing how dangerous an 
area may be according to the location of known indicators 
and into priority maps indicating which areas to clear 
first, based on socio-economic impacts and political 
priorities. These maps are designed to help the mined 
area reduction process. Preliminary results obtained 
using SMART have shown a reduction rate of 25% (0.98 
km2 over analyzed 3.9 km2) and an error rate of 0.1% for 
what SMART considers as not mined and is actually 
mined. 
 
2.2. Overview of the data processing tools 
 Fig. 1 illustrates the global SMART approach. Here, MIS 
denotes a mine information system, Det denotes a 
detector (of some anomalies), providing information 
mainly on one class, Cl – a classifier (several of them have 
been developed in the project, with complementary 
properties), ChD – information about changes between 
images acquired at different dates. All these tools provide 
the pieces of information that are then combined in the 
fusion module. Based on field campaigns and discussions 
with mine action specialists of the Croatian Mine action 
Centre (CROMAC), it was clear that the first task is to set 
up a list of features (indicators) that need to be looked for 
in the data, and that could be seen in the data and related 
to the absence or presence of mines or minefields. 
Indicators of mine absence are the most important in 
determining if an area is actually mine-safe. These 
indicators are not numerous, and the key one is a 
cultivated field.  Most of available indicators are the ones 
that indicate mine presence. Thus, SMART has two 
applications: 1) area reduction, by detecting indicators of 
mine absence, and 2) suspicion reinforcement, by 
detecting indicators of mine presence (Yvinec, Y., 2005).  
The next step consists in preprocessing, i.e., registering 
and geocoding the available data as well as restoring the 
SAR images by a speckle reduction method based on the 
non-decimated wavelet transform (Duskunovic, I. et al., 
2000). This step is followed by the development of 
methods and tools to detect the indicators, based on two 
approaches: 1) anomaly detection (detecting specific 
objects in the data) and 2) classification. The final step 
fuses the information produced by anomaly detectors and 
classifiers and builds the so-called danger maps.   
This paper focuses on the fusion step, which provides an 
intermediary result in SMART, consisting of improved 
land cover classification maps, along with confidence 
values. Thus, it is a very useful result, exploited by the 
deminers together with the final result.  
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Table 1. Expected classes in the images 
 
3. Data, knowledge and their specificities in SMART 
 
3.1. Available images  
The available images include SAR, multispectral, high 
resolution optical and satellite data. SAR data were 
collected with the E-SAR system of the German 
Aerospace Centre (DLR) in fully polarimetric P- and L-
band and in vv-polarization (waves are vertically 
transmitted and received) X- and C-band. Multispectral 
Daedalus data were collected with a spatial resolution of 
1 m and in 12 channels, ranging from visible blue to 
thermal infrared. SAR and Daedalus data were geocoded. 
DLR also provided a complete set of RMK photographic 
aerial views recorded with a colored infrared film at a 
resolution of 3 cm. This non-geocoded data set is used as 
evidence to control the processing tools and for 
qualitative interpretation by photo-interpreters. 
Finally, geocoded KVR-1000 black-and-white satellite 
images with a resolution of 2 m, recorded before the war 
in Croatia, were purchased in order to assess the changes 
in the landscape due to the war.  
 
3.2. The legend  
The legend (expected classes in the images), derived 
based on the existing and gathered knowledge about the 
mined areas, is given in Table 1. Ground truth was 
provided as a set of regions (training regions and 
validation regions). In the fusion module, training regions 
are used for estimating the parameters of some of the 
proposed methods; validation regions are used for the 
evaluation of the results. 
  
3.3. Input of the fusion module 
Table 2 summarizes the input of the fusion module. 
A logistic regression classification was developed on SAR 
data at RMA (Borghys, D.; Perneel, C.; Keller, M.; 
Pizurica, A. & Philips, W., 2004). The results consist of 
confidence images for each class, except for class 4, which 
is not detected by this approach.  
A classification into hedges, trees, shadows, and rivers 
from SAR data has been developed at DLR (Keller, M.; 
Milisavljević, N.; Suess, H. & Acheroy, M., 2002). The 
method relies on the satisfaction of several criteria. The 
number of satisfied criteria directly provides the 
confidence images for hedges and trees (after  scaling on   

 

Table 2. Summary of the input of the fusion module 
 
[0, 1]). Shadows and rivers, provided as binary images, 
are “discounted“(work done at RMA based on spectral 
characteristics of these types of landcover, and on existing 
landcover indices and meanings of Daedalus bands). 
Hedges and trees are then grouped to form class 6 using a 
maximum operator. Shadows and rivers are directly 
interpreted as classes 7 and 8.  
Several classifiers have been developed for Daedalus: 
• a supervised classification method based on 

minimum distance has been developed at RMA and 
a decision image is provided (Keller, M.; 
Milisavljević, N.; Suess, H. & Acheroy, M., 2002); 

• a region-based classification was performed at ULB 
and confidence images interpreted as membership 
degrees to each class are provided; 

• a belief function classification was developed at 
RMA and confidence images per class are provided 
(Keller, M.; Milisavljević, N.; Suess, H. & Acheroy, 
M., 2002).  

Road detection was performed at ULB and RMA 
(Borghys, D.; Lacroix, V. & Perneel, C., 2002). Linear 
structures are provided. They are dilated to obtain roads 
with a width corresponding to the real width. 
A tool for river detection previously developed at ENST 
was used too. It is based on a Markovian approach. This 
is not directly a result of SMART but it is interesting to 
show how such knowledge can be introduced in the 
fusion process. 
Change detection was obtained at ULB, based on a 
comparison between older KVR images and images made 
during the project. It provides mainly information on 
abandoned regions (class 1). Again, this is an important 
knowledge that both improves the landcover 
classification and provides interesting results after the 
fusion for the construction of danger map. 
Other anomaly detection and classification tools 
developed in SMART were not used in the fusion 

Class no. Legend 
1 Abandoned agricultural land 
2 Agricultural land in use 
3 Asphalted roads 
4 Rangeland 
5 Residential areas 
6 Trees and shrubs 
7 Shadow 
8 Water 

Data type Type of result 
SAR Classification with confidence images 

per class 
SAR & 
Daedalus 

Detection of hedges, trees, shadows, 
rivers, with confidence degrees, 
sometimes discounted 

Daedalus Supervised classification, result as a 
decision image 

Daedalus Region-based classification with 
confidence images per class 

Daedalus Belief function classification with 
confidence images per class 

SAR & 
Daedalus 

Binary detection of roads 

SAR River detection (binary) 
Daedalus & 
KVR 

Change detection (binary image) 
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module, or finally not used at all. For example, detectors 
of power poles, hilltops and strategic locations are not 
included in the legend. Therefore, they are not considered 
as input data for the fusion process, but they are added in 
the final results (construction of danger maps). 
  
3.4. Knowledge modeling in the SMART project 
Knowledge inclusion is one of the main powers of our 
algorithms with respect to the commercial ones. This 
aspect has led to a lot of work in SMART, at different 
levels. 
First, a study of each sensor and on related knowledge 
(properties and behavior of the sensor, ability to detect or 
not some classes, confusions between classes, 
complementarities between bands or channels, etc.) has 
been performed and used in the design of each classifier 
and detector.  
More interesting for the fusion is the knowledge we have 
about possible associations between sensors. This is 
intensively used in the methods we propose. The type of 
knowledge we use concerns properties of each sensor and 
each classifier, as well as   the complementarity between 
them. For instance, the knowledge that rivers can be 
detected by exploiting the distributions of SAR data leads 
to a specific way of using the result, as will be seen in the 
following section. 
An important piece of knowledge is also provided by the 
comparison between KVR images and images acquired 
during the project. In particular this comparison allows 
us to extract some information about the changes 
between two different dates. These changes are used as 
an additional piece of knowledge in our procedure. 
The landcover is usually not completely chaotic but there 
are some uniform regions showing the same landcover. 
This fact is used at two levels: in the classifier developed 
at ULB, which is based on a homogeneity criterion in 
regions, and at higher level, as a final step of fusion, to 
regularize the results in these homogeneous regions. 
Finally, we can group the knowledge sources as follows: 
• information provided by CROMAC (landcover 

labeling, mine laying records, mine accidents, MIS 
and GIS system, etc.); 

• information provided by ULB (result of the second 
ground-truth mission, especially on potential 
anomaly observations); 

• information coming from our experience on working 
with the data (reliability for various channels, 
various classes, mixing of some classes,... but for this, 
we again depend on the input regarding existing 
types of classes and where some representatives of 
each of them can be found); 

• information coming from the sensor principles of 
operation (physical meaning of the data, of the 
features, choice of most promising features,...). 

Some knowledge can be indirectly integrated (our 
experience, principles of operation), but for the others, we 
have to define how to integrate/introduce them in our 

algorithms (mine laying records, mine accidents,... - e.g., 
as a kind of discounting on how possible it is that an area 
is contaminated). Some of these pieces of knowledge are 
however not directly linked to the classes of interest and 
are therefore added at a higher level, during the 
construction of danger map.  
The two first items above constitute useful knowledge for 
testing and validation. From such type of knowledge, 
training and validation regions could be defined, that are 
used respectively for parameter estimation in some fusion 
methods and for evaluation of the results. 
The next two items are already used in some of the 
classifiers, i.e. before the fusion module. Some of them are 
used in the fusion too, as explained in the Section 5. In 
particular, we have some “sure” detection of roads and 
rivers (or at least of a part of it), which can be imposed on 
the fusion result. Change detection constitutes also an 
important piece of knowledge, that allows improving the 
results on class 1 (abandoned fields). Also the border (no 
registered data) can be imposed as prior information. All 
this is detailed in the following sections. 
 
4. Fusion strategies in SMART 
 
4.1. Belief function fusion - overview 
Belief function theory or Dempster-Shafer evidence 
theory (DS) has been already widely used in satellite 
image processing (van Cleynenbreugel, I. et al., 1991, 
Mascle, S.; Bloch, I. & Vidal-Madjar, D., 1997, Le Hégarat-
Mascle, S.; Bloch, I. &Vidal-Madjar, D., 1998, Tupin, F.; 
Bloch, I. & Maître, H., 1999, Milisavljević, N. & Bloch, I., 
2003).  
DS allows representing both imprecision and uncertainty, 
using plausibility and belief functions derived from a 
mass function. The mass of a proposition A is a part of the 
initial unitary amount of belief that supports that the 
solution is exactly in A. It is defined as a function m from 
2D into [0, 1], where D is the decision space, also called 
frame of discernment and it is a set of possible solutions 
(classes). Usually the following constraints are imposed: 

m(∅) = 0,  (1) 
1)( =∑

⊆DA
Am . (2) 

In this formalism, any combination of possible decisions 
from the decision space can be quantified rather than 
considering only the singletons of D (Shafer, G., 1976, 
Smets, P., 1990). This is one of the main advantages of the 
DS approach. Indeed, it leads to a very flexible and rich 
modeling, able to fit a very large class of situations, 
occurring in particular in image fusion. Examples of 
situations where DS theory may be successfully used are: 
• when a source provides information concerning only 

some of the classes; 
• when one source of information differentiates two 

classes and another source does not; 
• mixed pixel example (the presence of more than one 

landcover type in one pixel); 
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• in cases where global source reliability has to be 
taken into account; 

• in cases where knowledge of source reliability is 
available only for some classes; 

• in cases where a priori information has to be 
introduced - even if it is not represented in a 
probabilistic manner, it can be taken into account if it 
induces a way to assign masses, in particular to 
compound hypotheses;  

• in cases of having rare data, i.e. when their amount is 
not sufficient for a reliable statistical learning, while 
there is a lot of external (such as expert) knowledge 
that is quite reliable, as it is the case in mine 
detection (Milisavljević, N. & Bloch, I., 2003) and in 
SMART. 

A recent application where these features of DS are used 
extensively can be found in (Milisavljević, N.; Bloch, I.; 
van den Broek, S. & Acheroy, M., 2003, Milisavljević, N. & 
Bloch, I., 2003, Milisavljević, N. & Bloch, I., 2005).  
In image processing, mass functions may be derived at 
three different levels. At the highest, most abstract level, 
information representation is used in a way similar to 
that in artificial intelligence. Masses are assigned to 
propositions, often provided by experts, such as 
knowledge inclusion in SMART, discussed in Section 3.4 
(Gordon, J. & Shortliffe, E. H., 1985, Neapolitan, R. E., 
1992). Up to now, this kind of information is usually not 
derived from measures on the images. At an intermediate 
level, masses are computed from attributes, and may 
involve simple geometrical models (van Cleynenbreugel, 
I. et al., 1991, Chen, S. Y.; Lin, W. C. & Chen, C. T., 1993). 
This is well adapted to model-based pattern recognition 
but it is difficult to use for image fusion classification of 
complex structures without a model. At the pixel level, 
mass assignment is inspired from statistical pattern 
recognition. The most widely used approach is as follows: 
masses on simple hypotheses are computed from 
probabilities or from the distance to a class center 
(Appriou, A., 1993). Then a global ignorance m(D) is 
introduced as a discounting factor, often as a constant on 
all pixels (Lee, R. H. & Leahy, R., 1990). In most cases no 
other compound hypothesis is considered, and this 
drastically under-exploits the power of DS. Masses can 
also be defined from a distance measure to class centers 
(Denœux, T., 1995). The mass assignment in (Bloch. I, 
1996) is based on a reasoning approach where knowledge 
about the information provided by each image is used to 
choose the focal elements (i.e., subsets with non-zero 
mass values). A similar reasoning is used in 
(Milisavljević, N. & Bloch, I., 2001). However, in case of 
large numbers of classes, this process would become too 
tedious, and unsupervised methods are needed, such as 
(Mascle, S.; Bloch, I. & Vidal-Madjar, D., 1997) for SAR 
imaging or (Ménard, M.; Zahzah, E. H. & Shahin, A., 
1996) for fusion of several classifiers. 
In the DS framework, masses assigned by different 
sources (e.g. classifiers) are combined by the orthogonal 

rule of Dempster (Shafer, G., 1976). For mj being the mass 
function associated with source j (j=1...l, where l is the 
number of sources), this rule is written, for all non-empty 
subsets A of D: 

∑
=∩∩

=

⊕⊕⊕=

ABB
ll

l

l

BmBmBm

AmmmAm

...
2211

21

1

)()...()(

))(...()(
. (3) 

After the combination in this unnormalized form (Smets, 
P., 1993), the mass that is assigned to the empty set:  

∑
∅=∩∩

=∅
lBB

ll BmBmBmm
...

2211
1

)()...()()(   (4) 

can be interpreted as a measure of conflict between the 
sources. It can be directly taken into account in the 
combination as a normalization factor. It is very 
important to consider this value for evaluating the quality 
of the combination: when it is high (in case of strong 
conflict), the normalized combination may not make 
sense and may lead to questionable decisions  (Dubois, D. 
& Prade, H., 1988). Several authors suggest not 
normalizing the combination result (e.g. Smets, P., 1993), 
which corresponds to Eq. (3). 
This fusion operator has a conjunctive behavior. This 
means that all imprecision on the data has to be 
introduced explicitly at the modeling level, in particular 
in the choice of the focal elements. For instance, 
ambiguity between two classes in one image has to be 
modeled using a disjunction of hypotheses, so that 
conflict with other images can be limited and ambiguity 
can be possibly solved during the combination. 
From a mass function, we can derive a belief function: 

∑
≠∅⊆

=∈∀
BAB

D BmABelA
,

)()(,2  (5) 

as well as a plausibility function: 

∑
∅≠∩

=∈∀
AB

D BmAPlsA )()(,2 .  (6) 

After the combination, the final decision is usually taken 
in favor of a simple hypothesis using one of several rules 
(Denœux, T., 1995): e.g. the maximum of plausibility 
(generally over simple hypotheses), the maximum of 
belief, the pignistic decision rule (Smets, P., 1995), etc.  
For some applications, such as in humanitarian demining, 
it may also be necessary to give more importance to some 
classes (e.g., mines, since they must not be missed) at the 
decision level. Then maximum of plausibility can be used 
for the classes that should not be missed, and maximum 
of belief for the others (Milisavljević, N. & Bloch, I., 2001). 
In all that follows, the computations are performed at 
pixel level. A final regularization step is then applied (see 
Section 5.2). 
 
4.2. SMART fusion strategy no. 1: direct use of the classes 
A first, simple method consists in considering each 
classifier as one information source. The focal elements 
are simply the classes. The classifier outputs (confidence 
values) are directly used as mass functions in this model. 
When no confidence values are provided but only a 
decision image or a binary detection, the mass takes only 
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values 0 or 1. This approach inevitably results in a high 
mass of the empty set after the combination. Moreover, 
only the classes detected by all classifiers are obtained as 
resulting focal elements. Thus, no good result can be 
expected with this approach. It shows the interest of 
really using belief function theory or any other that takes 
into account the specificities of the classifiers, disjunctions 
of classes and ignorance (mass assigned to the full set, D).   
 
4.3. SMART fusion strategy no.2: adding a global discounting 
factor (BF1) 
Here, we still consider each classifier as one information 
source, but the focal elements are the singletons and D. 
The definition of m(D) takes into account both the fact 
that some classes are not detected (thus it should be equal 
to 1 at points where 0 is obtained for all detected classes) 
as well as global errors. We propose to use a discounting 
factor α equal to the sum of the diagonal elements of the 
confusion matrix, divided by the cardinality of the 
training areas. This discounting is applied on all masses 
defined as in the previous approach. Then: 

m(D) = 1 - α . (7) 
Note that this uses explicitly the confidence matrix, which 
should be computed on the training areas for each 
classifier or detector. It results that at each step of the 
fusion, the focal elements are always singletons and D. 
Decision rule can be maximum of belief, of mass or of 
pignistic probability (all being equivalent in this case). 
This approach is very easy to implement and models in a 
simple way the fact that classifiers or detectors may not 
give any information on some classes and may be 
imperfect. Results of this method are shown in Section 6. 
 
4.4. SMART fusion strategy no.3: considering each class of 
each classifier/detector as an information source 
More sophisticated methods can be designed by 
considering each classifier as several sources. Namely, 
each classifier provides an output for each class, which 
can be considered as an information source for the fusion. 
Focal elements for a source defined by the output of a 
classifier or detector to a class Ci can be Ci, and D or D\ 
Ci. These are the simplest models.  
If focal elements are chosen as Ci and D, then results 
provide only singletons and D as focal elements. The 
mass m(Ci) can be tuned as a function of the values 
provided by the classifier in the area of the training 
regions for this class. For example, if the values are not 
very high, the mass can be reinforced and defined as 
m(Ci)= k⋅v(Ci) where v(Ci) denotes the results provided by 
the classifier for class Ci. Then m(D)= 1-v(Ci). Although 
this approach is quite simple, it raises the problem of the 
choice of k. It is difficult to derive it in an automatic way, 
and thus this approach was not further tested. If this 
factor is ignored, the results are not satisfactory. 
However, this idea can be interestingly combined with 
ideas for using the confidence matrix in a more subtle 
way as described in Subsection 4.6.  

If focal elements are chosen as Ci and D\ Ci, then several 
disjunctions appear in the result. The mass is spread over 
more subsets of D. Actually if at least one classifier 
provides results for all classes, as soon as this classifier is 
completely used in the fusion, then the resulting focal 
elements can be only singletons (and empty set). This 
method was tested, but did not provide interesting 
results: there are a lot of unclassified points (i.e. assigned 
to 0), which is not very satisfactory. 
Mixed cases can also be considered: sometimes, focal 
elements are Ci and D, and sometimes Ci and D\ Ci 
(typically in cases where the classifier provides a good 
separation between Ci and the other classes). Several 
disjunctions can appear in the combination. A drawback 
of this approach is that it also provides many unclassified 
points. Moreover, it can be difficult to decide for each 
class of each classifier if we should take D or D\ Ci as 
focal elements. 
In  cases  where  a  classifier  leads  to  a  lot  of   confusion 
between several classes, e.g. Ci and Cj (but it can be more 
than two classes), we could take as focal elements Ci ∪ Cj 
and D (or D \ {Ci, Cj}). The problem is that such cases are 
seldom and we may lose some information.  
 
4.5. SMART fusion strategy no.4: analysis of the behavior of 
each classifier for each class 
Now each class of each classifier is considered as a source 
and we take into account the behavior of the classifier 
with respect to the other classes. This behavior can be 
partly understood by looking at the histogram of the 
output of the classifier for class Ci (v(Ci)) in training areas 
for class Ci and at the histogram of v(Ci) in training areas 
of classes Cj that are often confused with Ci.  
If low values are obtained, then we can set m(Cj)=1-v(Ci). 
If high values are obtained, then we can set m(Ci ∪ Cj)=1-
v(Ci). A mass on D can also be introduced as 1-v(Ci). Then 
normalization should be performed in order to obtain a 
sum of masses equal to 1. There are many difficulties 
with this approach: e.g., training areas and confusion 
matrices are intensively used in a non-trivial way, and it 
is difficult to define the relative weights of all defined 
masses. The latter is the main problem, and may explain 
why no good results are obtained so far with this method, 
although many tests have been performed. Overall, this 
approach could be interesting since it is quite rich and 
flexible, but it is very difficult to tune. 
 
4.6. SMART fusion strategy no.5: use of confusion matrices for 
more specific discounting (BF2) 
Next, we propose to use the confusion matrices for 
defining more specific discounting for each class. From 
the confusion matrix computed from the decision made 
from one classifier and from training areas, we derive a 
kind of probability that the class is Ci given that the 
classifier says Cj as: 

∑
=

i
jiconf

jiconf
jic

),(
),(

),( , (8) 
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where the values conf(i,j) denote the coefficients of the 
confusion matrix. We can ignore the low values and 
normalize the others, in order to reduce the number of 
non-zero coefficients (thus the number of focal elements 
in the following). We used a threshold value of 0.05. 
There are several ways to use this normalized confusion 
matrix, e.g. by setting m(Ci)=c(i,j) for detected pixels in 
case of detectors and deriving a more complex method 
for classifiers. The most interesting way, applying to both 
classifiers and detectors in a similar way, is as follows. 
We use c(i,j) for discounting in methods described in 
Subsection 4.4, in particular in the one where only Ci and 
D are taken as focal elements (without any k). This time, 
the decision image for each classifier is not required. We 
still consider that a class j of a classifier is one source, as 
for all instances of methods of Subsection 4.4. From v(Cj) 
provided for this class by a classifier, we define: 

),()()( jicCvCm ji =  (9) 

for all classes Ci which are confused with Cj (which 
provides )()( ji i CvCm =∑ ), and:  

)(1)( jCvDm −= .   (10) 

In comparison to the simplest method, instead of keeping 
a mass on Ci only (and D), this mass is spread over all 
classes possibly confused with Ci, thus better exploiting 
the richness of the information provided by a classifier.  
Results of this method are given in Section 6. 
 
4.7. SMART fusion strategy no.6: fuzzy fusion (FUZZY) 
In order to compare the previous methods with a fuzzy 
approach, we tested a simple method, where we choose 
for each class the best classifiers, and combine them with 
a maximum operator (possibly with some weights). Then 
decision is made according to a maximum rule. The 
choice is made based on the confusion matrix for each 
classifier or detector, by comparing the diagonal elements 
in all matrices for each class. In the illustrated example, 
the best detections, according to the confusion matrix of 
each classifier or detector are detailed in Section 6.3. They 
provide the inputs of the combination step, and a simple 
maximum operator performs well for this step. 
This approach is interesting because it is very fast. It uses 
only a part of the information, which could also be a 
drawback if this part is not chosen appropriately. Some 
weights have to be tuned, which may need some user 
interaction in some cases. Although it may sound 
somewhat ad hoc, it is interesting to show what we can get 
by using the best parts of all classifiers. Since results 
obtained this way are about the best for each class among 
all classifiers, the results are shown in Section 6.  
 
5. Knowledge introduction and spatial regularization 
 
5.1. Introducing knowledge 
In order to improve the results, some additional 
knowledge can be included in the fusion results (note that 
knowledge on the classifiers, their behaviors, etc. has 

already been included in the previous steps). We use at 
this step only the pieces of knowledge that directly 
provide information on the landcover classification. 
Other pieces of knowledge such as mine reports, etc. are 
not directly related to classes of interest, but rather to the 
dangerous areas, and are therefore included in the danger 
map construction, which follows the fusion. 
At this step, several pieces of knowledge proved to be 
very useful. They concern on the one hand some “sure” 
detection. Some detectors are available for roads and 
rivers, which provide areas or lines that surely belong to 
these classes. There is almost no confusion, but some 
parts can be missing. Then these detections can be 
imposed on the classification results. This is simply 
achieved by replacing the label of each pixel in the 
decision image by the label of the detected class if this 
pixel is actually detected. If not, its label is not changed. 
As for roads, additional knowledge is used, namely on 
the width of the roads (based on observations done 
during the field missions). Since the detectors provide 
only lines, these are dilated by the appropriate size, 
taking into account both the actual road width and the 
resolution of the images.  
Another type of knowledge is very useful: the detection 
of changes between images taken during the project and 
KVR images obtained earlier. The results of the change 
detection processing provide mainly information about 
class 1, since they exhibit the fields which were 
previously cultivated, and which are now abandoned. 
These results do not show all regions belonging to class 1, 
but the detected areas surely belong to that class.  
Then a similar process can be applied as for the previous 
detectors.  
With the proposed methods, it was difficult to obtain 
good results on class 2, while preserving the results on 
class 1 that is crucial since it corresponds to fields no 
longer in use and therefore potentially dangerous. 
Therefore we use the best detection of class 2 (extracted 
from region based classification on Daedalus) as an 
additional source of knowledge. 
As will be seen in Section 6, this additional knowledge 
introduction allows us to obtain better results. 
 
5.2. Spatial regularization 
The last step is a regularization step. Indeed, it is very 
unlikely that isolated pixels of one class can appear in 
another class. 
Several local filters have been tested, such as a majority 
filter, a median filter, or morphological filters, applied on 
the decision image. A Markovian regularization approach 
on local neighborhoods was tested too. The results are 
somewhat better, but not significantly better. 
A better approach is to use the segmentation into 
homogeneous regions provided by ULB.  
In each of these regions, a majority voting is performed: 
we count the number of pixels in this region that are 
assigned to each class  and  the  class  that  has  the largest  
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Table 3. Discounting factors for method BF1 
 
cardinality is chosen for the whole region (all pixels of 
this region are relabeled and assigned to this class). 
This type of regularization, which is performed at a 
regional level rather than at a local one, provides good 
results, as will be seen in Section 6. 
 
5.3. On the levels of fusion 
Three levels of fusion are often distinguished: low level 
(usually pixel level), intermediary level (features such as 
lines or regions) and higher level (often called decision 
fusion). Here all three levels are addressed in the 
proposed schemes. 
Firstly, all three levels appear in the input of fusion, since 
classifiers may be based on pixels, on regions, on 
detection of linear structures (as for river or roads), on 
semantics (like change detection), etc. 
Then, the three levels also appear in the fusion itself: the 
computation of the combination is performed at pixel 
level, but based on semantic information provided by the 
classifiers and detectors (in terms of classes and 
decisions). Thus, this step merges two levels of fusion. 
 
 

 
 
 
 
 
 
 
 
 
 

Table 4. UA and PA for all three methods (after 
knowledge inclusion and spatial regularization) and the 
best classifier (BC) for each important class 

The final regularization step is performed at an 
intermediary level, in homogeneous regions which are 
not reduced to a simple pixel neighborhood, but which 
on the other hand do not cover one class each (several 
regions belong to the same class). 
 
6. Results 
 
In this section, we provide results obtained with the three 
most interesting methods described in Subsections 4.3 
(BF1), 4.6 (BF2) and 4.7 (FUZZY) in case of Glinska 
Poljana site in Croatia.  
 
6.1. Results with BF1 
For each classifier, the discounting factor α is obtained 
from the normalized sum of the diagonal elements of the 
confusion matrix obtained on the training areas. The 
values are given in Table 3. After this type of fusion, a lot 
of confusion occurs between classes 1 and 2, but this is 
largely improved by knowledge inclusion, while noisy 
aspect is suppressed by regularization.  
In order to assess classification accuracy, we use user's 
accuracy (UA) and producer's accuracy (PA) measures 
that can be derived directly from confusion matrices. UA 
represents the probability that a given pixel will appear 
on the ground as it is classed (i.e., how much confidence 
should a user have for a given classification). PA is the 
percentage of a given class that is correctly identified on 
the map (it says how well we produce a map of 
classification for a specific class). The two accuracies per 
class are given in Table 4. Note that the  most  interesting  
 
 

 
Figure 2. Visible channel of Daedalus  

Team Data type Type of result α 

RMA SAR Classification with confi-
dence images per class 
(except class 4) 

0.41 

DLR 
& 
RMA 

SAR & 
Daedalus 

Detection of hedges, trees, 
shadows, rivers, with 
confidence degrees for 
hedges and trees; rivers 
and shadows discounted 
based on Daedalus bands 

0.11 

RMA Daedalus Supervised classification, 
result as a decision image 

0.46 

ULB Daedalus Region based classifica-
tion with confidence ima-
ges per class 

0.80 

RMA Daedalus Belief function classifica-
tion with confidence ima-
ges per class 

0.67 

Cl. BC BF1 BF2 FUZZY 
1 

(PA) 
0.84 0.81 0.78 0.89 

2 
(UA) 

0.87 0.86 0.81 0.95 
 

3 
(UA) 

0.88 0.96 0.96 0.98 
 

8 
(PA) 

0.96 0.97 0.99 0.99 
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classes for danger map building are 1, 2, 3 and 8, and  
that, regarding the purpose of the project, PA is 
important for classes 1 and 8, and UA for classes 2 and 3. 
In addition, the “best classifier” (BC) in Table 4 is not 
always the same one, but the result is the one provided 
by the classifier that is the best for a particular class. 
In order for the reader to have a better visual idea about 
the images containing the results, Fig. 2 contains the raw 
image of Glinska Poljana in a visible channel of Daedalus.   
After classification of this area using BF1 (basic version), 
we obtain the results given in Fig. 3, while knowledge 
inclusion and spatial regularization applied to these 
results lead to Fig. 4. The color code in all classification 
results is as follows: class 1 – orange; 2 – yellow; 3 – 
medium grey; 4 – light green; 5 – dark red; 6 – dark green; 
7 – brown; 8 – blue.  
The fusion module also provides confidence and stability 
images. The confidence image represents, at each pixel, 
the maximum confidence over all classes at this point 
(i.e., the confidence degree of the decided class). The 
stability image is computed as the difference between the 
two highest confidence degrees (i.e., confidence in the 
decided class and confidence in the second most possible 
class). If the stability is high, this means that there is no 
doubt about the decision (one class is well distinguished  
from all other ones), and if it is low, two classes are very 
close to each other in terms of confidence, so the decision 
should be considered carefully. The confidence image 
and the stability image can be multiplied in order to 
provide  a  global  image  evaluating  the  quality  of  the 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3. Results with BF1 (basic version) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. Results with BF1 after knowledge inclusion and 
spatial regularization 
 

classification in each point. We will give examples of 
these two images in Subsection 6.3. 
 
 

 
 

Figure 5. Results with BF2 (basic version) 
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Figure 6. Results with BF2 after knowledge inclusion and 
spatial regularization 
 

6.2. Results with BF2 
In this method, the confusion matrices for each classifier 
are normalized row by row, and the coefficients that are 
higher than 0.05 are used for discounting the 
corresponding classes. The results of the basic version of 
this type of fusion yield a poor detection of class 1 and a 
lot of confusion between this class and classes 2 and 7. In 
addition, class 4 is not detected and detection of class 3 is 
worse than with BF1. However, the results are largely 
improved by knowledge inclusion and confusions are 
strongly reduced. Finally, the noisy aspect is suppressed 
by the regularization, leading to an improved detection, 
in particular for class 8. Results are given in Fig. 5 (basic 
version) and 6 (after knowledge inclusion and spatial 
regularization). UA and PA are given in Table 4. 
 
6.3. Results with FUZZY 
 
For the fuzzy method, the following outputs of classifiers 
have been used for each class: 
• 1: SAR logistic regression, region-based classification, 

belief function classification and change detection; 
• 2: region-based classification and belief function 

classification; 
• 3: region-based classification and road detection; 
• 4: region-based classification, minimum distance 

classification and belief function classification; 
• 5: region-based classification and belief function 

classification; 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 7. Results with FUZZY (basic version) 
 
• 6:  region-based classification and SAR trees and 

hedges detection; 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. Results with FUZZY after knowledge inclusion 
and spatial regularization  
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Figure 9. Confidence image for FUZZY  
 
• 7: SAR logistic regression, SAR shadow detection, 

minimum distance classification and belief function 
classification; the maximum is discounted by a factor 
0.5, taking into account that this class is not really 
significant for further processing (shadows “hide” 
meaningful classes); 

• 8: region-based classification, belief function 
classification and river detection. 

The results of this fusion in its basic version are already 
very good. This can be explained by the fact that not all 
information provided by the classifiers is used, but only 
the best part of them. Further improvements are obtained 
by knowledge inclusion.  After the regularization step, 
class 7 disappears, but this is not a problem since this 
class is not significant for further processing.  
Results of this method are shown in Figs. 7 (basic fusion) 
and 8 (knowledge inclusion and spatial regularization), 
and Figs. 9 and 10 show confidence and stability images. 
Table 4 contains PA and UA for this type of fusion too.  
 
6.4. Remarks 
In order to get a synthetic view of the results, for an easy 
and simple comparison, the normalized sums of the 
diagonal elements of the confusion matrices are shown in 
Table 5. The two methods based on belief functions 
provide similar global results, BF1 being somewhat 
better. The differences appear mainly when looking 
individually at each class. The improvement achieved 
with knowledge inclusion is significant. Regularization 
provides an additional improvement. The final results are  

 
 

Figure 10. Stability image for FUZZY  
 
globally better than the ones obtained by each of the 
initial classifiers, as can be seen by comparing the values 
with those displayed in Table 3 (the best classifier 
provides a global accuracy of 0.80). The fuzzy method is 
the best in its basic version, since it already selects the 
best inputs, thus the improvement due to the next steps is 
not as important as for the belief function methods. 
 
 7. Danger maps and first results of SMART validation 
 
7.1. Danger maps 
The main concepts of the danger maps are: 
• they are synthetic documents designed to help the 

end users in their decision-making process regarding 
area reduction; 

• they are created from results of all detection and 
classification tools and methods used in SMART (as 
well as some other sources such as fieldwork); 

• they constitute the final output of the system and 
represent the basis for proposing areas for area 
reduction. 

Table 5. Comparison of the normalized sum of diagonal 
elements of the confusion matrices for the three tested 
methods. 

Method Basic Knowledge 
inclusion 

Spatial 
regularization 

BF1 0.70 0.81 0.85 
BF2 0.65 0.78 0.81 
Fuzzy 0.79 0.83 0.84 
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Note that the results are for decision makers and that the 
reduction of a suspicious area is not an automatic process. 
There are four types of danger maps developed within 
the SMART project: discrete location maps, discrete 
“number of indicators“ maps, continuous location maps 
and continuous confidence maps. 
The input of the discrete location maps consists of one 
location map for each indicator, and an expert defines 
zone of influence of each indicator. The resulting danger 
map is, actually, one synthesis location map featuring all 
the indicators and their respective zone of influence.  
In case of the discrete “number of indicators“ map, the 
input is the same as for the discrete location map and an 
expert defines the zone of influence again. Two synthesis 
maps are obtained as output, one featuring the number of 
indicators of mine presence (IMP) in each point and the 
other one featuring the number of indicators of mine 
absence (IMA) at each point. 
Discrete danger maps are easy-to-read synthetic 
documents, but they do not provide weighting of the 
indicators according to their importance. Furthermore, as 
the result is binary, there is no information about danger 
outside the zones of influence of the indicators. Finally, 
relevant thresholds are based on expert knowledge. The 
continuous danger maps offer an alternative (Yvinec, Y.  
 

Figure 11. Continuous location map (SMART consortium, 
2004). Grey areas are outside of the scope of SMART, 
while no data exists for white areas. Demined areas are 
light green. IMAs are superimposed as parallel white and 
green lines. The degree of danger is on the scale from 
green (low) via yellow (intermediate) to red (high). 

et al., 2003). Namely, continuous location maps (see Fig.  
11) are obtained as a weighted sum of factors derived 
from the IMP, with a superimposition of vectors having a 
see-through inside, representing the IMA. These maps 
provide the spatial distribution of the measure of danger, 
and are completed by confidence maps for the IMA and 
for the IMP. This enables the human analysts to estimate 
the relative strengths of the information provided. 
Therefore, the continuous maps feature more elements 
than the discrete danger maps, introduce more nuances 
and require additional expert knowledge. 
During the process of area reduction, the decision makers 
can refer to information relating to the IMA and the 
associated confidence values. The other key element is the 
information that concerns the IMP and the associated 
confidence values. As pointed out by the end users, this 
information can be of use for prioritizing the mine 
clearance operations.  
 
7.2. Preliminary SMART validation results 
Validation was done by blind tests in three test-sites in 
Croatia (Yvinec, Y., 2005) having 3.9 km2 in total: Glinska 
Poljana (0.63 km2, a fertile valley surrounded by hills), 
Pristeg (1.5 km2, rocky, Mediterranean area) and Čeretinci 
(1.7 km2, flat agricultural area). In each of the sites 
clearing was performed after the flight campaign in order 
to have the true status of the mine presence, but this 
information was not available before the validation of 
produced danger maps. From the danger maps, a 
selection of areas proposed for area reduction was done, 
and areas considered as suspect were selected too. In 
average 25% of the mine-free area has been proposed for 
reduction: Glinska Poljana – 7.7%, Pristeg – 9.0% and 
Čeretinci – 47%. The error rate of 0.10% is relatively 
constant for all three sites. In addition to this technical 
evaluation, a panel of independent mine action experts 
working in Croatia has evaluated the SMART method 
and danger maps. They recognized SMART as a 
successful project that solved several crucial problems of 
the aerial survey of the suspected areas, especially by 
approved indicators of mine presence, efficient use of 
very different sensor techniques, data fusion and danger 
map functionalities. It has been found that it might be 
even more suited for risk assessment. 
 
8. Conclusion 
 
In this paper, a method is presented for helping mined 
area reduction in a post-conflict situation, using aerial 
and satellite data. The concept of the whole method is 
described, developed within the SMART project, and 
most of the attention is given to the data fusion task. 
The SMART method has been tested and evaluated on 
three different sites in Croatia, chosen to be 
representative of South-Eastern Europe. In order to apply 
the proposed methodology in another context, a  
new field campaign would be needed to derive and 
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implement new general rules. Before using SMART, the 
list of indicators must be re-evaluated and adapted. 
Furthermore, the SMART method is not designed to 
provide the final stage of area reduction, which would 
require that 0% of the area proposed for the reduction is 
actually mined, but an early stage in the whole process. It 
provides danger maps, confidence maps of indicators of 
mine presence and confidence maps of indicators of mine 
absence, which help the interpretation of the areas 
proposed for area reduction.  
Regarding the data fusion module itself, we have worked 
on numerical fusion methods. The proposed approaches 
are to a large part original and constitute by themselves a 
result of the project. Results have been obtained on the 
three sites with the three most promising approaches, and 
as an example, fusion results for one of the sites (Glinska 
Poljana) are given in this paper. We have shown how the 
results can be improved by introducing additional 
knowledge in the fusion process. A spatial regularization 
at a regional level further improves the results. At the 
end, the results are at least as good as the ones provided 
for each class by the best classifier for that class. Therefore  
they are globally better than any input classifier or 
detector. This shows the improvement brought by fusion. 
The user has the possibility to be involved in the choice of 
the classifiers, in the choice of some of the parameters (in 
particular for the fuzzy fusion approach, some 
supervision is still required in the choice of the 
parameters). Although for the two first approaches, the 
parameters are automatically derived from the confusion 
matrices of each classifier, the programs are flexible 
enough to allow the user to modify them at wish. 
The work done for this fusion module will certainly be 
useful in many other applications, even in quite different 
domains, and constitutes therefore a large set of methods 
and tools for both research and applicative work. In 
particular, SMART gave us the opportunity to propose 
and develop schemes that have a noticeable variety and 
richness and constitute a real improvement over existing 
tools. 
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