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Explanatory Reasoning for Image Understanding
Using Formal Concept Analysis

and Description Logics
Jamal Atif, Céline Hudelot, and Isabelle Bloch, Member, IEEE

Abstract—In this paper, we propose an original way of enrich-
ing description logics with abduction reasoning services. Under
the aegis of set and lattice theories, we put together ingredients
from mathematical morphology, description logics, and formal
concept analysis. We propose computing the best explanations of
an observation through algebraic erosion over the concept lattice
of a background theory that is efficiently constructed using tools
from formal concept analysis. We show that the defined operators
are sound and complete and satisfy important rationality postu-
lates of abductive reasoning. As a typical illustration, we consider
a scene understanding problem. In fact, scene understanding
can benefit from prior structural knowledge represented as
an ontology and the reasoning tools of description logics. We
formulate model based scene understanding as an abductive
reasoning process. A scene is viewed as an observation and the
interpretation is defined as the best explanation, considering the
terminological knowledge part of a description logic about the
scene context. This explanation is obtained from morphological
operators applied on the corresponding concept lattice.

Index Terms—Description logics, explanatory reasoning,
formal concept analysis, image understanding, mathematical
morphology.

I. Introduction

AUTOMATIC image interpretation has been an active field
of research for several years. In this large field, this paper

focuses on extracting high level information from images
or video sequences, when the detection and recognition of
structures can benefit from prior structural knowledge (such
as spatial interactions). This is, in particular, the case in
video sequences related to a specific context (sport events for
instance), in medical imaging (using anatomical knowledge),
or in aerial and satellite imaging (man-made structures such
as airports and towns for instance).

Description logics (DL) are an important paradigm of logic-
based knowledge representation [1]. They are a decidable
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family of first-order logics that spans numerous applications
in areas such as semantic web, cognitive robotics, spatial
reasoning, computer vision, including logical-based scene un-
derstanding and semantic interpretation.

Scene interpretation can benefit from prior knowledge ex-
pressed as ontologies and from description logics endowed
with spatial reasoning tools, as illustrated in our previous
work [2], [3]. The challenge in this paper was to derive
reasoning tools that are able to handle in a unified way
quantitative information supplied by the image domain and
qualitative pieces of knowledge supplied by the ontology
level. The interpretation task is performed in a sequential
way by maintaining the consistency between the informa-
tion extracted from the image and the corresponding expert
knowledge encoded at the terminological level. In other words,
object recognition and interpretation are seen as the coherence
of a current situation (spatial configuration) encoded in the
assertional box (ABox) of the DL with the terminological
box (TBox) part. However, when the expert knowledge is
not strictly consistent with the observed situation, which is
common in image interpretation, then this approach does
not apply or leads to inconsistent results. Moreover, in the
context of image interpretation, a given structural configuration
can be consistent with different prior knowledge parts (or
consistent to some degree). These facts call for adapting DL
reasoning tools to such situations, and abduction seems to be
an appealing framework toward this aim. In the context of
nonmonotonic reasoning paradigms in AI, abduction refers to
the reasoning process of forming a hypothesis that explains
observed phenomena. More precisely, it allows computing
the best explanation of the observed phenomena, which suits
situations where the knowledge at hand is not strictly con-
sistent with the observations. Formally, given a background
theory K representing the expert knowledge and a formula C

representing an observation on the problem domain, abductive
reasoning searches for an explanation formula D such that D

is satisfiable with respect to K and it holds that K |= (D → C)
(K ∪ D |= C).

For readability convenience and in order to illustrate the po-
tential of our approach in the context of image interpretation as
well as for other AI-based applications, we will consider two
running examples. The first one was introduced by Elsenbroich
et al. [4] to argue the need of developing computational tools
of abduction in the context of ontologies.
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Example 1 (SHD): Elsenbroich et al. [4] considered the
following medical ontology-based diagnosis: suppose a dis-
ease, called the shake-hands-disease (SHD), that always devel-
ops when one shakes hands with someone else who carries the
shake-hands-disease-virus (SHDV ). Suppose further a medical
ontology containing:

1) roles: has symptom, carries virus, etc.;
2) concepts: SHD, SHDV , Laziness, Pizza Appetite,

Google Lover, etc.;

and a set of axioms (Section III-A) specifying that:

1) if someone has the disease SHD then he or she suffers
from laziness and pizza appetite;

2) a researcher is someone that has symptoms laziness,
pizza appetite, and Google lover;

3) finally someone who shakes hands with someone who
carries the SHDV virus has a disease SHD.

Suppose that one wants to explain why someone has symptoms
laziness and pizza appetite. A tailored answer would be that
this happens because he or she shakes the hands of someone
who carries the shake-hands-disease virus. In Section IV, we
will discuss how to computationally come up with such a result
in a direct way.

The second example arises from brain image interpretation,
and is within the scope of our application domain (Fig. 1).
As explained before, the image interpretation task in the
framework of ontologies consists of extending the knowledge
base with new assertions about the regions of interest in the
image and their relations, within their global context. We
assume to have at disposal a background theory describing
the brain knowledge enriched with spatial relations [2], [5],
and a series of image processing algorithms allowing us to
extract initial regions of interest from the image. The ABox
and the concepts are detailed in Section V. The interpretation
task within this context consists of explaining the presence
of a nonenhanced tumor located in the peripheral cerebral
hemisphere and that is far from the lateral ventricle, by taking
into account the background theory on the brain domain and
the first objects recognized in the image. A typical answer to
this question is that the image represents a brain disease, and
this disease is a peripheral small deforming tumor.

In this paper, we propose adding abductive reasoning tools
to description logics. Under the aegis of set and lattice theories,
we put together ingredients from mathematical morphology,
description logics, and formal concept analysis. We propose
computing the best explanations of an observation through
algebraic erosion over the concept lattice of a background
theory that is efficiently constructed using tools from formal
concept analysis. This paper extends and develops preliminary
ideas presented in [6]. We show that the defined operators
satisfy important rationality postulates of abductive reasoning.

We first motivate our approach by the need of explicit
human expert knowledge in the image interpretation process
(Section II). We then introduce in Section III the necessary
background for constructing the abductive engine of a known
description logic, EL. Section IV is dedicated to the introduc-
tion of mathematical morphology operators on concept lattices,
and the definition of explanatory relations. This is the core

Fig. 1. Example of cerebral image interpretation problem. The interpretation
problem consists of explaining the presence of objects such as a nonenhanced
brain tumor, located in the cerebral hemisphere and far from the lateral
ventricle. A typical solution is that the image represents a brain disease, and
this disease is a peripheral small deforming tumor.

section of this paper since we introduce two new original
classes of operators that are proven to satisfy the rationality
postulates of explanatory reasoning. The proposed approach is
illustrated on the brain example in Section V and is discussed
with respect to related work and regarding some of its features
in Section VI. Finally, we draw some conclusions and point
out some future research directions.

II. Human Expert Knowledge

In many domains, images are a very important source
of information. Hence, automatic image understanding has
been an active field of research for several years to extract
meaningful content and provide higher level description and
interpretation. Two major approaches coexist for image in-
terpretation: the numerical and statistical methods, and the
model-based methods. Nevertheless, major problems still re-
main open and the research on automatic image interpretation
calls for intensive investigation and concerns. In particular,
one challenging issue is to extract high level semantics from
an image in a form that is close to and suitable for application
domain decision making. This issue is often defined as the
semantic gap [7]. Indeed, the importance of semantics in
images has been highlighted in different domains, such as
scene analysis, image interpretation but also image retrieval. In
numerical approaches, a priori knowledge is often related to
perceptual manifestations of semantics. Nevertheless, in many
image interpretation domains, the image semantics cannot be
considered being included explicitly in the image itself. It
rather depends on prior knowledge on the domain and on the
context of use of the image. Introducing explicit human expert
knowledge in the image interpretation process is not a new
idea, as evidenced by the numerous works on knowledge based
systems for computer vision [8]–[12]. However, these types
of approaches suffer from several shortcomings, in particular
because of the lack of genericity (many systems are rather
ad hoc), and the difficulty and the cost of acquiring and
representing prior knowledge.
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Recent developments in the field of knowledge engineering,
including ontology engineering, allow answering some of
these questions [13]. Ontologies are defined as a formal,
explicit specification of a shared conceptualization [14]. An
ontology encodes a partial view of the world with respect to
a given domain. It is composed of a set of concepts, their
definitions, and their relations that can be used to describe and
reason about a domain. Ontological modeling of knowledge
and information is crucial for conceptual modeling in many
real world applications such as medicine for instance [15],
[16], or geosciences [17].

Moreover, ontological reasoning can also be used to for-
mulate image interpretation tasks. For instance, Dasiopoulou
et al. [18] and Meghini et al. [20] proposed using uncertain
ontological reasoning (through fuzzy description logics) to
evaluate the consistency of the interpretation obtained with
statistical learning techniques. Explicit semantics, represented
by ontologies, have also been intensely used in the field of
image and video indexing and retrieval [21], [22]. In most
of these approaches, only the descriptive part of ontologies
is used, as a common multilevel language to describe image
content [23], or more recently as hierarchical semantic concept
networks to refine image annotation [24] or to perform image
classification [22], [25], [26].

The role of the human expert is of prime importance
in all these domains, in particular to set the vocabulary,
the context, and the useful knowledge so as to guarantee
a shared conceptualization and to allow storage, reasoning,
and communication. All useful concepts should be explicitly
given, while leaving room for reasoning capabilities to derive
higher level knowledge and interpretation. For instance, the
interpretation of the image in Fig. 1 requires the ontology to
contain concepts, such as brain, cerebral hemisphere, lateral
ventricle, tumor, far from... Moreover, in medicine, noticeable
efforts have led to the development of the neuronames brain
hierarchy1 and the foundational model of anatomy (FMA)2

at the University of Washington, or Neuranat3 in Paris at
CHU La Pitié-Salpêtrière. All these developments required
contributions from human experts. An important part of the
modeling also concerns spatial relations, and again they are
provided by expert knowledge. For instance in neuro-anatomy,
descriptions such as “the left caudate nucleus is to the left
of the lateral ventricles” are often found in textbooks. Such
linguistic descriptions have to be formalized and also encoded
for each specific application in order to fill the semantic
gap. To this aim, fuzzy representations of spatial entities and
spatial relations in concrete domains have been proposed in
our previous work [2] and later in [27] .

In this paper, we propose linking the different ways in which
human expert knowledge can be expressed by combining
description logics, formal concept analysis, and mathematical
morphology. The first framework provides formal tools to
exploit ontological knowledge and to reason on it. Formal
concept analysis allows encoding explicitly objects and their

1Available at http://braininfo.rprc.washington.edu/.
2Available at http://sig.biostr.washington.edu/projects/fm/AboutFM.html.
3Available at http://www.chups.jussieu.fr/ext/neuranat.

attributes, and provides a complete lattice, suitable for al-
gebraic reasoning using mathematical morphology. Finally,
mathematical morphology operators can be used for a num-
ber of reasoning tasks, such as fusion, revision, abduction,
mediation, and will be developed here for the aim of image
interpretation expressed as an abduction process.

III. Background

A. Description Logics

In this section, we consider the description logics EL and
ELgfp which belong to the family of the description logics
enjoying the finite model property. This property is useful in
our framework since abduction operators will be performed
via a concept lattice representation, which is built offline
using tools from formal concept analysis. Let NC and NR be
pairwise disjoint and finite sets of concept names and role
names, respectively. We use the letter R for role names, and
the letters C and D for concepts. The symbol � denotes the
universal concept. The set of EL concepts is the smallest set
such that: 1) every concept name is a concept and 2) if C

and D are concepts and R a role name, then the following
expressions are also concepts: C � D (concept conjunction),
∃R.C (existential restriction on role names). An interpretation
I = (�I , ·I ) consists of a set �I , called the domain of I,
and a function ·I which maps every concept C to a subset
CI of �I and every role R to a subset RI of �I × �I such
that, for all concepts C, D, and all roles R, the following
properties are satisfied: 1) �I = �I ; 2) (C � D)I = CI ∩ DI

and 3) (∃R.C)I = {x | ∃y s.t. (x, y) ∈ RI and y ∈ CI}.
A DL knowledge base (KB) K consists of two components,

the TBox and the ABox. The TBox T describes the terminol-
ogy by listing concepts and roles and their relationships. In
EL, the TBox contains axioms of type C 	 D (a general
concept inclusion, GCI, where C and D are EL concepts)
and of type A ≡ C (concept definition where A is an
atomic concept and C an EL concept). The ABox A contains
assertions about objects. Concept assertions are of the form
a : C which reads as a is a C, and role assertions write
(a, b) : R and read as a is R-related to b.

An interpretation I is a model of a DL (TBox or ABox)
axiom if it satisfies this axiom, and it is a model of a DL
knowledge base K if it satisfies every axiom in K. A concept
C is satisfiable if it admits a model, i.e., CI �= ∅.

One of the most important reasoning services in DL is
computing the subsumption relationships between concept
descriptions. Given two concept descriptions C and D, one
says that D subsumes C (denoted by C 	 D) iff CI ⊆ DI for
all interpretations I. A concept C is equivalent to D (C ≡ D)
iff C 	 D and D 	 C. The subsumption relation 	 is a
preorder (i.e., reflexive and transitive), but not an order (it does
not need to be antisymmetric: it may hold that two equivalent
concept descriptions are not syntactically equal). The preorder
	 induces a partial order 	≡ on the equivalence classes of
concept descriptions

[C1] 	≡ [C2] iff C1 	 C2
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where [Ci] = {D | Ci ≡ D} is the equivalence class of
Ci (i = 1, 2). The subsumption hierarchy should be understood
with respect to this induced partial order. In the presence of a
KB K, the subsumption is constructed according to this KB:
C1 	K C2 iff CI

1 ⊆ CI
2 for all models I of K.

In our approach, we assume the knowledge base to be
complete in the following sense. Let I be any model of K.
We say that K is complete for I if for every two complex
concept descriptions C and D the GCI C 	 D holds in I iff
K |= (C 	 D). If K is complete for I, then I is called a free
model of K. In the following, we assume that K is complete
for some finite model. This is admittedly a strong assumption.
However, there are methods to obtain a complete knowledge
base using an expert assisted formalism [28].

We now consider the set L of all EL-concept descriptions
over the signature of K, partially ordered by subsumption with
respect to K (	K). We then consider the induced partial order
	≡ on the quotient set L/≡K .

Proposition 1: (L/≡K , 	≡) forms a finite lattice.
Proof: Let I be a free and finite model of K. For any two

concept descriptions C and D it holds that C 	K D iff CI ⊆
DI , and therefore C ≡K D iff CI = DI . Since I is finite
there are only finitely many choices of CI and DI , and by
restricting concept definitions to noncyclic and nonredundant
ones, thus L≡K must also be finite. It remains to show that
infima and suprema exist.

Let [C], [D], [E] ∈ L/≡K be three equivalence classes such
that [E] 	≡ [C] and [E] 	≡ [D]. This is equivalent to EI ⊆
CI and EI ⊆ DI , i.e., EI ⊆ CI ∩ DI = (C � D)I . Moreover,
[C � D] is a lower bound of [C] and [D]. Thus, [C � D] is
the infimum of C and D.

For the supremum, consider [E1], [E2] ∈ L/≡K that are
upper bounds for both [C] and [D]. From [C] 	≡ [E1]
and [C] 	≡ [E2] we get CI ⊆ EI

1 and CI ⊆ EI
2 and

hence CI ⊆ (E1 � E2)I , which implies [C] 	≡ [E1 � E2] =
inf{[E1], [E2]}, where the inf on equivalence classes is related
to the partial order 	≡ induced by 	, and analogously
[D] 	≡ inf{[E1], [E2]}. This means that the infimum of two
upper bounds for [C] and [D] is also an upper bound. Since
the set L/≡K is finite, the infimum

inf{[E] ∈ L/≡K | [C] 	≡ [E] and [D] 	≡ [E]}
exists and is the supremum of [C] and [D].

This proof can be directly extended to any family of equiv-
alence classes. Note that for any free model I of K the lattice
(L/≡K , 	≡) is isomorphic to (S, ⊆) where S = {CI | C ∈ L}.
The corresponding isomorphism is

ϕ : L/≡K −→ S

[C] �−→ CI .

Example 2 (SHD [4]): Using the EL syntax, the SHD on-
tology axioms are as follows:

1) ∃has disease.SHD 	 ∃has symptom.(Laziness �
Pizza Appetite);

2) Researcher 	 ∃has symptom.(Laziness � Pizza

Appetite � Google Lover);
3) ∃shake hands.∃carries virus.SHDV	∃has disease.

SHD.

A possible model of this TBox is as follows:

�I = {peter, paul, mary, shd, shdv, l, p, g, x, v}
SHDI = {shd}

SHDV I = {shdv}
LazinessI = {l}

PizzaAppetiteI = {p}
GoogleLoverI = {g}

ResearcherI = {peter}
HasSymptomI = {(peter, l), (peter, p), (peter, g),

(paul, p), (paul, g), (mary, l), (mary, p)}
CarriesVirusI = {(mary, shdv), (x, v)}
HasDiseaseI = {(peter, shd), (mary, shd)}
ShakeHandsI = {(peter, mary)}.

When cyclic concept definitions are allowed (e.g., A ≡
B � ∃r.A), a greatest fixpoint semantics is used rather than
a descriptive one as defined above. We distinguish then the
set of primitive concepts Nprim and the set Ndef of defined
concepts. For more details on the greatest fixpoint semantics,
please refer to [1].

Another nonclassical reasoning service, which will be
helpful in the sequel for constructing the concept lattice
(see Algorithm 4), is computing the most specific concept of
a subset belonging to the domain. It is defined as the least
concept description containing this subset. This formally states
as follows.

Definition 1 (Most Specific Concept (msc) [29]): Let T be
a TBox and I = (�I , ·I ) be a model of T . Let X ⊆ �I be
some subset of the domain of I and E a defined concept in
T . The concept E is called the most specific concept of X

with respect to I if the following conditions hold:

1) X ⊆ EI ;
2) If T ′ is a conservative extension4 of T that uses the

same primitive concept names and role names then for
every defined concept F in T ′ with X ⊆ FI , it holds
that E 	T ′ F .

The most specific concept definition considered here (from
[29]) differs from the one traditionally found in DL papers
which consider the problem related to finding a most specific
concept of an ABox instance. One should also note that the
most specific concept does not exist for arbitrary DLs. In
[29], it is shown that the msc always exists for the DL EL
with cyclic concept definition endowed with greatest fixpoint
semantics (ELgfp). In the sequel whenever we note EL, it
should be understood that a greatest fixpoint semantics is
considered.

B. Abduction in Description Logics

Abduction, originally introduced by Charles Sanders Peirce
in the late 19th century, refers to the ability to reason from
observations to explanations, and is a fundamental source

4A conservative extension of a TBox T is a TBox T ′ such that T ⊆ T ′,
and if A and B are concept names used in T then A 	T ′ B iff A 	T B.
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of new knowledge, i.e., learning. It is a fundamental form
of reasoning next to induction and deduction. It is often
understood as a form of backward reasoning from a set of
observations back to a cause. Hence, it represents an appealing
framework for image interpretation: a scene is viewed as an
observation and the task of interpretation consists in finding
the best explanation considering the terminological knowledge
part of a description logic about the scene context. The
challenge then is to fill the gap between abductive reasoning
and description logics. To the best of our knowledge, few
work has addressed this subject [4], [30], [31]. The first
work reported in the literature is the one in [31], where a
tableaux-based algorithm is proposed to account for match-
making tasks. The abduction problem is considered at the
terminological level and is seen as the way of finding all
sub-concepts of a given concept. However, the considered
DL ALN does not allow existential restrictions, which are
mandatory in our context for representing spatial relations
between scene objects. Later, in a position paper, Elsenbroich
et al. [4] discussed, without providing hints for computational
tools, the usefulness of abductive reasoning in DL, provided
several application scenarios, and introduced rigorous defi-
nitions and postulates of abductive reasoning in the context
of ontologies. Other abduction-like nonmonotonic services
are reported in the literature. In [32], debugging incoherent
terminologies is considered, i.e., finding a minimally unsat-
isfiable subset of TBox axioms, and in [33], and later [34],
the authors addressed the problem of finding justifications,
i.e., minimal sets of axioms of an ontology that make a
particular entailment of the ontology hold. These works are
pointed out in [35] where some computational complexity
results in the DL EL are reported. Recently, based on the
correspondence between DL and modal logic, Klarman et al.
[30] introduced reasoning calculi for solving ABox abduction
problems in the DL ALC. The algorithms are based on
regular connection tableaux and resolution with set-of-support
and are proven to be sound and complete. Finally, in a
context similar to the one claimed in this paper, the task
of multimedia interpretation as abductive reasoning over DL
rules is considered in [36] and [37]. An inference service
for ABox abduction restricted to rules is introduced. A more
detailed discussion of the other approaches can be found in
Section VI.

Based on the TBox T and ABox A parts of the knowledge
base, abduction in the framework of DL can be viewed
from different standpoints [4], [30]: concept abduction, TBox
abduction, ABox abduction, and knowledge base abduction.

In this paper, we consider the case of concept abduction
with respect to a background theory or knowledge base. The
following definition formally states our purpose.

Definition 2 (Concept Abduction [4]): Let Γ be an arbi-
trary DL, K a knowledge base, and C a concept in Γ such
that C is satisfiable with respect to K. A concept abduction
problem, denoted as 〈K, C〉, consists of finding a set Expla(C)
of complex concepts γ in a possibly different DL Γ ′ (a
sublogic of Γ ) such that K |= γ 	 C. An explanatory relation
is a binary relation C�γ where the intended meaning of C�γ

is γ is a preferred explanation of C.

Explanatory reasoning is concerned with preferred expla-
nations rather than just plain explanations. So, explaining an
observation requires that some formulas must be selected as
preferred explanations.

Rationality postulates for abduction have been widely stud-
ied in the context of propositional logic [38]. In this paper, we
consider the rationality postulates introduced in [39] adapted
to the DL context

LLEK:
C ≡K D , C�γ

D�γ

RLEK:
γ ≡K γ ′ ; C�γ

C�γ ′

E-CM:
C�γ ; γ 	K D

(C � D)�γ

E-C-Cut:
(C � D)�γ ∀δ [C�δ ⇒ δ 	K D ]

C�γ

RS:
C�γ γ ′ 	K γ ; γ ′ �	K ⊥

C�γ ′

ROR:
C�γ ; C�δ

C�(γ � δ)

LOR:
C�γ ; D�γ

(C � D)�γ

E-DR:
C�γ ; D�δ

(C � D)�γ or (C � D)�δ

E-R-Cut:
(C � D)�γ ; ∃δ [C�δ & δ 	K D]

C�γ

E-Reflexivity :
C�γ

γ�γ

E-ConK :K �|= ¬C(a) iff there is γ such that C�γ .

The intended meaning and motivation for these postulates
can be found in [39]. It is worth noting that in the context of
the relatively inexpressive DL EL not allowing for disjunction
and negation, ROR, LOR, E-DR and E-ConK postulates are
not considered.

The rationality postulates can be satisfied by operators (such
as the subsumption: γ 	K C for instance) which we do
not consider restrictive enough. Therefore, to enhance the
notion of preferred explanation, in addition to the rationality
postulates detailed above we consider the following minimality
constraints.

Definition 3 (Minimality Constraint): Let us consider the
concept abduction problem 〈K, C〉, with Expla(C) the set of
explanations and γ a preferred solution, i.e., C�γ:

γ is 	-minimal if there is no explanation ζ of 〈K, C〉
such that ζ �K γ and γ �	K ⊥.

This should be read: γ is minimal if there is not a more specific
explanation than γ . The trivial solution ⊥ is excluded. Other
minimality constraints for abduction in DL can be found in
[35] in addition to complexity analysis in the particular case
of the DLs EL and EL++.

When the abduction problem is restricted to concept names,
the set of all explanatory solutions is obvious. It is exactly the
set of concept names that are subsumed by the observation
C. This amounts to going down in the subsumption hierarchy,
starting from the concept to explain. In this paper, we are
interested in complex concepts, i.e., concepts that are not
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defined in the TBox and are not explicitly represented in the
subsumption hierarchy.

Example 3 (SHD Cont’d): Within the context of the SHD
example,5 given the concept ∃has symptom.(Laziness �
Pizza Appetite), if we are restricted to GCI in the TBox, a
solution obtained by simple backward chaining on the classi-
fication tree would be ∃shake hands.∃carries virus.SHDV .
However, we are looking for complex EL-concepts, and in this
case our approach allows for abducing the following complex
concept (see details in Section IV):

∃shake hands.(∃carries virus.SHDV �
∃has disease.SHD �
∃has symptom.Pizza Appetite �
has symptom.Laziness).

One should remark that this concept is not a named one;
hence, our approach goes beyond simple backward chaining
in the classification tree. It involves the largest number of
atomic concepts (dually the model size is small) and is in
this sense most central and satisfies the minimality constraint
(Definition 3).

C. Formal Concept Analysis

Formal concept analysis (FCA) is a theory of data analysis,
knowledge representation, and information management that
aims at identifying conceptual structures from data sets [40]. It
relies on a lattice-theoretic formalization of the notions of con-
cept and conceptual hierarchy. A formal context is defined as
a triple K = (G, M, I), where G consists of the set of objects,
M the set of attributes, and I ⊆ G×M a relation between the
objects and attributes. A pair (g, m) ∈ I stands for the object g

has the attribute m. The formal concepts of the context K are
all pairs (X, Y ) with X ⊆ G and Y ⊆ M such that (X, Y ) is
maximal with the property X×Y ⊆ I. The set X is called the
extent and the set Y is called the intent of the formal concept
(X, Y ). The set of all formal concepts of a given context
can be hierarchically ordered by inclusion of their extent:
(X1, Y1) ≤ (X2, Y2) ⇔ X1 ⊆ X2 (⇔ Y2 ⊆ Y1). This order,
which reflects the subconcept-superconcept relation, always
induces a complete lattice that is called the concept lattice of
the context (G, M, I), denoted C(K). For X ⊆ G and Y ⊆ M,
the derivation operators α and β are defined as α(X) = {m ∈
M | ∀g ∈ X, (g, m) ∈ I}, and β(Y ) = {g ∈ G | ∀m ∈
Y, (g, m) ∈ I}. For X1 ⊆ X2 ⊆ G (resp. Y1 ⊆ Y2 ⊆ M), the
following holds: 1) α(X2) ⊆ α(X1) (resp. β(Y2) ⊆ β(Y1)) and
2) X1 ⊆ β(α(X1)) and α(X1) = α(β(α(X1))) (resp. Y1 ⊆
α(β(Y1)) and β(Y1) = β(α(β(Y1)))). Moreover, the pair (α, β)
induces a Galois connection between the partially ordered
powersets (P(G), ⊆) and (P(M), ⊆). Saying that (X, Y ) with
X ⊆ G and Y ⊆ M is a formal concept is equivalent to
α(X) = Y and β(Y ) = X. For Y1, Y2 ⊆ M, the implication
Y1 → Y2 holds in K (K |= Y1 → Y2) iff β(Y1) ⊆ β(Y2) (or
Y2 ⊆ αβ(Y1)). This means that the implication holds if every

5Although the example has been originally introduced as an ABox Abudc-
tion problem, we found it simple and clear enough to adapt it to the context
of concept abduction.

object having all attributes from Y1 also has all attributes from
Y2.

In a concept lattice, infimum and supremum of a family of
formal concepts (Xt, Yt)t∈T are calculated as follows:

∧
t∈T

(Xt, Yt) =

(⋂
t∈T

Xt, α(β(
⋃
t∈T

Yt))

)
, (1)

∨
t∈T

(Xt, Yt) =

(
β(α(

⋃
t∈T

Xt)),
⋂
t∈T

Yt

)
. (2)

Every complete lattice can be viewed as a concept lattice.
A complete lattice (L, ≤) is isomorphic to the concept lattice
C(L, L, ≤).

A pair (formal concept) (X′, Y ′) is said to be a descendant of
a pair (X, Y ) if X ⊂ X′. A pair (X′, Y ′) is said to be a successor
of a pair (X, Y ) if X ⊂ X′ and there is no intermediate pair
(X′′, Y ′′) such that X ⊂ X′′ ⊂ X′. The set of successors of a
given pair is called the cover of this pair and will be denoted in
the sequel as ↑ (X, Y ). The successors of the bottom element
are called atoms.

Dually, a pair (X′, Y ′) is said to be an ancestor of a pair
(X, Y ) if X′ ⊂ X. A pair (X′, Y ′) is said to be a predecessor
of a pair (X, Y ) if X′ ⊂ X and there is no intermediate pair
(X′′, Y ′′) such that X′ ⊂ X′′ ⊂ X. The set of all ancestors of
a given pair will be denoted in the sequel as ↓ (X, Y ).

Given a formal context, the key problem is to efficiently
compute the underlying formal concept lattice, i.e., the set of
all implications holding in this context. Adopting a brute force
approach by enumerating all the possible implications (22|M|)
is very time consuming and generates a redundant implication
set. A less naive strategy can exploit the facts that: 1) for any
subset Y of M, the implication Y → αβ(Y ) always holds in K
and 2) if Y1 → Y2 holds in K then Y2 ⊆ αβ(Y1). One can then
define the implication set by enumerating all (2|M|) subsets Y

of M and generate the implications Y → αβ(Y ). However, this
approach still generates redundant implications, which makes
it ineffective in particular for large scale applications. A natural
question then is to ask whether there exists an implication
set that constitutes a basis, i.e., an implication set that is
nonredundant and from which all the implications holding
in a given context can be derived. The following definitions
will be helpful for the definition of an efficient concept lattice
construction algorithm.

Definition 4 (Implication Base): Given a formal context K,
a set of implications B defines a basis for the implication set
in K (imp(K)), if it is:

1) sound, i.e., every implication Y1 → Y2 from B holds in
K);

2) complete, i.e., every implication Y1 → Y2 holding in K
can be derived from B;

3) minimal, i.e., no strict subset of B is complete.

Of particular interest is the stem base (also called
the Guigues–Duquenne base) defined as B = {Y →
αβ(Y ) | Y is a pseudointent of K}, where a pseudointent of
a formal context K is recursively defined as the set Y of
attributes satisfying Y �= αβ(Y ) and αβ(Ỹ ) ⊆ Y for each
pseudointent Ỹ ⊂ Y [41].



558 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 44, NO. 5, MAY 2014

Fig. 2. Algorithm for computing the stem base [42].

Fig. 3. Simple example of a concept lattice from Wikipedia (objects are integers from 1 to 10, and attributes are composite, even, odd, prime, and square).
Table (a) depicts the formal context and Figure (b) its induced concept lattice.

An efficient approach to construct the concept lattice is to
enumerate the pseudointents of K in a lectic order which is
defined as follows.

Definition 5 (Lectic order): The lectic order is a linear or-
der on the powerset of M. It is defined as follows: fix an
arbitrary strict total order < on the set M = {m1, . . . , mn} of
attributes, say m1 < · · · < mn. Let Y1, Y2 ⊆ M be two sets of
attributes. Define

Y1 <i Y2 iff ∃mi ∈ Y2\Y1 and Y1 ∩ {m1, . . . , mi−1}
= Y2 ∩ {m1, . . . , mi−1}.

The lectic order is the union of all <i for i = 1, . . . , n.
The algorithm in Fig. 2 computes the stem base by lectically

enumerating the pseudointents of K. In this algorithm Y + i

amounts to setting the ith bit to 1 and all subsequent bits to 0,
i.e., Y [i] := 1 and ∀j > i, Y [j] := 0. B(Y ) means applying im-
plications to attribute sets, e.g. for B = ({m1} → {m1, m4, m5})
and Y = {m1, m2, m3}, B(Y ) = {m1, m2, m3, m4, m5}.

Example 4: We consider a classical example to illustrate the
definitions and the algorithm introduced above. Furthermore,
this example will be used throughout this paper to illustrate
and discuss the proposed operators. The considered formal

context and the associated concept lattice are depicted in
Fig. 3.

The bottom element is
(∅, {composite, even, odd, prime, square}).
The atoms are: ({4}, {composite, even, square}), ({9}, {compo-
site, odd, square}), ({2}, {even, prime}), and ({3, 5, 7}, {odd,

prime}). ({1, 9}, {odd, square}) is a successor of ({9}, {compo-
site, odd, square}). The cover of ({9}, {composite, odd,

square}) is the set {({4, 9}, {composite, square}), ({1, 9}, {odd,

square})}.
The computed Guigues–Duquenne base using the algorithm

introduced above is:

1) {composite, odd} → {composite, odd, square};
2) {even, square} → {composite, even, square};
3) {even, odd} → {composite, even, odd, prime, square};
4) {composite, prime} → {composite, even, odd, prime,

square};
5) {odd, square} → {composite, even, odd, prime, square}.

D. Using FCA in Description Logics

Description logics and formal concept analysis have been
first developed independently until the seminal work of [43].
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Now, the gap between both theories has been significantly
reduced. On the one hand, researchers from the FCA commu-
nity tried to enrich formal contexts with complex constructions
arisen in DLs [44], [45]. On the other hand, researchers in
DL tried to exploit the advances of FCA to treat nonstandard
inference problems in DLs. For a complete review on the
connection between these domains, please refer to [46].

Since our aim is to pick EL-concepts that are not explicit
in the subsumption hierarchy, a natural way is to consider
as a search space the complete lattice of concepts derived
from a given background theory. Hence, we construct such
concept lattices using FCA tools. In this paper we rely on
the ideas first introduced in [44], and further developed in
[47]–[49]. More precisely, tools from FCA are extended to
cope with relational structures expressed in a DL language.
The connection between FCA and DL is managed through the
so-called induced context. This is formally stated as follows.

Definition 6 (Induced Context [48]): The induced context
KT := (G, M, I) is defined as follows:

G := �I , a domain of a finite model I (3)

M := {m1, . . . , mn} (4)

I :=
{

(d, m) | d ∈ mI}. (5)

In what precedes, m1, . . . , mn denote the concepts defined
in a fixed TBox T , and G corresponds to the domain of the
model (in the DL sense) of the considered TBox T . Distel
[48] proposed a multistep exploration algorithm for checking
the possible entailment holding in a given terminological base
expressed with the DL EL.

In this paper, we rely on a similar construction. The algo-
rithm is summarized in Fig. 4. Further details can be found
in [48].

We consider the free finite model elements as objects and
EL concepts as attributes. A key point then is the generation
of this free model. Actually, inference systems, e.g., Hermit
system [50] based on semantic-tableaux reasoning can be used
to generate such counter-examples in the FCA-based processes
described in [28] and [47].

Example 5 (SHD Cont’d): Considering the SHD example,
the implication base resulting from Algorithm 4 is depicted
in LISP-like syntax in Fig. 6. The corresponding lattice is
depicted in Fig. 5. The drawing is performed using Conexp
software.6

The following subsumption:
Researcher � ∃CarriesVirus.⊥	∃HasDisease.SHD �

∃HasSymptom.GoogleLover�∃ShakeHands.∃CarriesVirus.

SHDV

follows from the first implication in the constructed stem
base

Researcher 	K ∃HasDisease.SHD � ∃HasSymptom.

GoogleLover � ∃ShakeHands.∃CarriesVirus.SHDV

by applying the following rule:

A 	K B

A � C 	K B
.

6Available at http://conexp.sourceforge.net/.

IV. Abduction Operators From Mathematical

Morphology on Complete Lattices

Mathematical morphology (MM) on logical formulas has
been introduced in [51], showing how the basic morpho-
logical operations can be expressed in a logical setting and
giving some insights into the possible use of morpho-logics
to approximation, reasoning, and decision. Bloch et al. [52]
proposed using morpho-logics to find explanations of obser-
vations and performing revision, contraction, fusion in an
unified way. In the framework of abduction, the authors
showed how to deal with observations that are inconsistent
with the background theory, and introduced methods to handle
multiple observations. By exploiting the algebraic structure
of mathematical morphology, their main idea is to find the
most central part of a theory by successive erosions. Two
explanatory relations were constructed and their behavior with
respect to the postulates of rationality introduced in [39]
was analyzed. Here, we propose adapting and introducing
new mathematical morphology operators for the purpose of
abductive reasoning in DL. In particular, the new framework
differs from [52], by several aspects.

1) The most important one is the underlying complete
lattice on which the operators are defined. While in [52],
the complete lattice is the one of models, here we will
consider the complete lattice constructed from one fixed
finite model that is constructed offline by formal concept
analysis tools. Noticeably, the latter is not the whole
powerset P(G) but the one obtained by the closure
operator leading to the complete concept lattice C.

2) Consequently, the erosion operators are definitely new
ones. Those based on structuring elements (i.e., local
neighborhoods), following the general case, require the
definition of a new distance class, which is defined on
the lattice C. We will discuss this new distance class
that opens up new perspectives for further developments.
Furthermore, we will introduce original last erosion
operators that are not based on a local neighborhood
but defined directly by jumping in the concept lattice.
Besides exhibiting more interesting complexity proper-
ties these operators are proved to satisfy more rationality
postulates than those that are based on a distance.

Let us first recall the basic algebraic framework of mathe-
matical morphology. Let (L, �) and (L′, �′) be two complete
lattices (which do not need to be equal). All the following
definitions and results are common to the general algebraic
framework of mathematical morphology in complete lattices
[53]–[57].

Definition 7: An operator δ : L → L′ is a dilation if it
commutes with the supremum: ∀(xi) ∈ L, δ(∨ixi) = ∨′

iδ(xi),
where ∨ denotes the supremum associated with � and ∨′ the
one associated with �′.

An operator ε : L′ → L is an erosion if it commutes with
the infimum: ∀(xi) ∈ L′, ε(∧′

ixi) = ∧iε(xi), where ∧ and ∧′

denote the infimum associated with � and �′, respectively.
Here, we will consider operators on the concept lattice
C defined from (G, M, I) [where G, M, and I are defined
by (3), (4), and (5)]. As in any complete lattice, we define
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Fig. 4. Algorithm for computing a base for the general concept inclusions holding in a given finite model, adapted from [48].

Fig. 5. Concept lattice induced by the SHD ontology.

dilations and erosions in the concept lattice as operations that
commute with the supremum and the infimum, respectively.
With the aim of performing concept abduction, we would like
to reason on subsets of G (via β) in order to find their best
explanations (in M). This will be performed by erosions to
find a more restricted subset that would explain a subset X.
Note that since the partial ordering on the concept lattice can
be expressed equivalently as an inclusion on G or on M,
the proposed construction on G will directly induce a way
of reasoning on M.

In the following, we propose two approaches to concretely
define erosions on C.

1) The first one consists of defining morphological ero-
sions, based on the notion of structuring element, defined
as an elementary neighborhood of elements of G or
as a binary relation between elements of G. Such a

neighborhood can be defined as a ball of radius 1 of
some distance function. Then finding an explanation will
be expressed as performing successive erosions so as to
derive what we call last nonempty erosion and last con-
sistent erosion, providing explanations. This follows the
line of previous work on propositional logics [52], [58].

2) The second approach consists of directly defining the
last erosions that are used for abduction purposes
(i.e., directly jump to the last step of the construction
proposed in the first approach). This is the way adopted
for our examples in the computation.

A. Erosion From Distance and Local Neighborhood

In order to define explicit operations on the concept
lattice, we will make use of particular erosions and dilations,
called morphological ones [59], which involve the notion
of structuring element, i.e., a binary relation b between
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Fig. 6. Implication base derived from the SHD example.

elements of G. For g ∈ G, we denote by b(g) the set of
elements of G in relation with g. For instance b can represent
a neighborhood system in G or a distance relation. For a
distance d between elements of G, structuring elements can
be defined as balls of this distance. Several distances could
be used. Let us mention one example.

Relying on notions from the theory of graded lattices [60],
we equip P(G), the powerset of G, with a height function
�, defined as the supremum of the lengths of all chains that
join the empty set to the considered element. This function is
strictly monotonous and satisfies the following property: if Y

covers X (i.e., X ⊂ Y and �Z such that X ⊂ Z ⊂ Y ), then
�(Y ) = �(X)+1. Hence, this function endows the concept lattice
with a graded lattice structure. In a general graded lattice, a
pseudometric can be defined as d(X, Y ) = �(X)+�(Y )−2�(X∧
Y ), where ∧ denotes the infimum associated with the partial
ordering of the lattice [61]. In the particular case where the
lattice is the power set of a set equipped with the subsethood
partial ordering, the � function is simply the cardinality of
each subset, i.e., ∀X ∈ P(G), �(X) = |X|, Y covers X means
that Y has exactly one more element than X, and d is a true
metric, which can also be expressed as

∀(X, Y ) ∈ P(G)2, d(X, Y ) = |X| + |Y | − 2|X ∩ Y |
= |X ∪ Y | − |X ∩ Y |
= |X�Y | (6)

where � is the symmetric set difference operator.

This is one example of distance that can be used on C,
among others. One of its drawbacks however is that it strongly
depends on the granularity of the concept descriptions in the
underlying ontology.

In the following, we assume any distance d, restricted to
singletons, and define a neighborhood of each element of G,
as a ball of d of radius 1 centered on g:

∀g ∈ G, b(g) = {g′ ∈ G | d({g}, {g′}) ≤ 1}.
What follows applies whatever the distance, for a structuring

element b defined as a ball of the chosen distance.
Definition 8: The morphological dilation of a subset X of

G with respect to b is expressed as

δb(X) = {g ∈ X | b(g) ∩ X �= ∅}. (7)

The morphological erosion of X is expressed as

εb(X) = {g ∈ G | b(g) ⊆ X}. (8)

Taking b as derived from a distance is particularly interest-
ing in the context of abduction, where the most central parts
of X will have to be defined. Erosion is then expressed as
follows:

εn(X) = {g ∈ X | d({g}, XC) > n} (9)

where XC denotes the complement of X in G. We note
ε(X) = ε1(X), and have ε0(X) = X. Here, G is a discrete finite
space, and therefore only integer values of n are considered.
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More generally, εn denotes the iterative application of ε, n

times.
Proposition 2: All classical properties of mathematical

morphology hold. The ones that will be important in the
following are as follows.

1) Erosion commutes with the infimum, i.e., ∀(X, X′) ∈
P(G)2, ε(X ∩ X′) = ε(X) ∩ ε(X′).

2) Only an inclusion holds for the supremum: ∀(X, X′) ∈
P(G)2, ε(X) ∪ ε(X′) ⊆ ε(X ∪ X′).

3) If g ∈ b(g), then erosion is anti-extensive, i.e., ∀X ∈
P(G), εb(X) ⊆ X. This property holds in particular for
(9).

4) Iterativity property: εn(εm(X)) = εn+m(X). Performing
successive erosions then leads to smaller and smaller
results, equivalent to a direct application of a larger ero-
sion. This property will be used to define an explanation
as the most reduced result obtained by erosions.

5) An important notion is the one of adjunction: a pair of
operators (ε, δ) forms an adjunction if ∀x ∈ L, ∀y ∈
L′, δ(x) �′ y ⇔ x � ε(y). If (ε, δ) is an adjunction,
then ε is an erosion and δ is a dilation. It follows that
δ preserves the smallest element and ε preserves the
largest element. In the particular case considered here,
(εb, δb) is an adjunction. This notion is equivalent to
the one of Galois connection, by reversing the order
on the second lattice: for a formal concept (X, Y ),
X ⊆ β(Y ) ⇔ Y ⊆ α(X). Hence, the derivation operators
in formal concept analysis can also be interpreted in
terms of mathematical morphology [53].

B. Last Nonempty Erosion

As shown in [58] in the framework of propositional logic,
erosions can be used to find explanations. In this context,
the idea was to find the most central part of a formula as
the best explanation. This approach was shown to have good
properties with respect to rationality postulates of abductive
reasoning [39]. In this paper, we propose similar ideas, but
adapted to the context of concept lattices, using erosions de-
fined as in (9). For any X ⊆ G such that ∃Y ∈ M, (X, Y ) ∈ C,
we define its last erosion as

ε�(X) = εn(X) ⇔
{

εn(X) �= ∅,

and ∀m > n, εm(X) = ∅.
(10)

This last nonempty erosion defines the subsets in G that
are the furthest ones from the complement of X (according
to the distance d), i.e., the most central in X. In other words,
it defines the most specific concept that is subsumed by the
concept having as extent X.

Definition 9: Let C be an EL-concept, β the derivation op-
erator, and ε� the last nonempty erosion operator. A preferred
explanation γ of C is defined from the last nonempty erosion
as

C��neγ
def⇔ β(γ) ⊆ ε�(β(C)). (11)

When a hypothesis H (e.g. a set of concepts belonging to the
background theory from which the solution has to be picked)
has to be introduced, then this definition is modified as

C��neγ
def⇔ β(γ) ⊆ ε�(β(H) ∩ β(C)). (12)

Note that this actually defines a set of best possible expla-
nations, not necessarily a unique one. This set is robust in
the sense that it can be modified while remaining in C. For
instance dilating β(γ) by a ball of the distance d of size less
than n always leads to a subset of β(C). The central part can
then be interpreted as the subset X of G that can be changed
the most while α(X) remaining subsumed by C.

The interpretation in the concept lattice is as follows:
starting from the subset to be explained, performing successive
erosions amounts to going down in the lattice as much as
possible in order to find a nonempty set of G (Fig. 7).

C. Last Consistent Erosion

Another idea to introduce the constraint H is to erode it, as
soon as it remains consistent with C. This leads to a second
explanatory relation.

Definition 10: Let C be an EL-concept, H a prior given
constraint, and β the derivation operator. A preferred explana-
tion γ of C is defined from the last consistent erosion as

C��cγ
def⇔ β(γ) ⊆ ε�c(β(H), β(C)) ∩ β(C)

where ε�c is the last consistent erosion defined as

ε�c(β(H), β(C)) = εn(β(H))

where n = max{k | εk(β(H)) ∩ β(C) �= ∅}.
This definition has a different interpretation. Here, we

consider erosion of β(H) alone, which means that we are
looking at the models that are in C while being the most in
the constraint.

D. Direct Definition of Last Nonempty Erosion

Let X ∈ P(G) be a subset to be explained. If X is not
in the concept lattice, then we first compute βα(X). Thus
(βα(X), α(X)) is a formal concept (i.e., ∈ C). The notion of
most specific concept can also be used (Definition 1), or any
suitable alternative that may depend on the application (for
instance we can also consider several Xi such that their union
includes X, and define explanations of X from explanations
of Xi). In the sequel, we assume that X is in the lattice.

To define the last nonempty erosion of X, we propose to
compute the nonempty subsets (ancestors) of X which are
in the lattice and which are minimal. This is formalized as
follows.

Definition 11: Let X be any element of P(G) such that
∃Y ∈ P(M), (X, Y ) ∈ C. We assume X �= ∅, X �= � (and
by convention we set ε�(∅) = ∅, and ε�(�) = �). The last
nonempty erosion of X is defined as

ε�(X) = ∪{X′ ∈ P(G) \ ∅ | ∃Y ′ ∈ P(M), (X′, Y ′) ∈ C,

X′ ⊆ X, X′ minimal}. (13)
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Fig. 7. Erosion path associated with the SHD abduction problem. The concept to be explained is ∃has symptom.(Laziness�Pizza Appetite). The solution of
the abduction problem is the atom ∃shake hands.(∃carries virus.SHDV �∃has disease.SHD�∃has symptom.Pizza Appetite�has symptom.Laziness),
which is not a named concept in the original ontology.

Note that the subsets X′ involved in (13) are atoms (i.e.,
successors of the smallest element ⊥). The minimality notion
in this equation can be defined in various ways, allowing
hence for more modularity and flexibility in the definition.
For instance, one can consider the following two constraints:

1) cardinality minimality, denoted as | · | −minimality. It
is a strong constraint that excludes a large number of
solution candidates. It presents however the drawback
of making the erosion operator dependent on the model;

2) ⊆ −minimality that is less restrictive than the cardi-
nality based constraint and that is less sensitive to the
change of the model if the latter is not a free one.

Now defining an explanation from ε�(X) can be performed
using one of the following ways.

1) Choose γ such that β(γ) ⊆ ε�(X) (β(γ) ∈ P(G) but β(γ)
is not necessarily in the concept lattice since the union
of elements of C is not always in C and taking the most
specific concept including this union by βα could be too
large). Moreover, we may want to impose a constraint
on minimal cardinality.

2) β(γ) ⊆ ε�(X) such that ∃ϒ ∈ P(M), (β(γ), ϒ) is a
formal concept.

3) β(γ) = f (ε�(X)) where f is a choice function among
the subsets X′ involved in (13) (thus guaranteeing the
minimality constraint).

Theorem 1: The following properties hold:
1) ε� is an increasing operator;
2) ε� is an anti-extensive operator;
3) ε� commutes with the infimum (note that since reasoning

is performed on G, the infimum is the intersection);

4) ε� preserves the largest element.
Let us consider the simple concept lattice illustrated in

Fig. 3. Let X1 = {4, 6, 8, 9, 10} and X2 = {1, 9}. We have
the following.

1) ε�(X1) = {4, 9} (the subsets X′ involved in Definition 11
are {4} and {9} as nonempty ancestors of minimal
cardinality). In this case {4, 9} is an element of the
lattice, but not of minimal cardinality, and if we want to
reduce explanations to be elements of C with minimal
cardinality, we have to choose between {4} and {9}. If
this restriction is not imposed, {4, 9} or any of its subsets
can be considered an explanation of X1.

2) ε�(X2) = {9} since the only nonempty ancestor of X2 is
{9}.

3) ε�(X1) ∩ ε�(X2) = {9}.
4) ε�(X1 ∩ X2) = ε�({9}) = {9}.
This shows how the proposed definition works, and also

illustrates the commutativity with infimum (last two items).

E. Direct Last Consistent Erosion

Definition 12: Let X ∈ P(G) be explained (X �= ∅ and
X �= �), and let H be a constraint. The last consistent erosion
of H is defined as

ε�c(β(H)) = ∪{X′ ∩ X, X′ ∈ Cons(H)} (14)

where

Cons(H) = {X′ ∈ P(G) \ ∅ | ∃Y ′ ∈ P(M), (X′, Y ′) ∈ C,

X′ ⊆ β(H), X′ minimal, X′ ∩ X �= ∅}. (15)

Then, explanations γ are defined from ε�c(β(H)), as for ε�.
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Fig. 8. Scheme describing the whole framework and the connection between the involved theories and the particular problem of image interpretation. The
horizontal dashed lines separate the main modules of the framework. The first module that is generic, off-line, and once and for all processed allows for
the construction of the concept lattice C from the background knowledge on the application domain (e.g., brain imaging). First, the generic knowledge is
formalized as a TBox using a given description logic (EL in this paper). The named concepts constitute then the initial attributes set of the formal context in
FCA. The objects set is the free model. The exploration algorithm 4 is then used to construct the final induced context K = (G, M, I) leading to the concept
lattice C. The second module is executed for each image to be interpreted. The results from the image processing algorithms applied to the considered image
are stored as assertions in the ABox of the underlying DL. The latter, after consistency check, is then rewritten as the conjunction of the involved concepts.
This is then the complex concept to explain in C. This abduction process is performed by applying on C the erosion operators defined in Section IV, leading
to the preferred solution γ .

Let us consider again the example in Fig. 3. Let β(H) =
{2, 4, 6, 8, 10} and X = {2, 3, 5, 7}. We have ε�c(β(H)) = {2},
since the minimal ancestors are {2} and {4}, and {4} is not in X.

F. Properties and Interpretations

A first important property is that reasoning on G actually
amounts to reasoning on the whole formal context. Here,
explanations are defined from EL-concepts leading to erosions
of subsets of G. Let (X, Y ) be a formal concept, with X ⊆ G

and Y ⊆ M, according to the formal context definition. From
the definitions of explanations of X, we can derive directly the
corresponding concepts for Y , using the derivation operator,
i.e., α(β(γ)) = {m ∈ M | ∀g ∈ β(γ), (g, m) ∈ I}.

In Fig. 7, the erosion process leading to compute the
explanation set is depicted. Note that eroding X amounts to
dilating Y , which is in accordance with the correspondence
between the Galois connection property between derivation
operators and the adjunction properties of dilation and erosion
(Section IV-A).

Let us now consider the rationality postulates introduced
in [39] for explanation relations. It has been proved that most
of them hold for explanations derived from last nonempty
erosion and last consistent erosion [58]. These results extend
to the DL context as follows.

Theorem 2: The following rationality postulates hold for
definitions derived from successive erosions.

1) LLE and RLE: Both ��ne and ��c are independent of
the syntax (since they are computed on the domain of a
finite model).

2) E-Reflexivity: A reflexivity property holds for both
definitions: if C�γ , then γ�γ .

3) E-CM: For conjunctions, we have a monotony property
for ��c: if C��cγ and γ 	 D, then (C � D)��cγ . For
��ne, only a weaker form holds: if C��neγ and D��neγ ,
then (C � D)��neγ . Note that this weaker form is also
very natural and interesting.

4) RS holds for both definitions.
5) E-R-Cut holds for both definitions.
6) E-C-Cut holds for ��c. For ��ne, only a weaker form

holds, by replacing δ 	 D by D�δ.
Concerning the minimality constraint, it also naturally de-

rives from the definition of last erosion (10).
Theorem 3: For the explanations derived from the direct

last nonempty erosion (Definition 11), the following rationality
postulates hold:

1) LLE and RLE: independence on the syntax;
2) E-CM (monotony): ∀(X, X′) ∈ P(G)2, U∈α(X)U�γ

and X′ ⊆ β(γ) ⇒ X � X′�γ;
3) E-Reflexivity (reflexivity): U∈α(X)U�γ ⇒ γ�γ;
4) RS: U∈α(X)U�γ, γ ′ 	 γ, β(γ ′) �= ∅ ⇒ U∈α(X)U�γ ′;
5) E-R-Cut and E-C-Cut.
Note that E-CM holds here while it does not hold for

the last erosion derived from successive erosions based on a
distance, since we do not have anymore the centrality property
(looking at the most central part for finding an explanation),
this constraint being replaced by a minimality constraint.

Theorem 4: For the explanations derived from the direct
last consistent erosion (Definition 12), the following rationality
postulates hold:
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Fig. 9. Background ontology on brain tumor spatial characteristics.

1) LLE and RLE: independence on the syntax;
2) E-CM (monotony): ∀(X, X′) ∈ P(G)2, U∈α(X)U�γ

andX′ ⊆ β(γ) ⇒ X � X′�γ;
3) E-Reflexivity (reflexivity): U∈α(X)U�γ ⇒ γ�γ;
4) E-Cons (consistency);
5) RS: U∈α(X)U�γ, γ ′ 	 γ, β(γ ′) �= ∅ ⇒ U∈α(X)U�γ ′;
6) E-R-Cut and E-C-Cut.
Finally, two fundamental properties in DL and logic in

general are soundness and completeness. In the following,
we give a sketch of their proofs by exploiting the algebraic
properties of erosion, which hold for all proposed definitions.

a) Soundness: Informally, a procedure is said to be
sound if whenever it proves that a concept γ can be derived
from a set of axioms in K, then it is also true that γ is
satisfiable with respect to K. Since all proposed explanatory
operators perform erosion in the concept lattice constructed
from a finite model of the TBox, any solution extracted from
this lattice is satisfiable with respect to K. We can hence state
the following theorem.

Theorem 5 (Soundness): If ∃γ | C�γ then γ is satisfiable
with respect to K.

Proof: The proof is a direct corollary of the anti-extensivity
property of erosion (which holds for the proposed definitions).
Let us detail the proof of the ��ne operator. By definition
we have β(γ) ⊆ ε�(β(C)), and from the anti-extentivity we
have ε�(β(C)) ⊆ β(C). It follows that β(γ) ⊆ β(C) and, since
C 	 �, γ 	 �. We then have that γ is satisfiable with respect

to K which completes the proof. The proof for ��c is similar.

b) Completeness: A procedure is said complete if when-
ever a concept γ is satisfiable with respect to K , then it proves
that γ can be derived from K (i.e., ∃C satisfiable with respect
to K : C�γ).

Theorem 6 (Completeness): If γ is satisfiable with respect
to K then ∃C | K |= (γ 	 C).

Proof: Since ε preserves the largest element, we have
ε(β(�)) = β(�), and ε�(β(�)) = β(�). It follows that any
subset of β(�) is an interpretation of a preferred explanation
for ��ne. Hence K��neγ . Let us now take C = γ . Then C is
satisfiable with respect to K and C��neγ from the reflexivity
property.

Example 6 (SHD Cont’d): The set of all admissible solu-
tions to the SHD abduction problem as well as the erosion
path is depicted in Fig. 7. The preferred solution

∃shake hands . (∃carries virus.SHDV

� ∃has disease.SHD

� ∃has symptom.Pizza Appetite

� has symptom.Laziness)

belongs, as explained earlier, to an atom and is the one that
is | · |-minimal.
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Fig. 10. Concept lattice induced by the formal context KBrain.

V. Brain Image Interpretation

In this section, we show how our theoretical framework
applies in the challenging field of pathological brain interpreta-
tion. The whole process is summarized and depicted in Fig. 8.

The prior anatomical and pathological knowledge on the
brain is formalized using the DL language EL introduced
in Section III-A. The background theory, i.e., the Tbox T ,
defining the terminological part of the knowledge, is depicted
in Fig. 9. Spatial relations, which are important components
in spatial reasoning and image understanding, are represented
as roles.

For the cerebral image interpretation of Fig. 1 and from im-
age processing analysis, and specialized recognition processes
such as those developed in [5], [12], and [62], we derive the
following ABox:

t1 : BrainTumor

e1 : NonEnhanced

l1 : LateralVentricle

p1 : PeripheralCerebralHemisphere

(t1, e1) : hasEnhancement

(t1, l1) : farFrom

(t1, p1) : hasLocation

from which we can derive the following most specific concept
of t1:7

7Most specific concept is used here in the classical description logics
sense [1]. Distinction should be made here with model most specific concept
used earlier to construct the concept lattice in Algorithm 4.

BrainTumor � ∃hasEnhancement.NonEnhanced �
∃farFrom.LateralVentricle �

∃hasLocation.PeripheralCerebralHemisphere.

The interpretation task seen as a concept abduction problem
〈K, C〉 can be formulated as follows: γ 	K C, where C stands
for BrainTumor � ∃hasEnhancement.NonEnhanced �
∃farFrom.LateralVentricle �
∃hasLocation.PeripheralCerebralHemisphere, denoted as
C7 in the lattice (see Fig. 10). A possible explanation set is
{DiseasedBrain, ∃isAlteredBy.�,

SmallDeformingTumoralBrain,

PeripheralSmallDeformingTumoralBrain,

C1, C6, C9, C15}, where Ci are complex cyclic concepts that
are too large to be expanded here.
A preferred solution with respect to some minimality and
rationality postulates could be
γ ≡ PeripheralSmallDeformingTumoralBrain.
We then construct a possible finite model I =
(�I , ·I ). The domain �I corresponds to the set
{b1, b2, b3, b4, b5, b6, b7, gn1, gn2, gn3, gn4, lv1, lv2, t1, t2, t3,

t4, inf1, ne1, ne2, ch1, a1, a2, a3, a4, e1, n1, d1}, and an excerpt
of the assignment function is as follows:8

1) HumanOrganI := {b1, b2, b3, b4, b5, b6, b7, c1};
2) CerebralHemisphereI := {ch1};
3) BrainAnatomicalStructureI := {gn1, gn2, gn3,

gn4, lv1, lv2};
4) · · · ;

8The complete finite model, the induced context, and the concept lattice in
conexp format can be downloaded from www.lri.fr/ atif/SMC-2012/.
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Fig. 11. Erosion path leading to compute the preferred explanation of our image interpretation abduction problem. The concept to be explained is
BrainTumor�∃hasEnhancement.NonEnhanced �∃farFrom.LateralVentricle�∃hasLocation.PeripheralCerebralHemisphere, denoted as C7 in the lattice.
The solution here is the named concept: PeripheralSmallDeformingTumoralBrain.

5) isAlteredByI := {(b3, t3), (b4, t1), (b4, t2),
(b4, t3), (b5, t1), (b6, t2), (b7, t4)};

6) · · · .

The associated concept lattice is shown in Fig 10. Nodes
correspond to formal concepts, i.e., pairs (X, Y ) where X is a
set of domain elements and Y a set of EL-concepts.

In Fig. 11, the erosion process leading to com-
pute the explanation set is depicted. We can see that
this process leads to the expected preferred explanation
PeripheralSmallDeformingTumoralBrain.

In this case, a solution is a named concept. A simple
backward chaining on the classification tree would have led to
the same result. This is not surprising since the result depends
on the expressivity of the knowledge base and in this case a
named concept satisfies the minimality constraints as well as
the rationality postulates. However, to demonstrate the gen-
erality of our approach, and in particular its ability to extract
solutions that are complex concepts when necessary, we depict
in Fig. 12 an abduction process involving spatial relations. The
observation C corresponds to the following complex concept
that is not specified in the ontology: ∃HasLocation.(Brain �
HumanOrgan). The preferred solutions are in this case:

1) ∃FarFrom.(LateralVentricle �
BrainAnatomicalStructure);

2) ∃HasLocation.(CerebralHemisphere �
PerCerebralHemArea).

These concepts are complex ones. One should also remark
that other complex concepts would have been solutions to this
abductive problem but were not chosen since they involve less

atomic concepts, and are hence less minimal than the two
chosen so far.

The proposed interpretation problem is a very simplified
brain cerebral image interpretation problem that aims at il-
lustrating the benefits of our proposed abductive inference
services on a real case. A more realistic problem would
have implied more anatomical structures and more spatial
relations between the different anatomical structures and tumor
components. In particular, the presence of a certain kind of
tumor can significantly alter the spatial organization of the
brain, leading to observations that are not consistent with the
expert knowledge. We will study this complex scenario in our
future work.

VI. Discussion

A. Related Work

From the image understanding standpoint, our approach
differs significantly from classical ontology-based approaches,
since it formalizes the interpretation task as a concept abduc-
tion problem. However, a close work can be found in [37],
where Möller and Neumann discussed ontology based reason-
ing techniques for multimedia interpretation and reasoning.
The main ingredient in this approach is the notion of ag-
gregates that explicitly materializes the relationship between
high-level concepts and relations between low level data.
Formally, aggregates are concepts defined by: 1) inheritance
from parent concepts; 2) roles relating the aggregate to parts;
and 3) constraints relating each part to others. Interpretation
is then seen as instantiating the aggregates, by explaining
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Fig. 12. Erosion path leading to compute a preferred explanation that is not a named concept. The concept to be explained is
∃HasLocation.(Brain � HumanOrgan). The preferred solutions are in this case the following complex EL-concepts: {∃FarFrom.(LateralVentricle �
BrainAnatomicalStructure), ∃HasLocation.(CerebralHemisphere � PerCerebralHemArea)}.

the individuals in the ABox resulting from low level im-
age analysis. However, description logics are not expressive
enough to represent aggregates since they involve at least three
objects (for decidability reasons, DLs are restricted to the two-
variable fragment of first order logic). Hence, the ontology
is extended with the so-called DL-safe rules (rules applied
to ABox individuals only) to represent and capture aggregate
parts. Abduction is then performed by applying the rules in a
backward chaining way to the query derived from the initial
ABox. Our approach differs from the method explained so far
by several aspects.

1) We consider a concept abduction problem while the
authors in [37] considered an ABox abduction problem.
In this sense our approach is more general since ABox
individuals can be represented as nominals in the TBox
(the DL EL++ extends EL with nominals).

2) The approach in [37] is based on aggregates and hence
requires extending the DL with rules while our approach
does not require such extensions.

3) Our abduction operators are sound and complete and are
proved to satisfy rationality postulates and minimality
constraints.

4) Last, but not least, our abduction service can compute
complex concepts that are not explicit in the ontol-
ogy (thanks to the concept lattice), while the approach
defined in [37] is restricted to named individuals and
concepts.

B. Choice of Morphological Operators

Other morphological operators can be defined as well, see
for instance [58]. Defining dilation either from distances or

directly is possible and can lead to interesting knowledge
revision/negotiation/fusion operators. However, this is out of
the scope of abductive reasoning since explaining a concept
or GCI amounts, in our view, to filtering the most central
concept of the observation. Hence, operations that are anti-
extensive, such as the proposed erosions, are appropriate, while
dilations are not. Within the context of abduction, opening
has the required property of anti-extensivity and can lead
to filter concepts belonging to the admissible solution sets,
but it does not necessarily provide the most minimal ones
(with respect to their cardinality). Closing is not appropriate
for abduction since it is extensive. Other operators from
mathematical morphology such as thinning or skeleton could
be investigated.

C. Implementation Details

Our approach is based on the output of the exploration
algorithm proposed in [49] and implemented using clojure,
a LISP-like language based on JVM.9 The implementation
details along with the complexity analysis can be found in
[63]. Since the total number of pseudointents of a given
context K := (G, M, I) can be exponential in |G|.|M|, the stem
base cannot be computed in a polynomial time. Furthermore,
it has been proved in [64] that pseudointents cannot be
enumerated in the lectic order with polynomial delay, i.e., the
time between the output of one formal concept and the next
one is polynomial in the size of the context.

However, within the context of image analysis, unlike
semantic web mining, the number of concepts and roles in

9Java virtual machine.
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the ontology is small. Hence, the approach is computationally
tractable, a fortiori with new generation computers. Besides
the concept lattice can be constructed and stored offline.
The distance based morphological operators are of linear
complexity with respect to the sum of the cardinalities of
the attribute and of object sets: O(|G| + |M|), and the direct
erosions are of linear complexity with respect to the cardinality
of G.

VII. Conclusion

With the aim of image interpretation, we have proposed in
this paper abductive inference services in description logics
based on mathematical morphology over concept lattices. The
construction of these lattices is based on exploiting the ad-
vances of using formal concept analysis in description logics.
The properties and interpretations of the introduced explana-
tory operators were analyzed, and the rationality postulates of
abductive reasoning were stated and extended to our context.
Future work will concern the complexity analysis of these
operators and associated algorithms, and a deeper investigation
of their applications to image interpretation.
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