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Possibilistic Versus Belief Function Fusion
for Antipersonnel Mine Detection

Nada Milisavljević and Isabelle Bloch, Member, IEEE

Abstract—Two approaches for combining humanitarian mine
detection sensors are presented—one based on belief functions
and the other one based on possibility theory. The approaches are
described in parallel. First, different measures are extracted from
the sensor data. Mass functions and possibility distributions are
then derived from the measures based on prior information. After
that, the combination of masses and the combination of possibility
degrees are performed in two steps, on a separate sensor level
and between the sensors. Combination operators are chosen to
account for different characteristics of the sensors. The selection of
the decision rules is discussed for both approaches. The proposed
approaches are illustrated on a set of real mines and nondangerous
objects, and promising results have been obtained.

Index Terms—Knowledge representation, multisensor systems,
possibility theory.

I. INTRODUCTION

DUE TO a large variety of types of mines and of conditions
in which mines can be found, there is no single sensor

used in humanitarian mine detection that can reach the neces-
sarily high detection rate in all possible scenarios. Therefore,
an attractive way toward finding a solution is in taking the best
from several complementary sensors. One of the most promis-
ing sensor combinations consists of an infrared (IR) camera,
an imaging metal detector (MD), and ground-penetrating radar
(GPR). In this paper, we present and compare two approaches
for combining these sensors, which can be easily adapted
for other sensors and their combinations. These approaches,
based on belief function theory [1] and on possibility theory
[2], are aimed at dealing with antipersonnel (AP) mines in a
humanitarian demining context.

Most of the work done in the field of fusion of dissimi-
lar mine detection sensors is based on statistical approaches
[3]–[6]. Examples of alternative approaches are provided in
[7] (fuzzy fusion of classifiers), [8] (log-likelihood ratio-test-
based algorithm fusion), and [9] and [10] (neural networks).
Statistical approaches lead to good results for a particular
scenario; however, they often ignore or just briefly mention that
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several important problems have to be faced in this domain
of application [5], [11], [12] once more general solutions are
looked for. Namely, the data are highly variable depending
on the context and conditions. In addition, the data are not
numerous enough to allow for reliable statistical learning [13].
Furthermore, the data do not give precise information on the
type of mine (ambiguity between several types), and it is not
possible to model every object (neither mines nor objects that
could be confused with them). Some fusion attempts in this
domain of application treat every alarm as a mine, and not as
an object that not only could be a mine but a false alarm as
well [14], [15]. Last, as shown in [16], the issue of statistical
correlation among the outputs of demining sensors is not always
taken into account in statistical approaches and typically leads
to reduced performance.

In a previous work [17], a method based on the belief func-
tion theory [1], [18], [19] has been proposed. In this paper, we
compare it with an alternative approach, based on the possibility
theory [2], to take advantage of the flexibility in the choice
of combination operators [20], [21]. This aspect is exploited
here to account for different characteristics of the sensors to be
combined. In various remote-sensing applications, these fusion
methods have been successfully used [22]–[27]. However, to
our knowledge, in the domain of AP mine detection, there is
no attempt to apply the two fusion theories in parallel and/or
to compare them. In other domains, there are some works that
compare the two approaches, such as [28], where the belief
function theory is opposed to the qualitative possibility theory
and illustrated on a fictitious example of the assessment of the
value of a candidate. In contrast to that paper, we apply the
quantitative possibility theory here.

According to the general scheme of fusion described in
[29], the main steps of our two approaches, presented in par-
allel, include modeling of the available information and data
(Section II), combination (Section III), and a final decision
step (Section IV). Results obtained on data acquired at the
Netherlands Organization for Applied Scientific Research test
facilities [30] within the Dutch HOM-2000 project, containing
a set of real mines and nondangerous objects, are shown and
compared in Section V.

II. INFORMATION MODELING

From the data gathered by the sensors, a number of measures
are extracted, as in [17]. These measures concern the following:

• area and the shape (elongation and ellipse fitting) of the
object observed using the IR sensor;
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Fig. 1. Example of the GPR data (B-scan after background removal) and the
extracted hyperbola.

Fig. 2. Example of (left) the raw IR data together with (right) the extracted
shape.

• size of the metallic area in the MD data;
• propagation velocity (thus, the type of material), the

burial depth of the object observed using the GPR,
and the ratio between the object size and its scattering
function.

As an illustration, Fig. 1 contains a preprocessed B-scan
(2-D image representing a vertical slice in the ground, along
the scanning direction) of the GPR data. Due to poor di-
rectivity of the transmitting and receiving antennas of the
GPR, an object leaves a hyperbolic signature in a B-scan. If
this hyperbola is well detected, as in Fig. 1, the three GPR
measures can be directly related to the extracted hyperbola
parameters [31]. Mass functions and possibility distributions
are then derived from the measures based on prior informa-
tion, such as the usual size of mines or the typical burial
depth.

An example of the IR data is given in Fig. 2 (left), taken at
the optimum time of the day for the IR measurements (periods
of higher temperature contrasts between potential objects and
the soil) [32]. After some preprocessing, extraction of a region
having a high contrast with the surroundings is performed, as
shown in Fig. 2 (right). In brief, the region selection method,
introduced in [33], consists of estimating a background from

Fig. 3. Example of the raw MD data.

a preset number of the bordering pixels around an image and
preserving the pixels that significantly differ from the estimated
background.

Fig. 3 illustrates the MD data gathered over an x-like metallic
shape. The raw image is blurred mainly due to a large footprint
of the MD coil with respect to the size of metallic objects such
as mines. In reality, the MD images are sometimes saturated,
so it is not possible to recover the true shape using classical
restoration techniques [34], and the raw image is analyzed
further [33].

In the following, we model the information provided by these
measures in terms of possibility distributions as well as mass
functions. Note that we have two spaces for each function—the
set of hypotheses, which is the same for each function, and
the feature space, which depends on the measurements from
which the function is derived. Each function for one hypoth-
esis is, therefore, not a value, but a function over the feature
space (a function of the depth value, of the shape measure,
etc.). The specific shape of the functions and their parame-
ters are derived from the knowledge, indicating their general
behavior.

A. IR Measures

Elongation and ellipse fitting measures provide information
mainly on shape regularity [17]. The possibility degrees of
being a regular-shaped mine (MR), derived from these two
measures, are represented by π1I(MR) and π2I(MR). Sim-
ilarly, π1I(MI) and π2I(MI) denote the possibility degrees
of being an irregular-shaped mine (MI). Then, the possibility
degrees of being a regular-shaped nondangerous (i.e., friendly)
object (FR) and an irregularly shaped friendly object (FI)
are defined too and are denoted by π1I(FR) and π1I(FI) for
elongation measure, and by π2I(FR) and π2I(FI) for ellipse
fitting measure, respectively.

In terms of belief functions, the frame of discernment (full
set) is Θ = {MR,MI, FR,FI}. As elongation and ellipse fit-
ting aim at distinguishing regular and irregular shapes, masses
assigned by these two measures, m1I and m2I , are split be-
tween MR ∪ FR, MI ∪ FI , and the full set.

Regarding elongation, we calculate r1 as the ratio between
the minimum and maximum distances of bordering pixels
from the center of gravity (we work on thresholded images),
and r2 as the ratio of minor and major axes obtained from



1490 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 46, NO. 5, MAY 2008

second-moment calculation [17], [35]. Using these two ratios,
the following possibility degrees are derived:

π1I(MR) = π1I(FR) = min(r1, r2) (1)

π1I(MI) = π1I(FI) = 1 − π1I(MR). (2)

In the framework of belief functions, for this measure,
masses are defined as follows:

m1I(MR ∪ FR) = min(r1, r2) (3)

m1I(MI ∪ FI) = |r1 − r2| (4)

and the full set takes the rest, i.e.,

m1I(Θ) = 1 − max(r1, r2). (5)

In case of ellipse fitting, let Aoe be the part of an object area
that belongs to the fitted ellipse as well, Ao be the object area,
and Ae be the ellipse area. Then, we define

π2I(MR) =π2I(FR)

= max
(

0,min
{

Aoe − 5
Ao

,
Aoe − 5

Ae

})
(6)

π2I(MI) =π2I(FI) = 1 − π2I(MR). (7)

Masses for this measure are the following ones [17]:

m2I(MR ∪ FR) = max
(

0,min
{

Aoe − 5
Ao

,
Aoe − 5

Ae

})
(8)

m2I(MI ∪ FI) = max
{

Ae − Aoe

Ae
,
Ao − Aoe

Ao

}
(9)

m2I(Θ) = 1 − m2I(MR ∪ FR) − m2I(MI ∪ FI).

(10)

The subtraction of five pixels is introduced to include the
limit case of an ellipse (minimum of five points needed to define
it), where we cannot judge about the shape at all, so ignorance
should be maximum.

Note that in cases where reliable information exists that all
mines have a regular shape, the possibility degrees of MR
can be reassigned to mines of any shape (M = MR ∪ MI),
whereas the possibility degrees of MI can be reassigned
to friendly objects of any shape (F = FR ∪ FI). Similarly,
masses given to MR ∪ FR can be reassigned to M , whereas
masses given to MI ∪ FI can be reassigned to F .

The area directly provides a degree π3I(M) of being a
mine. Namely, since the range of possible AP mine sizes is
approximately known, the degree of possibility of being a mine
is derived as a function of the measured size

π3I(M) =
aI

aI + 0.1 · a1
· exp

− [aI − 0.5 · (a1 + a2)]
2

0.5 · (a2 − a1)2
(11)

where aI is the actual object area on the IR image, whereas
the approximate range of expectable mine areas is between a1

and a2 (for AP mines, it is reasonable to set a1 = 15 cm2 and
a2 = 225 cm2 [17], [36]). On the contrary, friendly objects can
be of any size, so the measured size is uninformative about
the possibility of being a friendly object. Hence, the possibility
degree is set to 1 whatever the value of the size, i.e.,

π3I(F ) = 1. (12)

As anything could have the same area/size as a mine, while
outside the range of the expected size of mines, it is far more
probable that the object is friendly; area/size mass assignment
is given by the following two equations [17]:

m3I(Θ) =
aI

aI + 0.1 · a1

· exp
− [aI − 0.5 · (a1 + a2)]

2

0.5 · (a2 − a1)2
(13)

m3I(FR ∪ FI) = 1 − m3I(Θ). (14)

B. MD Measures

If the point-spread function (impulse response) of the MD
is known, if the gathered data are not saturated, and if the
scanning step in both directions is small enough, it is possible
to extract the object shape and area as seen by the MD, as
well as the burial depth [34], [37], [38]. In that case, the latter
measure can be modeled as the GPR burial depth measure (see
Section II-C), whereas the shape and area measures can be mod-
eled as in Section II-A (the IR case), but the results should be
treated with caution as the meanings of the shape and of the area
are related to the amount of metal in the object (metallic pieces
in low-metal-content mines may have complicated shapes, and
they are not in contact with the host soil) [38], [39]. In reality, if
the range of existing metal contents expected in the field is very
wide, depending on the type of the MD used, it can be difficult
to adjust the sensitivity, so that all the low-metal-content mines
are detected without causing the data saturation for high-metal-
content objects [34]. Furthermore, if the minefield is large, to
speed up the scanning time, the data-gathering resolution in the
cross-scanning direction can be very poor, as it is the case with
the data used in this paper. Thus, the MD information used here
consists of only one measure, which is the width of the region
in the scanning direction w (in centimeters; as shown in [17],
other measures can be easily added). As friendly objects can
contain metal of any size, we define

πMD(F ) = 1. (15)

On the contrary, if there is some knowledge on the expected
sizes of metal in mines (for many AP mines, this range is
between 5 and 15 cm), we can assign possibilities to mines
as, e.g.,

πMD(M) =
w

20
· [1 − exp(−0.2 · w)] · exp

(
1 − w

20

)
. (16)
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The corresponding mass functions are [17]

mMD(Θ) =
w

20
· [1 − exp(−0.2 · w)] · exp

(
1 − w

20

)
(17)

mMD(FR ∪ FI) = 1 − mMD(Θ). (18)

C. GPR Measures

All the three GPR measures provide information about
mines [31].

In case of burial depth information D, friendly objects
can be found at any depth, whereas it is known that there
is some maximum depth up to which AP mines can be ex-
pected. They can rarely be found buried below 25 cm (Dmax),
often much shallower, the depth being limited mainly by
their activation principles. However, due to soil perturbations,
erosions, etc., mines can, by time, go deeper or shallower
than the depth at which they were initially buried. Thus, for
this GPR measure, the possibility distributions for mines, i.e.,
π1G(M), and friendly objects, i.e., π1G(F ), can be modeled as
follows:

π1G(M) =
1

cosh(D/Dmax)2
(19)

π1G(F ) = 1. (20)

The masses for this measure are [31] given by

m1G(Θ) =
1

cosh(D/Dmax)2
(21)

m1G(FR ∪ FI) = 1 − m1G(Θ). (22)

Another GPR measure exploited here is the ratio d/k (cor-
responding to the opening of the hyperbola [31]) between the
object size seen in the scanning direction d and its scattering
function k directly related to the object shape [40]. Again,
friendly objects can have any value of this measure, whereas
for mines, there is a range of values that mines can have,
and outside that range, the object is quite certainly not a
mine, i.e.,

π2G(M) = exp

(
− [(d/k) − md]

2

2 · p2

)
(23)

π2G(F ) = 1 (24)

where md is the d/k value at which the possibility distribution
reaches its maximum value (here, md = 700, chosen based on
prior information [40]), and p is the width of the exponential
function (here, p = 400).

Similarly, the mass assignments for this measure are [31]

m2G(Θ) = exp

(
− [(d/k) − md]

2

2 · p2

)
(25)

m2G(FR ∪ FI) = 1 − m2G(Θ). (26)

Last, propagation velocity v can provide information about
object identity. Here, we extract depth information on a differ-
ent way than in the case of the burial depth measure [31], and
we preserve the sign of the extracted depth. This information
indicates whether a potential object is above the surface. If
that is the case, the extracted propagation velocity should be
close to c = 3 × 108 m/s, the propagation velocity in vacuum.
Otherwise, if the sign indicates that the object is below the
soil surface, the value of v should be around the values for the
corresponding medium, e.g., from 5.5 × 107 to 1.73 × 108 m/s
[40] in the case of sand, i.e.,

π3G(M) = exp
(
− (v − vt)2

2 · h2

)
(27)

where vt is the value of velocity that is the most typical for the
medium (here, for sand, it is 0.5 × (5.5 × 107 + 1.73 × 108) =
1.14 × 108 m/s, and for air, it is equal to c), and h is the width
of the exponential function (here, h = 6 × 107 m/s). If the
extracted velocity value significantly differs from the expected
values for that medium, it can be expected that there is no object
indeed, so, again, friendly objects can have any value of the
velocity, i.e.,

π3G(F ) = 1. (28)

The corresponding mass functions are [31]

m3G(Θ) = exp
(
− (v − vmax)2

2 · h2

)
(29)

m3G(FR ∪ FI) = 1 − m3G(Θ). (30)

D. Comparison of Both Models

Let us briefly comment on the similarities and the differences
in both models. Although the semantics is different, similar
information can be modeled. The idea behind this paper is to
design the possibility and mass functions as similarly as possi-
ble to concentrate on the comparison at the combination step.

The main difference relies in the modeling of ambiguity. The
semantics of possibility leads to model ambiguity between two
hypotheses with the same degrees of possibilities for these two
hypotheses. This is, for example, the case in (1) and (6). On the
contrary, the reasoning on the power set of hypotheses in the
belief function theory leads to assigning a mass to the union of
these two hypotheses, and examples are (3) and (8).

Another distinction concerns the ignorance. Although it is
explicitly modeled in the belief function theory through a mass
on the whole set (to guarantee the normalization of the mass
function over the power set), it is only implicitly expressed in
the possibilistic model through the absence of a normalization
constraint.

III. COMBINATION

The combination of possibility degrees, as well as of masses,
is performed in two steps. The first one applies to all measures
derived from one sensor. The second one combines results
obtained in the first step for all three sensors.
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A. Combination of Possibility Degrees

Here, only the combination rules related to mines are con-
sidered. The issue of combination rules for friendly objects is
discussed in Section IV-A.

Let us first detail the first step for each sensor. For the IR,
since mines can be regular or irregular, the information about
regularity on the level of each shape measure is combined using
a disjunctive operator (here, the max), i.e.,

π1IM = max (π1I(MR), π1I(MI)) (31)
π2IM = max (π2I(MR), π2I(MI)) . (32)

The choice of the maximum (smallest disjunction and idem-
potent operator) as a t-conorm is related to the fact that the
measures cannot be considered as completely independent from
each other. Therefore, there is no reason to reinforce the
measures by using a larger t-conorm, and the idempotent one
is preferable in such situations. These two shape constraints
should be both satisfied to have a high degree of possibility of
being a mine [17]. Therefore, they are combined in a conjunc-
tive way (here, using a product). Last, the object is possibly a
mine if it has a size in the expected range or, if it is not in the
expected range, satisfies the shape constraint. Hence, the final
combination for the IR is

πI(M) = π3I(M) + [1 − π3I(M)] · π1IM · π2IM . (33)

The conjunction in the second term guarantees that πI(M) is
in [0, 1].

In case of the GPR, it is possible to have a mine if the object is
at shallow depths and its dimensions resemble a mine, and the
extracted propagation velocity is appropriate for the medium.
Thus, the combination of the obtained possibilities for mines
is performed using a t-norm, expressing the conjunction of all
criteria. Here, the product t-norm is used, i.e.,

πG(M) = π1G(M) · π2G(M) · π3G(M). (34)

For the MD, as there is just one measure used, there is no first
combination step, and the possibility degrees obtained using (7)
and (8) are directly used.

In case of possibilities, the second combination step is per-
formed using the following algebraic sum:

π(M) = πI(M) + πMD(M) + πG(M) − πI(M) · πMD(M)
− πI(M) · πG(M) − πMD(M) · πG(M)
+ πI(M) · πMD(M) · πG(M)

(35)

leading to a strong disjunction [20], [41] since the final pos-
sibility should be high if at least one sensor provides a high
possibility. This operator is also chosen based on the fact that
it is better to assign a friendly object to the mine class than to
miss a mine.

B. Combination of Masses

For the IR and the GPR, masses assigned by the measures of
each of the two sensors are combined by Dempster’s rule in an

unnormalized form [1], [19], i.e.,

mij(S) =
∑
k,l

Ak∩Bl=S

mi(Ak) · mj(Bl) (36)

where S is any subset of the full set, whereas mi and mj are
masses assigned by measures i and j, and their focal elements
are A1, A2, . . . , Ap and B1, B2, . . . , Bq , respectively. Demp-
ster’s rule is commutative and associative, which means that
it can be repeatedly applied until all measures are combined,
and that the result does not depend on the order used in the
combination. A general idea for using the unnormalized form
of this rule instead of the more usual normalized form is to
preserve conflict [17], [42], that is, mass assigned to the empty
set, i.e.,

mij(∅) =
∑
k,l

Ak∩Bl=∅

mi(Ak) · mj(Bl). (37)

Here, a high degree of conflict would indicate that either
there are several objects, and the sensors, as detectors of dif-
ferent physical phenomena, do not provide information on the
same object, or some sources of information are not completely
reliable. Our main interest is in the possibility that sensors do
not refer to the same object, as the unreliability can be modeled
and resolved through discounting factors [17].

After combining masses per sensor, the fusion of sensors is
performed using Dempster’s rule in the unnormalized form [see
(36)]. If the mass of the empty set after the combination of
sensors is high, they should be clustered, as they do not sense
the same object.

In this framework, two other functions are usually derived
from the mass functions, i.e., beliefs Bel and plausibilities Pl
[1], that are defined in the following way for any subset B:

Bel(B) =
∑

S⊆B,S �=∅

m(S) (38)

Pl(B) =
∑

S∩B �=∅

m(S). (39)

C. Comparison of the Combination Equations

For the IR, from (1)–(14), it is evident that

π1I(MR) = m1I(MR ∪ FR) (40)

π1I(MI) = m1I(MI ∪ FI) (41)

π2I(MR) = m2I(MR ∪ FR) (42)

π2I(MI) = m2I(MI ∪ FI) (43)

π3I(M) = m3I(Θ) (44)

so (33) can be rewritten as

πI(M) = m3I(Θ) + [1 − m3I(Θ)] · m1IM · m2IM (45)

with

m1IM = max (m1I(MR ∪ FR),m1I(MI ∪ FI)) (46)

m2IM = max (m2I(MR ∪ FR),m2I(MI ∪ FI)) . (47)
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For this sensor, the combination of masses using (36) and the
calculation of plausibilities based on (39) lead to

PlI(M) = m3I(Θ) · [m12I(Θ) + m12I(MR ∪ FR)

+ m12I(MI ∪ FI)] (48)

where m12I are the masses resulting from the combination of
m1I and m2I (elongation and ellipticity). As the focal elements
of these two mass functions are MR ∪ FR, MI ∪ FI , and
the full set, the combination also results in the empty set
mass (37), i.e.,

m12I(∅) = 1 − [m12I(Θ) + m12I(MR ∪ FR)

+ m12I(MI ∪ FI)] ≥ 0. (49)

From (48) and (49), we can write

PlI(M) ≤ m3I(Θ) (50)

which means that based on (45)

PlI(M) ≤ πI(M). (51)

This is in accordance with the least commitment principle used
in the possibilistic model, as usually done in this framework.

As far as the MD is concerned, there is no difference since it
provides only one measure.

In case of the GPR, based on the comparison of (19) and (21),
(23) and (25), as well as (27) and (29), we can conclude that

π1G(M) = m1G(Θ) (52)

π2G(M) = m2G(Θ) (53)

π3G(M) = m3G(Θ). (54)

Hence, we can rewrite (34) as

πG(M) = m1G(Θ) · m2G(Θ) · m3G(Θ). (55)

Furthermore, the application of Dempster’s rule [see (36)] to
the mass assignments of the three GPR measures results in the
fused mass of the full set for this sensor, i.e.,

mG(Θ) = m1G(Θ) · m2G(Θ) · m3G(Θ) (56)

which leads to

πG(M) = mG(Θ). (57)

This means that the ignorance is modeled as a mass on Θ in the
belief function framework, whereas it privileges the class that
should not be missed (M) in the possibilistic framework (i.e.,
the ignorance will lead to safely decide in favor of mines).

D. About Combination Operators in Possibilistic Fusion

Each combination rule selected in the possibilistic method
(Section III-A) reflects logical reasoning. Different operators
for conjunctive and disjunctive combinations exist [21], [29],
[41]. To test the influence of the choice of the operator, we
select two frequently used conjunctive operators (minimum and

product) and two disjunctive operators (maximum and alge-
braic sum). For each combination, we alter the two operators
from the same family.

For the IR, as explained in Section III-A, (33) is based on the
logic that each shape constraint should provide maximum infor-
mation regarding the mine (therefore, disjunctive combination);
the two shape constraints should be combined in a conjunctive
way and then combined with the size in a disjunctive way. There
is no reason to apply different operators to each of the two shape
constraints; thus, we alter three combination operators—a dis-
junctive operator for each of the shape constraints (let us call
it operator f ), a conjunctive operator for combining the two
of them (operator g), and a disjunctive operator for combining
their combination with the third size measure (operator h).
Based on our selection of two conjunctive and two disjunctive
operators, f can be the maximum or the algebraic sum, g can
be the product or the minimum, and h can be the maximum
or the algebraic sum. Taking into account the fact that the
product is always less than or equal to the minimum, whereas
the maximum is always less than or equal to the algebraic sum,
the highest values of the possibility degrees for mines in these
conditions would be obtained if f is the algebraic sum, g is the
minimum, and h is the algebraic sum, i.e.,

πI max(M) = π3I(M) + [1 − π3I(M)] · (π1IN , π2IN ) (58)

where

π1IN = π1I(MR)+π1I(MI)−π1I(MR) · π1I(MI) (59)

π2IN = π2I(MR)+π2I(MI)−π2I(MR) · π2I(MI). (60)

Similarly, the lowest values of the possibility degrees for
mines would be obtained if f is the maximum, g is the product,
and h is the maximum, i.e.,

πI min(M) = max (π3I(M), (π1IM · π2IM )) . (61)

In case of the GPR, (34) is obtained based on the logic
that the three measures should be combined in the conjunctive
way. Again, there is no reason to use different types of similar
operators between the sensors. Since we alter two operators
from the same group, there is only one alternative to be
tested, i.e.,

πG1(M) = min (π1G(M), π2G(M), π3G(M)) . (62)

As the product is always less than or equal to the minimum, it
is sure that πG(M) ≤ πG1(M).

Similarly, for the second combination step, where the dis-
junctive combination of the three sensors should be used, the
only alternative for (35) in our tests is

π1(M) = max (πI(M), πMD(M), πG(M)) . (63)

Since the maximum is always less than or equal to the algebraic
sum, it is certain that π(M) ≥ π1(M).

Results on real data of these alternative equations are shown
and discussed in Section V-B.
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IV. DECISION

As the final decision about the identity of the object should
be left to the deminer not only because his life is in danger but
also because of his experience, the fusion output is a suggested
decision together with confidence degrees.

A. Possibilistic Fusion

In case of possibilities, the final decision is simply obtained
by thresholding the fusion result for M and providing the cor-
responding possibility degree as the confidence degree. Since
almost all possibility degrees obtained at the fusion output are
either very low or very high, the selected regions having very
low values of π(M) (below 0.1) are classified as F , and the
ones with very high values (above 0.7) are classified as M .
There are only a few regions at which the resulting possibility
degree for M has an intermediary value. In these cases, as
mines must not be missed, the decision is M . In the following,
this decision approach is referred to as dec1.

An alternative (dec2) for the final decision making is to
derive the combination rule for F as well, compare the final
values for M and F , and derive an adequate decision rule.
Due to the operation principles of the GPR and the MD, the
measures of these two sensors can only give information where
mines are possibly not; however, they cannot say where friendly
objects can or cannot be. For example, it is equally possible, in
reality, to have friendly objects (a placed friendly object or a
clutter-caused alarm) at any depth or of any size. As they are
noninformative with respect to friendly objects, it is not useful
to combine their possibility degrees for F . Thus, for deriving
the final combination rule for F , i.e., π(F ), we can rely only on
the IR, i.e.,

π(F ) = π1(F ). (64)

In case of the IR, since friendly objects can be regular or
irregular, we apply a disjunctive operator (the maximum) for
each of the shape constraints. To be cautious when deciding
F , we combine the two shape constraints and the size measure
using a conjunctive operator, which means that the possibility
degree for F should be high only if all three measures should
favor F . Taking into account (12), this reasoning results in

π(F ) = max (π1I(FR), π1I(FI)) · max (π2I(FR), π2I(FI)) .
(65)

Thus, in this alternative way to derive decisions, in regions
where the IR gives an alarm, the decision rule chooses M or
F depending on which one of the two has a higher possibility
value, given by (35) and (65), respectively. In other regions, at
which the IR does not give an alarm, although at least one of
the two other sensors gives an alarm, the decision is based on
the fusion result for M , as in dec1.

B. Belief Function Fusion

In case of belief functions, as shown in [17], usual decision
rules based on beliefs, plausibilities [1], and pignistic proba-

bilities [43] do not give useful results because there are no
focal elements containing mines alone [42]. The underlying
reason is that the sensors used in humanitarian demining are
not mine detectors but anomaly detectors, so whenever they
detect something that could be a mine, it could be anything else
as well. As a consequence, these usual decision rules would
always favor friendly objects.

In such a sensitive application as humanitarian demining, no
mistakes are allowed, so in case of any ambiguity, much more
importance should be given to mines. Because of that, in [17],
guesses G(A) are defined, where A ∈ {M,F, ∅}, i.e.,

G(M) =
∑

M∩B �=∅

m(B) (66)

G(F ) =
∑

B⊆F,B �=∅

m(B) (67)

G(∅) =m(∅). (68)

In other words, the guess value of a mine is the sum of
masses of all the focal elements containing mines, regardless
of their shape, and the guess of a friendly object is the sum
of masses of all the focal elements containing nothing else but
friendly objects of any shape, which means that the guesses are
a cautious way to estimate confidence degrees.

As the output of the belief function fusion module, the three
possible outputs (M , F , conflict) are provided together with the
guesses for each of the sensors and for their combination.

Note that for the GPR, the focal elements are only F (FR ∪
FI) and Θ [31]; therefore, guesses for this sensor simply
become

GG(M) =mG(Θ) (69)
GG(F ) =mG(F ). (70)

From (57) and (69), we conclude that for the GPR, the possibil-
ity degree of a mine is equal to the guess of a mine, i.e.,

πG(M) = GG(M). (71)

Furthermore, (39) and (66) show that the guess of a mine is
equal to its plausibility, whereas (38) and (67) show that the
guess of a friendly object is equal to its belief (which, again,
reflects the fact that we should be cautious in deciding that the
object is not a mine). This means that the relation given by (51)
shows, actually, that for the IR

GI(M) ≤ πI(M). (72)

V. RESULTS

A. Originally Selected Possibilistic Combination Rules

The proposed approach has been applied to a set of known
objects, buried in sand, leading to 36 alarmed regions in
total—21 mines (M), 7 placed false alarms (PF, friendly ob-
jects), and 8 false alarms caused by clutter (FN, with no object).
All of the mines are small AP mines, most have little metal, and
some have no metal at all. To be as close as possible to reality,
the data of the three sensors were collected in same conditions
(same place and time).
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TABLE I
CORRECT CLASSIFICATION RESULTS, POSSIBILISTIC FUSION. M = MINES;
PF = PLACED FALSE ALARMS; FN = FALSE ALARMS WITH NO OBJECT

TABLE II
CORRECT CLASSIFICATION RESULTS, BELIEF FUNCTIONS. M = MINES;
PF = PLACED FALSE ALARMS; FN = FALSE ALARMS WITH NO OBJECT

The results of the possibilistic fusion are very promising
since all mines are correctly classified with the proposed ap-
proach, as can be seen in Table I. The numbers given in the
parenthesis indicate the number of regions selected in the pre-
processing step for further analysis, i.e., measure extraction and
classification. Regarding the combination operators, the results
given in this table are based on the combination proposed in
Section III-A, i.e., (33)–(35). The second fusion step is im-
portant since a decision taken after the first step provides only
18 mines for the IR, 9 for the MD, and 13 for the GPR. This
illustrates the interest of combining heterogeneous sensors.

The two decision rules, i.e., dec1 and dec2, give the same
results for mines and friendly objects caused by clutter. In
case of placed false alarms, two are correctly classified in case
of dec2, which is a slight improvement with respect to dec1
and the same result as for the belief function fusion, shown in
Table II (however, in practice, it would mean less time spent
and less human efforts wasted on digging false alarms from
the ground). It is not surprising that the placed false alarms are
not so well detected by any of the methods since our model is
designed to favor the detection of mines. This is also the type
of results expected from deminers.

Regarding correct classification of mines, the results of the
possibilistic fusion (all 21 mines detected; see Table I) are
slightly better than those obtained using the belief function
method (19 of 21 mines detected; see Table II). This is due to
the increased flexibility at the combination level. False alarms
with no objects are correctly identified by the belief function
method (six out of eight), and it is the same result as for the two
possibilistic decision rules. This result shows that the power of
our methods is in decreasing the number of clutter-caused false
alarms without decreasing the result of mine detection, thanks
to knowledge inclusion.

All results have been obtained with the models proposed in
Section II, with the same parameters. It should be noted that
although the general shapes of the possibility distributions are
important and have been designed based on prior knowledge,
they do not need to be estimated very precisely, and the
results are robust to small changes in these functions. What is
important is that the functions are not crisp (no thresholding
approach is used), and that the rank is preserved (e.g., an
object with a measure value outside of the usual range should
have a lower possibility degree than an object with a typical
measure value). Two main reasons explain the experienced
robustness: 1) these possibility distributions are used to model
imprecise information, so they do not have to be precise
themselves; and 2) each of them is combined in the fusion
process (Section III) with other pieces of information, which
diminishes the importance and the influence of each of them.

Differences between the results of Tables I and II can be
formally explained as discussed in Section III-C. For the
GPR, (71) explains why the results are the same for the two
fusion approaches. In case of the IR, (72) indicates that the
possibilistic approach would favor mines more than the belief
function approach, which is indeed the case here.

In terms of the probability of detection Pd and the false
alarm rate Pf , we can conclude the following:

— for possibilistic fusion, in case of dec1, Pd = 100% and
Pf = 53.3%, whereas in case of dec2, Pd = 100% and
Pf = 46.7% (Table I);

— for belief function fusion, Pd = 90.5% and Pf = 46.7%
(Table II).

However, these values have to be cautiously considered,
given the low number of examples we have.

B. Alternative Possibilistic Combination Rules

In case of the IR, tests performed using different com-
binations of operators f , g, and h show that, as predicted,
the highest possibility degrees for mines are obtained by
πI max(M). Thus, without knowing the ground truth, this com-
bination of operators would be the safest choice to be sure
not to miss any mine (it might increase the number of false
alarms, but the involved risks are certainly not the same). As
expected, the lowest possibility degrees of mines are obtained
in case of πI min(M). Therefore, ignoring the ground truth, this
type of combination would be the least safe choice from the
point of view of humanitarian mine detection.

For the GPR, results prove the theory, i.e., πG(M) ≤
πG1(M), so πG1(M) would be a safer choice than πG(M).

Similarly, at the second combination step, using the original
IR and GPR combination rules given by (33) and (34), the
results prove that π(M) ≥ π1(M), which means that combi-
nation (35) is a safer choice.

Therefore, without knowing the ground truth and based
purely on the obtained possibilities, if we want to obtain the
highest possibilities for M , our choice would be the following:
πI max(M) for the IR, πG1(M) for the GPR, and combination
rule (35) for the second combination step (where πI(M) is
replaced by πI max(M), whereas πG1(M) is used instead of
πG(M)). In Table III, these results are referred to as S1; the
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TABLE III
SAFEST (s1) VERSUS THE LEAST SAFE (s2) POSSIBILISTIC

COMBINATIONS. M = MINES; PF = PLACED FALSE

ALARMS; FN = FALSE ALARMS WITH NO OBJECT

MD results are skipped since they are the same as in Table I, as
well as the number of alarmed regions and the total number of
objects per type.

However, to illustrate what the consequences of the least safe
choice would be, we test also the following (S2 in Table III):
πI min(M) for the IR, πG(M) for GPR, and (63) for the second
combination step (where πI(M) is replaced by πI min(M)).
Note that the results for the GPR in the S2 case are the same as
the ones in Table I. In this illustration, for the IR, the GPR, and
dec1 in the least safe case (S2), we use a threshold of 0.5 on
the possibility degrees for mines (if it is above that threshold, it
is M , and if it is below the threshold, it is F ). The choice of this
threshold is important for the IR in case S2, as the possibility
degrees for some of the mines decrease to this level (three of
them, having possibility degrees of 0.45, 0.46, and 0.46, are,
thus, wrongly classified). In case of the GPR, S1 and S2 have
a strong gap in the values, which means that the possibility
degrees are either very high or very low, so the choice of
the threshold would not change the results. For the second
combination step, the possibility degrees are also very well
distinguished, so the choice of the threshold is not critical. The
only exceptions are one mine and one placed false alarm in case
of S2, both reaching the possibility degree of 0.55. Note that the
maximization of the safety, by making sure that the possibility
degrees for mines are the highest possible (S1), results in the
decreased classification performance for placed false alarms,
and, as a consequence, the difference between dec1 and dec2,
shown in Section V-A, has disappeared. This difference exists
for S2 since the possibility results in the degrees for mines are
the lowest in this case; however, another danger arises here,
as these values in a few regions fall on the level of possibility
degrees for friendly objects.

The analysis performed here demonstrates the robustness of
the choice of the operator (within a class corresponding to the
type of reasoning we want to achieve). The results in Table III
illustrate this robustness very clearly: all mines are detected in
the second step for all fusion schemes.

In the tests for dec2 given in Table III, the possibility degrees
are the same as in Section V-A, calculated from (65). To analyze
whether there is even a worse case than S2 in Table III, we test
this alternative as follows:

π1(F ) = min (max (π1I(FR), π1I(FI)) ,

max (π2I(FR), π2I(FI))) (73)

since the resulting possibility degrees for friendly objects are
higher than for (65). (Note that, in reality, combination (73)

would not be selected for F for the same reasons as men-
tioned above regarding S2.) Using these possibility degrees
for friendly objects, and applying dec2 decision rule for S2
combination (πI min(M) for the IR, πG(M) for the GPR, and
(63) for fusion of the two with the MD), four mines out of
21 are wrongly classified. This illustration shows to which
extent a careless selection (that does not take into account
the specificities and differences of the corresponding risks for
this type of application) of the combination operators could be
dangerous.

C. Robustness

For each of the sensors, in the modeling step, some parame-
ters are introduced, and their values are chosen based on our
knowledge. These values are being understood as examples in
cases where no specific information is provided and can be
adapted in the function of the additional knowledge. To test
the robustness of the results, we have tuned the values of the
parameters, and we have obtained the results as follows. Note
that the two methods are equally robust, and that, in most of the
cases, the robustness is so high that we have tested unrealistic
values to have a change in the number of detected mines and/or
false alarms.

In case of the IR measures, we have changed the values
of a1 and a2. If a1 is 15 cm2, the IR as well as the fusion
results remain unchanged for all values of a2 higher than
60 cm2. Below that value, the IR performance starts to decrease;
however, the final fusion results remain unchanged. If a2 is
225 cm2, the IR and fusion results are unaffected as long as
the a1 value is lower than 140 cm2. Above that value, the
IR performance starts to decrease; however, the fusion results,
again, remain unchanged. We have also performed tests in
which we change the central point 0.5(a1 + a2) and keep the
interval a2 − a1 fixed and vice versa, and the results are again
highly robust. Similar tests are performed, and comparable
robustness is experienced with the range of expected sizes of
metal in mines in case of the MD.

As far as the GPR measures are concerned, for each of
the parameters Dmax, md, p, vt, and h, we have analyzed
the influence of their value on the results. As an example of
corresponding receiver operating characteristic (ROC) curves
(ROC is a plot of the probability of detection versus the
false alarm rate as a function of the threshold setting on the
output decision variable [5]), Fig. 4 contains results obtained
by varying the values of parameter Dmax. Since the number of
mines and false alarms is not statistically high, absolute values
(number of detected mines and of false alarms) are shown
instead of rates. Note that if the Dmax value is higher than
9 cm, the GPR and final fusion results are unchanged, so the
resulting ROC curves are obtained for values of Dmax equal
to or smaller than 9 cm, and that a significant drop in the
number of detected mines (lower than 9 out of the maximum
13 in case of the GPR and 19 for the fused results) occurs for
Dmax values smaller than 5 cm. For md values in the range
[20, 865], the final fusion results remain the same as initially,
whereas the GPR results start to change if that value is below
400 or above 750. In case of p, as long as it is higher than
250, the fusion results are unaffected, whereas the GPR results
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Fig. 4. ROC curve for the Dmax parameter.

Fig. 5. ROC curve for the h parameter.

are stable if the value of this parameter is higher than 350. If
vt is in the range [0.76 × 108 m/s, 1.64 × 108 m/s], the fusion
results do not change; the corresponding range for the GPR
is [1.1 × 108 m/s, 1.64 × 108 m/s]. Last, another example of
corresponding ROC curves is shown in Fig. 5, obtained by
varying the values of parameter h. Note that for any value of
this parameter above 2.5 × 107 m/s, the fusion results remain
unaltered.

None of the parameters is chosen based on the specific
data set but on the general knowledge we have regarding
AP mines and humanitarian mine detection, together with the
literature overview we have performed. Being aware that these
knowledge and experience might be incomplete, parameters
are chosen so as not to introduce unavailable information, and
we experience excellent robustness of the results with respect
to their tuning. Thus, the values of the parameters can be
understood as examples, and, for each of the parameters, the
interval of the values that do not affect the final fusion result is
very wide.

VI. CONCLUSION

A novel method for the fusion of measures extracted from
heterogeneous sensor data is proposed in the framework of
humanitarian mine detection. The method is based on the pos-
sibility theory. The sensors, based on radar techniques, MDs, or

infrared images, provide complementary information about the
nature of the observed object.

This method has been compared to a previously developed
method based on belief functions. The differences at the com-
bination step are mainly highlighted in this comparison. The
modeling step is performed according to the semantics of each
framework; however, the designed functions are as similar as
possible to enhance the combination step. In particular, we
propose different fusion operators depending on the informa-
tion and its characteristics, whereas all pieces of information
are combined using Dempster’s rule in the belief function
framework.

We have shown that appropriate modeling of the data along
with their combination in a possibilistic framework leads to bet-
ter decision making, i.e., better differentiation between mines
and friendly objects. The decision rule is designed to detect all
mines at the price of a few confusions with friendly objects.
This is a requirement of this particular application domain since
it is better to ask a deminer to search for an object that is finally
friendly than to assure him that an object is friendly while it
is a mine. Still, the number of false alarms remains limited
in our results. The robustness of the choice of the operator
(within a class corresponding to the type of reasoning we want
to achieve) is also demonstrated since all mines are detected for
all fusion schemes and for a wide range of the parameters. The
obtained experimental results should be considered as a proof
of concept, whereas a future work could be a complete validated
application, which asks for further tests on some other real data
sets and other sensors.

The proposed modeling is flexible enough to be easily
adapted to the introduction of new pieces of information about
the types of objects and their characteristics, as well as of new
sensors.
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