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Abstract

This paper deals with topological analysis of sets of tetrahedra (‘‘tetrahedral meshes’’ of
three-dimensional objects). We introduce a definition of simple elements for any normal tet-
rahedral representation. Then we prove a local characterization of simple tetrahedra in the
case of a scene composed of one object and its background, based on homology groups
and on relative homology. This allows us to define homotopic deformations of a tetrahedral
representation. Using this characterization, we illustrate the problem of generating three-di-
mensional finite element meshes from medical voxel datasets.
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1. Introduction

This paper deals with three-dimensional (3D) digital topology. More specifically,
it deals with topological properties of sets of tetrahedra, i.e., ‘‘tetrahedral meshes’’ of
3D objects. Digital topology provides a sound mathematical basis for various image
processing applications including object classification, counting and labeling, border
tracking, contour filling, thinning, and segmentation. An important property of
topological parameters is that they are invariant under translation, rotation, shrink-
ing, and more generally under elastic deformations. This property underlies the
importance of topological parameters in analyzing images of biological organs.
The analysis of 3D digital images has generated increasing interest with the rapid
growth of 3D image processing and computer vision applications in several domains,
including medical imaging. In medical imaging, techniques like computed tomogra-
phy (CT), magnetic resonance imaging (MRI), positron emission tomography
(PET), etc. are widely used to produce 3D digital images that carry much important
information about anatomy and function of the human body. Udupa [1], among
others, has discussed the applications of digital topology in 3D medical imaging.

A 3D digital image, in general, is a discrete subdivision of the 3D Euclidean space
into elementary regions. Several types of representations are commonly used for 3D
digital images: voxel representations and tetrahedral representations, which are both
volumetric representations, surface representations, or cellular complexes that repre-
sent elements of different local dimensions. Most of the work on digital topology and
3D image processing makes use of voxel representations. Much less use has been
made of the other representations, especially tetrahedral representations. Over a dec-
ade ago, Boissonnat [2] presented a method producing tetrahedral representations of
3D objects from their planar cross sections. But 3D volumes can also be used directly
to produce meshes.

In this paper, we will study tetrahedral representations, which are defined by finite
sets of tetrahedra (not necessarily regular).

One of the motivations to work on tetrahedral meshes concerns applications based
on EEG andMEG data, where electromagnetic field propagation has to be calculated
numerically, for instance using finite element methods. This computation is based on
a meshed model of the head tissues. Examples of such models are shown in Fig. 1.
Although spherical models lead to analytical expressions of electrical potentials
and magnetic fields, they are not realistic and oversimplified. Realistic models can
be built from anatomical (typically MRI) images of the subject under study. The
meshed model can then be constructed from a segmentation of main tissues in such
images, as illustrated in Fig. 2. Such applications require a labeling of the mesh where
each tetrahedron receive a label corresponding to the majority tissue in the corre-
sponding volume, while preserving the topological arrangement of the tissues (see
the general scheme for the whole procedure in Fig. 3). The literature concentrates
mainly on mesh construction, refinement, adaptation, but not on topological aspects.

One important notion is the characterization of simple elements, i.e., that can be
added to or suppressed from an object without changing the topology. This allows us
to perform the above mentioned labeling through a sequence of homotopic deforma-



Fig. 1. A few examples of head models (from [3]): spherical model, homogeneous realistic surfacic model,
and volumetric realistic model (enabling to consider anisotropy and heterogeneity).

Fig. 2. MRI image (Pitié-Salpétrière Hospital) and segmentation of scalp, skull and brain (one slice of the
3D volume).
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tions. Local characterizations exist for voxel representations and for cellular com-
plexes, but not for tetrahedral representations [4–9].

This paper deals with the local topological analysis of tetrahedral representations.
Following Kong [10], we define the simplicity of a tetrahedron T as follows:

Definition 1. Let T be a tetrahedron and O a connected set of tetrahedra. The
tetrahedron T is said to be simple if the inclusion mapping i :O fi O [ T (i.e., the
identity restricted to O) is a homotopy equivalence.

This definition is rarely used directly, because the condition in this definition is not
easy to check in general. For voxel and cellular complex representations, the simplest
local characterization consists in counting the connected components in the neighbor-
hood of the considered point. To extend this notion to tetrahedral meshes, we rely on
homology groups to find a local characterization of simple tetrahedra. The major re-
sult of this paper consists of this characterization. Although its expression is quite
simple and intuitive since it only consists in checking simple conditions on the neigh-
borhood of a tetrahedron (see Theorem 15), the proof is not straightforward: it can
not rely on the usual notion of homotopy (as for voxels or cellular complexes), but
we have to use more complex notions of homology and relative homology.

Basic concepts and definitions related to tetrahedral representations are presented
in Section 2. In Section 3, we compute the homology groups of a tetrahedral mesh



Fig. 3. General scheme in MEG/EEG direct and inverse problems: a head model is constructed from the
patient�s anatomy by segmenting a MRI image and building a labeled mesh.
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(TM). Based on this result, a characterization of a simple element is developed in
Section 4. Finally, Section 5 presents an application of our characterization of simple
tetrahedra in medical imaging, aiming at constructing finite element (FE) meshes for
electro-magnetic finite element models of the head tissues.
2. Basic concepts and definitions

We consider the 3D Euclidean space R3. A (closed) tetrahedron T is defined by a
quadruple (v1, v2, v3, v4) of non-coplanar vertices (points of R

3). An edge e of the tet-
rahedron is defined by a pair (vi, vj) of distinct vertices, and a face f is defined by a
triple (vi, vj, vk) of distinct vertices. It is worth mentioning that the terms ‘‘tetrahe-
dron,’’ ‘‘face,’’ and ‘‘edge’’ do not denote the finite sets of vertices, but rather the
closed convex hulls of those vertices. They are therefore 3D, 2D, and 1D entities,
respectively, and contain their boundaries (e.g., an edge includes its two end points).
Vertices, edges, faces, and tetrahedra are also referred to as 0-, 1-, 2-, and 3-simplex-
es, respectively. We define interior (T) as T without its faces. If f is a face of T, we
define interior (f) as f without its edges, and if e is an edge of T, we define interior (e)
as e without its vertices. Note that the interior of a 0-simplex (vertex) is empty.
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A finite set O of tetrahedra is called a tetrahedral mesh (TM) if the intersection of
any two of its tetrahedra is either empty or it is a face, an edge or a vertex of both
tetrahedra. It may be noted that a finite set O of tetrahedra is a TM if and only if it
constitutes a simplicial complex [11]. In the following, we will always consider TM.
We express now the notion of connectivity in a TM.

A k-simplex (k < 3) s of O is shared if there exist two distinct tetrahedra Ti and Tj

of O such that s ˝ Ti \ Tj. Otherwise, s is called bare. In particular, if a k-simplex s is
shared then the k-simplexes si included in s are also shared. For example, if a face is
shared, then its edges are also shared. The two tetrahedra Ti and Tj sharing a k-sim-
plex are said to be neighbors. Two tetrahedra are adjacent if they are distinct and
share a vertex. Two tetrahedra are edge-adjacent if they are distinct and share an
edge. Two tetrahedra are face-adjacent it they are distinct and share one face.

More generally, two simplexes s1 and s2 are said to be adjacent if and only if
s1 \ s2 „ ;.

A sequence s1, s2, . . . , sn of simplexes in which si is adjacent to si + 1 for 1 6 i < n is
called a path from s1 to sn. The path is said to join the mesh elements s1 and sn.

A set O of tetrahedra is connected if any two tetrahedra T and T 0 of O are joined
by a path of simplexes T = s0, s1, . . . , sn = T 0 in O such that si and si + 1 are adjacent
for 0 6 i < n. If O is a non-empty set of tetrahedra, then a connected component of O
is a maximal connected subset of O. Thus, every element of a non-empty set of tet-
rahedra lies in a unique component of O, and O is connected if and only if O has just
one component.

Let O be a TM and T a tetrahedron of O, then:

� the neighborhood N (T) of T is defined as the union of all the tetrahedra Ti 2 O

such that Ti \ T „ ;,
� the boundary of T, denoted by BdT, is the union of all the faces of T,
� the union of all the shared k-simplexes (k < 3) of T, denoted by BdsT, is called the

attachment set of T,
� the union of the interiors of the bare k-simplexes (k < 3) of T, denoted by BdbT is

the bare boundary of T, and is actually the complement of the attachment set of T
in BdT.

We illustrate the above definitions in Fig. 4. The tetrahedron (a,b,c,d) has two
bare faces (a,b,c) and (a,c,d) and two shared faces (a,b,d) and (b,c,d). This tetrahe-
dron also has one shared edge (a,c). Therefore, Bdb (a,b,c,d) = interior (a,b,c) [ inte-

rior (a,c,d) and Bds (a,b,c,d) = (a,b,d) [ (b,c,d) [ (a,c). Note that Bdb may also
contain the interior of an edge; for example, in Fig. 4, Bdb (a,c,g,h) =
interior (a,c,g) [ interior (c,g,h) [ interior (a,c,h) [ interior (c,g) [ interior (c,h).
3. Homology groups of a tetrahedral mesh

The characterization of simple elements is crucial for defining deformations of an
object that preserve the topology. If the object is defined on a voxel grid, then local



Fig. 4. Illustration of neighborhood of a tetrahedron.

I. Bloch et al. / Graphical Models 67 (2005) 260–284 265
characterizations exist based on the intersections between the neighborhood of a
point and the object or its complement. They consist in checking that the neighbor-
hood of a point has exactly one connected component in the object and one con-
nected component in the background [5,4]. One problem is to define the
appropriate connectivity to avoid topological paradoxes. Similar characterizations
exist for cellular complexes [12,8]. Such structures deal in an elegant way with the
topological paradoxes and do not require to define different connectivities for objects
and background. Here again, the characterization of a simple element consists in
checking that the neighborhood of the considered element has exactly one connected
component in the object and one connected component in the background. This con-
dition is necessary for any graph structure, and necessary and sufficient in case of
cellular complexes due to the triangulated structure of the neighborhood [8]. For
both voxels and cellular complexes, the notion of homotopy and related concepts
is sufficient to derive these characterizations. Unfortunately, this is not the case
for tetrahedral meshes, and the more complex notion of homology has to be used.

The mathematical structures underlying homology groups are finitely generated

groups. Throughout this section, the group operation is denoted by +, all considered
groups are Abelian (i.e., commutative), and the unit element is denoted by 0.

3.1. Chain group

We first define orientations of a k-simplex for k P 1. An oriented 1-simplex
s1 = (p0p1) is a directed line segment traversed in the direction p0 fi p1. Now
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(p0p1) can be distinguished from (p1p0). We set (p0p1) = �(p1p0). Here the symbol
‘‘�’’ in front of (p1p0) should be understood in the sense of Abelian groups. The
1-simplex (p1p0) is the inverse of (p0p1): (p0p1) + (p1p0) = 0. Similarly, an oriented
2-simplex s2 = (p0p1p2) is a triangle with oriented edges. The orientation of
(p0p1p2) is the same as the one of (p2p0p1) or (p1p2p0), but opposite to the one of
(p0p2p1), (p2p1p0) or (p1p0p2). Similarly, an oriented 3-simplex (p0p1p2p3) is an or-
dered sequence of four vertices of a tetrahedron.

We now construct a group structure based on a oriented set of simplexes.

Definition 2. Let O be a set of oriented k-simplexes with k 6 3. Let GIr be the set of
oriented simplexes sr,i of dimension r of O in which a simplex appears with an unique
orientation ðsr;i 2 GIr ) �sr;i 62 GIrÞ. We set Ir ¼ cardðGIrÞ.

We construct a finitely generated group Cr (O) which is generated by the elements
of GIr , by defining at the same time the group law + and an isomorphism
cr : CrðOÞ ! ZIr , by:

crðsr;iÞ ¼ 0 � � � 1i � � � � � � 0ð Þ;
crð�sr;iÞ ¼ �crðsr;iÞ;
crðsr;i þ sr;jÞ ¼ crðsr;iÞ þ crðsr;jÞ;
crð0Þ ¼ 0 � � � 0 � � � � � � 0ð Þ;

8>>><
>>>:

where 1i corresponds to the 1 a the ith position.
If r > k, we set Cr (O) = {0}.

The group Cr (O) is called the r-chain group and every element of Cr (O) is called
an r-chain. Any element of Cr (O) can be written formally as

PIr
i¼1nisr;i; ni 2 Z, and is

mapped by cr to ðn1; . . . ; nIrÞ 2 ZIr .
Let us now compute the chain groups of a tetrahedron and its boundary.
An oriented tetrahedron T contains the following set of oriented k-simplexes:

T ¼

p0; p1; p2; p3;

ðp0p1Þ; ðp0p2Þ; ðp0p3Þ; ðp1p2Þ; ðp1p3Þ; ðp2p3Þ;
ðp0p1p2Þ; ðp0p1p3Þ; ðp0p2p3Þ; ðp1p2p3Þ;

ðp0p1p2p3Þ

8>>><
>>>:

9>>>=
>>>;
:

The boundary BdT of the oriented tetrahedron T is an example of a simplicial
complex, built out of four 0-simplexes, six 1-simplexes, and four 2-simplexes.
Thus,

Bd T ¼
p0; p1; p2; p3;

ðp0p1Þ; ðp0p2Þ; ðp0p3Þ; ðp1p2Þ; ðp1p3Þ; ðp2p3Þ;
ðp0p1p2Þ; ðp0p1p3Þ; ðp0p2p3Þ; ðp1p2p3Þ

8><
>:

9>=
>;:

As T and BdT have the same oriented r-simplexes for r < 3, Cr (T) = Cr (BdT). Thus,
the chain groups of T and the surface BdT of a tetrahedron T are:

C0ðT Þ ¼ C0ðBd T Þ ¼ fn0p0 þ n1p1 þ n2p2 þ n3p3=ðn0 . . . n3Þ 2 Z4g; ð1Þ
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C1ðT Þ ¼ C1ðBd T Þ
¼ fn0ðp0p1Þ þ n1ðp0p2Þ þ n2ðp0p3Þ þ n3ðp1p2Þ þ n4ðp1p3Þ

þ n5ðp2p3Þ=ðn0 . . . n5Þ 2 Z6g; ð2Þ

C2ðT Þ ¼ C2ðBd T Þ
¼ fn0ðp0p1p2Þ þ n1ðp0p1p3Þ þ n2ðp0p2p3Þ

þ n3ðp1p2p3Þ=ðn0 . . . n3Þ 2 Z4g; ð3Þ

C3ðT Þ ¼ fn0ðp0p1p2p3Þ=n0 2 Zg; ð4Þ

C3ðBd T Þ ¼ f0g; ð5Þ

CrðT Þ ¼ CrðBd T Þ ¼ f0g for r P 4: ð6Þ
3.2. Boundary operator

Let us now introduce the boundary operator ok and the boundary oksk of a k-sim-
plex sk.

Since a 0-simplex has no boundary, we define o0p0 = 0. For a 1-simplex (p0p1), we
define o1 (p0p1) = p1 � p0.The minus sign in front of p0 is related to the orientation.
The following examples will clarify this point. In Fig. 5, an oriented 1-simplex (p0p2)
is divided into two simplexes, (p0p1) and (p1p2). The boundary of (p0p2) should
clearly consist of the vertices p0 and p2. This is achieved by the definition of o1
and the minus sign, which eliminates the fictitious boundary p1: o1 (p0p1) +
o1 (p1p2) = p1 � p0 + p2 � p1 = p2 � p0 as expected. Another example is the triangle
in Fig. 5. It is the sum of three oriented 1-simplexes, (p0p1) + (p1p2) + (p2p0), and
Fig. 5. (A) An oriented 1-simplex with a fictitious boundary p1 and (B) a simplicial complex O where the
element c = (p0p1) + (p1p2) + (p2p0) 2 C1 (O) is a 1-cycle.
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has intuitively no boundary because it is a cycle (a loop). Indeed we get:
o1 (p0p1) + o1 (p1p2) + o1 (p2p0) = p1 � p0 + p2 � p1 + p0 � p2 = 0 as expected. This
is generalized for any r-simplex as follows:

Definition 3. Let sr = (p0 . . .pr) (r > 0) be an oriented r-simplex. The boundary orsr of
sr is a (r � 1)-chain defined as:

orsr ¼
Xr

i¼0

ð�1Þiðp0p1 . . . bpi . . . prÞ;
where the point pi under the symbolb is omitted. We also define o0s0 = 0.

The operator or acts linearly on an element c ¼
PIr

i¼1cisr;i of Cr (O), i.e.,
orc ¼

PIr
i¼1ciorsr;i. The mapping or :Cr (O) fi Cr�1 (O) is called the boundary operator

and is a homomorphism [11,13].
Based on this operator, two subgroups of Cr (O) can be defined, respectively, the

kernel of or and the image of or + 1.

3.3. Cycle group

Definition 4. If c 2 Cr (O) and orc = 0, c is called a r-cycle. The set of r-cycles
Zr (O) = keror is a subgroup of Cr (O) and is called the r-cycle group.

Let us compute the r-cycle groups of T and BdT. As T and BdT have the same
oriented r-simplexes for r < 3, Zr (T) = Zr (BdT). First,

Z0ðT Þ ¼ Z0ðBd T Þ ¼ C0ðT Þ ¼ C0ðBd T Þ: ð7Þ
since the boundary of any 0-simplex is 0.

The computation of Z1 (T) = Z1 (BdT) is a little bit more tedious. Any z of C1 (T)
can be written in the following form [see Eq. (2)]:

z ¼ n0ðp0p1Þ þ n1ðp0p2Þ þ n2ðp0p3Þ þ n3ðp1p2Þ þ n4ðp1p3Þ þ n5ðp2p3Þ:
Then we have:

z 2 Z1ðT Þ () o1z ¼ 0

() n0ðp1 � p0Þ þ n1ðp2 � p0Þ þ n2ðp3 � p0Þ þ n3ðp2 � p1Þ
þn4ðp3 � p1Þ þ n5ðp3 � p2Þ ¼ 0

()

�n0 � n1 � n2 ¼ 0

n0 � n3 � n4 ¼ 0

n1 þ n3 � n5 ¼ 0

n2 þ n4 þ n5 ¼ 0

8>>>><
>>>>:

()
n5 ¼ n1 þ n3

n4 ¼ n0 � n3

n2 ¼ �n0 � n1:

8><
>:
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Thus z = n0 (p0p1 + p1p3 + p3p0) + n1 (p0p2 + p2p3 + p3p0) + n3 (p1p2 + p2p3 + p3p1),
p3p0) + n1 (p0p2 + p2p3 + p3p0) + n3 (p1p2 + p2p3 + p3p1), and Z1 (T) is therefore
generated by the following cycles: p0p1 + p1p3 + p3p0, p0p2 + p2p3 + p3p0,
p1p2 + p2p3 + p3p1, and can be written as:

Z1ðT Þ ¼ Z1ðBd T Þ
¼ fn0ðp0p1 þ p1p3 þ p3p0Þ þ n1ðp0p2 þ p2p3 þ p3p0Þ
þ n3ðp1p2 þ p2p3 þ p3p1Þ=ðn0; n1; n3Þ 2 Z3g: ð8Þ

Intuitively, it corresponds to the subgroup of C1 (T) generated by the cycles defined
by the faces of T.

Let us now compute Z2 (T) = Z2 (BdT). Let z = n0 (p0p1p2) + n1 (p0p1p3) +
n2 (p0p2p3) + n3 (p1p2p3) 2 C2 (T), with ðn0 . . . n3Þ 2 Z4 [Eq. (3)].

z 2 Z2ðT Þ () o2z ¼ 0

() n0ððp1p2Þ � ðp0p2Þ þ ðp0p1ÞÞ þ n1ððp1p3Þ � ðp0p3Þ þ ðp0p1ÞÞ
þn2ððp2p3Þ � ðp0p3Þ þ ðp0p2ÞÞ þ n3ððp2p3Þ � ðp1p3Þ þ ðp1p2ÞÞ ¼ 0

() ðn0 þ n3Þðp1p2Þ þ ðn2 � n0Þðp0p2Þ þ ðn0 þ n1Þðp0p1Þ þ ðn1 � n3Þðp1p3Þ
�ðn1 þ n2Þðp0p3Þ þ ðn2 þ n3Þðp2p3Þ ¼ 0:

This equation is satisfied if and only if n0 = n2, n3 = n1, and n0 = �n1. Thus

Z2ðT Þ ¼ Z2ðBd T Þ
¼ fn0ðp0p1p2Þ � n0ðp0p1p3Þ þ n0ðp0p2p3Þ � n0ðp1p2p3Þ=n0 2 Zg: ð9Þ

It follows that Z2 (T) and Z2 (BdT) are isomorphic to Z.
Finally, for r P 3, we have Zr (T) = {0} and Zr (BdT) = {0}.

3.4. Boundary group

Definition 5. Let c 2 Cr (O). If there exists d 2 Cr + 1 (O) such that c = or + 1d, then c

is called a r-boundary. The set of r-boundaries Br (O) = imor + 1 is a subgroup of
Cr (O) and is called the r-boundary group.

It is easy to prove that oror + 1 = 0, and to deduce Br (O) ˝ Zr (O) ˝ Cr (O).
Let us compute the r-boundary groups of T and BdT. Since T and BdT have the

same oriented r-simplexes for r < 3, we have Br (T) = Br (BdT) for r < 2. From Eq.
(2) we have:

B0ðT Þ ¼ B0ðBd T Þ
¼ fo1½n0ðp0p1Þ þ n1ðp0p2Þ þ n2ðp0p3Þ þ n3ðp1p2Þ þ n4ðp1p3Þ þ n5ðp2p3Þ�=

ðn0 . . . n5Þ 2 Z6g
¼ fn0ðp1 � p0Þ þ n1ðp2 � p0Þ þ n2ðp3 � p0Þ þ n3ðp2 � p1Þ þ n4ðp3 � p1Þ

þ n5ðp3 � p2Þ=ðn0 . . . n5Þ 2 Z6g
¼ fp0ð�n0 � n1 � n2Þ þ p1ðn0 � n3 � n4Þ þ p2ðn1 þ n3 � n5Þ

þ p3ðn2 þ n4 þ n5Þ=ðn0 . . . n5Þ 2 Z6g: ð10Þ
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From Eq. (3) we have:

B1ðT Þ¼B1ðBdT Þ
¼fo2½n0ðp0p1p2Þþn1ðp0p1p3Þþn2ðp0p2p3Þþn3ðp1p2p3Þ�=ðn0 . . .n3Þ2Z4g
¼fn0 ðp1p2Þ�ðp0p2Þþðp0p1Þð Þþn1 ðp1p3Þ�ðp0p3Þþðp0p1Þð Þ

þn2 ðp2p3Þ�ðp0p3Þþðp0p2Þð Þþn3 ðp2p3Þ�ðp1p3Þþðp1p2Þð Þ=ðn0 . . .n3Þ2Z4g
¼fp0p1ðn0þn1Þþp0p2ð�n0þn2Þþp0p3ð�n1�n2Þþp1p2ðn0þn3Þ

þp1p3ðn1�n3Þþp2p3ðn2þn3Þ=ðn0 . . .n3Þ2Z4g: ð11Þ

B2ðT Þ ¼ fo3fn0ðp0p1p2p3Þg=n0 2 Zg
¼ f�n0ðp0p1p2Þ þ n0ðp0p1p3Þ � n0ðp0p2p3Þ þ n0ðp1p2p3Þ=n0 2 Zg ð12Þ

and thus, B2 (T) is isomorphic to Z. Since there are no 3-simplexes in BdT, we have
B2 (BdT) = {0}. Finally for rP3, we have Br (T) = Br (BdT) = {0}.
3.5. Homology groups

The question now is to see how the three groups Cr (O), Zr (O), and Br (O) asso-
ciated with a TM are related to topological properties of the TM. Let us first con-
sider a simple geometrical example: the edges of a triangle and those of a square
are homeomorphic to each other but clearly C1 (triangle) is isomorphic to Z3 and
C1 (square) is isomorphic to Z4. Hence Cr (O) is not a topological invariant. Similar
examples can be found to show that Zr (O) and Br (O) are not topological invariants
either. But their quotient group provides the desired topological invariant, as shown
below.

Definition 6. Let O be a TM. The rth homology group Hr (O), 0 6 r 6 n, associated
with O is defined by:

HrðOÞ ¼ ZrðOÞ=BrðOÞ;
where the quotient group is associated to the following equivalence relation: z � z0 if
and only if z � z0 2 Br (O). The quotient group is the set of equivalence classes of r-cy-
cles, Hr (O) = {[z] Œz 2 Zr (O)} where each equivalence class [z] is called a homology
class. Two r-cycles z and z0 such that z � z0 (or [z] = [z0]) are said to be homologous.

Geometrically, z � z0 is a boundary of some space. The homology group H1 (O)
represents the set of closed curves in O and the homology group H2 (O) represents
the set of closed surfaces in O. We can consider that homology groups allow us to
count ‘‘cavities’’ in higher dimension spaces. For instance for the 2-unit sphere S2,
H1 (S

2) = {0} since any closed curve of S2 is the boundary of an element of dimen-
sion 2 in S2, and H2 (S

2) „ {0} since no closed surface can be the boundary of an ele-
ment of dimension 3.

We now recall some results concerning homology groups. They can be found in text-
books on topology and algebraic topology, such as [11] or [13] among many others.
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Theorem 7 ([11,13]). Homology groups are topological invariants: let X be homeo-

morphic to Y, then Hr(X) is isomorphic to Hr(Y).
Theorem 8 ([11,13]). Let O be a TM. Then H0(O) is isomorphic to Zm where m is the
number of connected components of O.

Let us now compute the rth homology group of a tetrahedron T and its boundary
BdT. Since Zr (T) = Zr (BdT) and Br (T) = Br (BdT) for r 6 1, we have
H0 (BdT) = H0 (T) and H1 (BdT) = H1 (T).

We have Z0 (T) = C0 (T). From Eq. (10) we also have:

z¼
X3

j¼0

ajpj 2B0ðT Þ ()9ðn0 . . .n5Þ 2Z6=

a0 ¼�n0�n1�n2

a1 ¼ n0�n3�n4

a2 ¼ n1þn3�n5

a3 ¼ n2þn4þn5

8>>>><
>>>>:

()
X3

j¼0

aj ¼ 0:

Let us define a surjective homomorphism f : Z0ðT Þ ! Z by:

f ða0p0 þ a1p1 þ a2p2 þ a3p3Þ ¼
X3

j¼0

aj:

We have ker f = f�1(0) = B0 (T). From the fundamental homomorphism theorem,
Z0 (T)/ker f is isomorphic to im f. Since im f ¼ Z, H0 (T) is isomorphic to Z and
H0 (BdT) is isomorphic to Z too.

Let us show that Z1 (T) = B1 (T). If z 2 B1 (T) then z can be written in the follow-
ing form [see Eq. (11)]:

z ¼ iððp1p2Þ � ðp0p2Þ þ ðp0p1ÞÞ þ jððp1p3Þ � ðp0p3Þ þ ðp0p1ÞÞ þ kððp2p3Þ
� ðp0p3Þ þ ðp0p2ÞÞ þ lððp2p3Þ � ðp1p3Þ þ ðp1p2ÞÞ: ð13Þ

On the other hand, if z 2 Z1 (T), then z can be written in the following form [see
Eq. (8)]:

z ¼ n0ðp0p1 þ p1p3 þ p3p0Þ þ n1ðp0p2 þ p2p3 þ p3p0Þ þ n3ðp1p2 þ p2p3 þ p3p1Þ:
ð14Þ

From Eqs. (13) and (14), we have, for z 2 Z1 (T):

z 2 B1ðT Þ () 9ði; j; k; lÞ 2 Z4=

ð1Þ iþ j ¼ n0;

ð2Þ j� l ¼ n0 � n3;

ð3Þ jþ k ¼ n0 þ n1;

ð4Þ � iþ k ¼ n1;

ð5Þk þ l ¼ n1 þ n3;

ð6Þ iþ l ¼ n3:

8>>>>>>>>><
>>>>>>>>>:

Since (5) = (4) + (6), (3) = (2) + (5), (2) = (3) � (5), the system is reduced to the
three following independent equations:
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z 2 B1ðT Þ () 9ði; j; k; lÞ 2 Z4=

j ¼ n0 � i;

k ¼ n1 þ i;

l ¼ n3 � i:

8><
>:

This system has an infinite number of solutions. Therefore, Z1 (T) ˝ B1 (T). Simi-
larly, we can show that B1 (T) ˝ Z1 (T) and therefore Z1 (T) = B1 (T). Thus
H1 (T) = Z1 (T)/Z1 (T) and so H1 (T) is isomorphic to {0}, as well as H1 (BdT).

From the previous section, we know that Z2 (BdT) is isomorphic to Z and
B2 (BdT) = {0}. Therefore, H2 (BdT) is isomorphic to Z. As for H2 (T) computation,
Z2 (T) is isomorphic to Z and B2 (T) is isomorphic to Z. Therefore, H2 (T) is isomor-
phic to {0}.

Table 1 summarizes the homology groups for a tetrahedron T and its boundary
BdT (@ means isomorphic to).

Simple tetrahedra, developed in Section 4, are defined in this paper using the con-
cept of a homotopy equivalence. Therefore, the following theorem gives the funda-
mental link between an homotopy equivalence and the homology group.

Theorem 9 ([10]). Let O1 be a TM included in another TM O2(O1 ˝ O2). If the

inclusion mapping i :O1 fi O2 is a homotopic equivalence, then it induces isomorphisms

ir* from the homology groups Hr(O1) to Hr(O2) for all r = 0, 1, 2, . . .
3.6. Relative homology

Similarly to the chain, cycle and boundary groups, it is possible to define relative
chain, cycle and boundary groups when a TM is included in another TM.

Definition 10 ([14]). Let O1 be a TM included in another TM O2 (O1 ˝ O2). The
relative chain group Cr (O2/O1) is defined as the following quotient group:

CrðO2=O1Þ ¼ CrðO2Þ=CrðO1Þ;
where a class of equivalence cr is the set of all the r-chains cr + kr (with kr a r-chain of
O1) of O2.

A generic element of Cr (O2/O1) will be denoted by c + Cr (O1).
Table 1
Homology groups Hr (T) and Hr (BdT)

TM Homology group

BdT H0ðBd T Þ ffi Z

H1 (BdT) @ {0}
H2ðBd T Þ ffi Z

Hr (BdT) @ {0} r > 2
T H0ðT Þ ffi Z

H1 (T) @ {0}
H2 (T) @ {0}
Hr (T) = {0} r > 2
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Then, we can define the following homomorphisms or : CrðO2=O1Þ !
Cr�1ðO2=O1Þ from the homomorphismn or :Cr (O2)fi Cr�1 (O2).

Definition 11 ([11]). Let O1 be a TM included in another TM O2 (O1 ˝ O2). The
mapping or : CrðO2=O1Þ ! Cr�1ðO2=O1Þ is the homomorphism defined by:

orðcþ CrðO1ÞÞ ¼ orðcÞ þ Cr�1ðO1Þ 8c 2 CrðO2Þ:

It can be shown that ororþ1 ¼ 0 and that im orþ1 � keror. From the homomor-
phism or, it is then possible to construct a relative group structure.

Definition 12 ([11]). Let O1 be a TM included in a TM O2. The relative homology

groups Hr (O2/O1) are defined by:

HrðO2=O1Þ ¼ ZrðO2=O1Þ=BrðO2=O1Þ ¼ f½z� j z 2 ZrðO2=O1Þg;
where:

� ZrðO2=O1Þ ¼ ker or are the relative cycle groups (where a chain z is a relative cycle
if and only if orz ¼ 0),

� BrðO2=O1Þ ¼ im orþ1 are the relative boundary groups.

The relative homology groups allow for the construction of an exact sequence. A
sequence of groups Gi and homomorphisms wi :Gi fi Gi�1 with i = 2,. . . is called an
exact sequence if imwi = kerwi�1.

Theorem 13. ([11]) Let O1 be a TM included in a TM O2. Let us consider:

� the homomorphisms ir* :Hr(O1) fi Hr(O2) induced by the inclusion mapping

i(v) = v for all v 2 O1,

� the homomorphisms jr* :Hr(O2) fi Hr(O2/O1) induced by the canonical homomor-

phisms jr :Cr(O2) fi Cr(O2/O1) (defined by "c 2 Cr(O2),jr(c) = c + Cr(O1)
2),

i.e., such that jr*([zr]) = [jr(zr)],
� the homomorphisms or* :Hr(O2/O1) fi Hr�1(O1), defined by or*(h) = or (c) +

Br � 1(O1), for h = z + Br(O2/O1) and z = c + Cr(O1) such that c 2 Cr(O2),

or(c) 2 Cr�1(O1) or or (c) = 0.

The following sequence of groups and homomorphisms (called an homology sequence)

� � �!ir�HrðO2Þ!jr�HrðO2=O1Þ!or�Hr�1ðO1Þ!ir�1�Hr�1ðO2Þ!jr�1� � � �!i0�H 0ðO2Þ is

exact.

The following theorem is also an important topological result and will be used in
Section 4.

Theorem 14 ([11]). Let OK be a TM, let OL be a TM included in OK, let OK1
be a TM

included in OK such that OK1
contains (OK � OL) and let OL1 be a TM corresponding to
2 Note that we have 8r; jr�1or ¼ orjr.
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the union of the shared simplexes of OK1
with OL. The relative homology groups

HrðOK1
=OL1Þ are isomorphic to the relative homology groups Hr(OK/OL) for all r.

From these results, we are now able to prove a characterization of a simple
tetrahedron.
4. Characterization of a simple tetrahedron

As stated in the Section 1, Definition 1 of a simple tetrahedron cannot be used
directly, since the condition is difficult to check. For voxel and cellular complex rep-
resentations, the simplest local characterization consists in counting the connected
components in the neighborhood of the considered point. In the following, we ex-
tend this notion to a TM by using the properties of the homology and relative
homology groups of a TM to find a local characterization of simple tetrahedra.

The following theorem is the major result of this paper.

Theorem 15. Let T be a tetrahedron and O a connected set of tetrahedra such that

O [ T is connected. The tetrahedron T is simple if and only if both the attachment set

BdsT of T and the complement BdbT of that set in the boundary of T are non-empty and

connected.
Proof. (1) Let us first show that if O [ T is connected and both the attachment set
BdsT of T and its complement BdbT in BdT are non-empty and connected, then the
inclusion mapping i :O fi O [ T is a homotopy equivalence.

Since BdbT is non-empty, at least one of the four faces of T is not in BdsT.
3 Let X

be the union of the other three faces of T. The tetrahedron T can be continuously
deformed until it collapses onto X.

Now BdsT (which is included in X) and X are connected subsets of BdT that have
non-empty and connected complements in BdT. It follows that X can be
continuously deformed in BdsT. Thus the tetrahedron T can be continuously
deformed in BdsT. Hence the inclusion mapping is a homotopy equivalence, and T is
simple.

(2) Let us now show that if the inclusion mapping i :O fi O [ T is a homotopy
equivalence and O [ T is connected, then both the attachment set BdsT of T and its
complement BdbT in BdT are non-empty and connected. This part of the proof is
less simple and uses the results of Section 3.

Since the inclusion mapping i :O fi O [ T is a homotopy equivalence, from
Theorem 9, it induces an isomorphism i* between the homology groups Hr (O) and
Hr (O [ T) for all r = 0, 1 , 2, . . .

Since the set O [ T is connected, we have H0ðO [ T Þ ffi Z (cf. Theorem 8). Also,
we know that the homology sequence of O [ T and O is exact (cf. Theorem 13).
3 Indeed, if all four faces of T were in BdsT, then from the definition of shared simplexes, all the sub-
simplexes of the faces were shared too, and BdbT would be empty. If follows that BdbT cannot contain
only an edge or a vertex.
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More precisely, the sequence � � �!ir�HrðO [ T Þ!jr�HrðO [ T=OÞ!or�Hr�1

ðOÞ!ir�1�Hr�1ðO [ T Þ!jr�1� � � �!i0�H0ðO [ T Þ is exact.
Since the mappings ir* :Hr (O)fi Hr (O [ T) are isomorphisms (cf. Theorem 9), we

have ker ir* = {0}. Since imor* = ker ir�1*(exact homology sequence), we have
Hr (O [ T/O) = {0} for all r.

Let us now use the notations of Theorem 14 and setOK = O [ T,OL = O,OK1
¼ T .

Since O [ T is connected, OK1
¼ T contains O [ T � O. We have OL1 ¼ Bds T . Thus,

applying Theorem 14, we can deduce that the homology groups Hr (O [ T/O) and
Hr (T/BdsT) are isomorphic for all r. It follows that Hr (T/BdsT) = {0} for all r.

Let us now consider the homology homomorphisms ir* :Hr (BdsT)fi Hr (T) for all
r = 0, 1 , 2, . . . induced by the inclusion mapping i :Bds T fi T. Since BdsT ˝ T, the
homology sequence � � �!ir�HrðT Þ!jr�HrðT=BdsT Þ!or�Hr�1ðBds T Þ!ir�1�Hr�1ðT Þ
!jr�1� � � �!i0�H0ðT Þ is exact.

Since Hr (T/BdsT) = {0}, imor* = {0} and ker jr* = Hr (T). Since the sequence is
exact, we have imor* = ker ir � 1* = {0}.

We candeduce from this that the homomorphisms ir* are also isomorphisms for all r.
Since:

� Hr (T) = {0} for all r „ 0 (cf. Table 1),
� H0 (T) is isomorphic to Z (cf. Table 1),
� ir* is an isomorphism for all r,

Hr (BdsT) is isomorphic to {0} for all r „ 0 and H0 (BdsT) is isomorphic to Z.
In conclusion:

� since O [ T is connected, BdsT is non-empty;
� since H0 (BdsT) is isomorphic to Z, BdsT is connected (cf. Theorem 8);
� since H2 (BdsT) = Z2 (BdsT) is isomorphic to {0}, there is no linear combina-

tion of the faces of BdsT such that its boundary is null; since H2 (BdT) =
Z2 (BdT) is isomorphic to Z (cf. Table 1), it is possible to build a linear com-
bination of the faces of BdT such that its boundary is null; and since Bds
T ˝ BdT, there exists at least one face of BdT in BdbT, so BdbT is non-
empty;

� since BdsT is a polyhedron in BdT (because BdsT is connected) and every closed
curve of BdsT is a border of an element of dimension 2 in BdsT (since
H1 (BdsT) = {0}), BdbT is connected.

Three illustrations of Theorem 15 are given in Fig. 6:

� (a) BdsT = {(a,b, c) [ (c,d)}; T is simple, because both the attachment set of T
and its complement in the boundary of T are non-empty and connected;

� (b) BdsT = {(a) [ (c,d)}; T is non-simple because its attachment set is not
connected;

� (c) BdsT = {(a,b) [ (a,c) [ (b,c,d)}; T is non-simple: although its attachment set
is connected, its complement in the boundary of T is not connected.



Fig. 6. T is a tetrahedron with vertices (a,b,c,d). The neighborhood N (T) of T is shown on the left and its
attachment set BdsT is shown on the right.
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It should be noted that in the case of voxels, Kong [10] has shown that if N (T) is
connected then the attachment set BdsT is also connected, which simplifies the
characterization. Saha and Majumber [15] have shown that this condition is not



Fig. 7. N (T) = {T,T1,T2} is connected but BdsT, which contains only the two shared vertices to T and T1

and T2, respectively, is not connected.
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sufficient in the case of tetrahedra. In fact, Fig. 7 is a counter example in which N (T)
is connected and BdsT is not. h
5. Homotopic tetrahedral mesh labeling

As an illustration of our main result, this section addresses the problem of gener-
ating 3D finite element (FE) from MRI voxel datasets for applications in brain imag-
ing, such as the one mentioned in introduction, i.e., constructing a realistic model of
the head and head tissues for solving the forward and inverse problems in EEG and
MEG (see Fig. 3). We describe in this section a meshing method that leads to tetra-
hedral 3D meshes with well-defined geometric and topological properties. Our algo-
rithm is based on a recursive decomposition of a segmented volume into congruent
tetrahedra called almost regular tetrahedrization of R3 (ART) [16] followed by a
mesh labeling procedure under topological constraints. More details can be found
in [17]. Although our local characterization could have been incorporated in advanc-
ing front approaches (see e.g., [18–21]), it would have been more difficult to guaran-
tee good geometrical properties and would need surface descriptions of the brain
structures, which are difficult to obtain with the required topology. Therefore, we
rather rely on subdivision approaches.

5.1. From a segmented image to an ART

Irregularly shaped tetrahedra cause numerical computation instabilities in finite ele-
ment methods. Ideally, a FE tetrahedral mesh should consist entirely of equilateral tet-
rahedra. Unlike in two dimensions, there exists no canonical regular tetrahedrization
since one cannot partition R3 with equilateral tetrahedra. In a previous work [22], we
have shown that introducing the notion of invariance under subdivision of a tetrahe-



Fig. 8. Subdivision of a tetrahedron K.
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dron allows to partition R3 with almost regular tetrahedra. More precisely, if a tetra-
hedron is split into eight tetrahedra by halving the edges as indicated in Fig. 8, there
exists anEuclideanmapping4 between the vertices of every pair of the small tetrahedra.

We proved that an ART based on tetrahedra which are invariant under subdivi-
sion has the following connectivity:

� it has a 4-connectivity for the faces, 18 for the edges and 70 for the vertices;
� each vertex is shared by 24 tetrahedra.

For the sake of stability of any FE computation carried out with tetrahedral ele-
ments, the tetrahedra should satisfy some quality criteria. Without error estimator of
the problem to be solved, a quality criterion based on the geometric aspect of a tet-
rahedron is often used. Among all the possible quality measures [23,24], we use the
following one:

QT a
¼ a

hmax

qT
¼ a

hmaxST

3V T
; ð15Þ
4 A mapping M so that for all x of R3 M (x) = BÆx + b with B 2 R3 	 R3 and b 2 R3 is called an
Euclidean transformation if and only if BÆBt = Id and M is a one-to-one mapping from R3 to R3.
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where hmax is the largest side of the tetrahedron T, qT is the radius of the inscribed
sphere of T, ST is the sum of the area Si of each face of T, and a is a normalization
coefficient to ensure a quality equal to one for an equilateral tetrahedron
ða ¼

ffiffiffi
6

p
=12Þ.

Thus, as shown in [22], the following tetrahedron T *, invariant under subdivision,
has the best quality (the closest to one):

T � ¼
0

0

0

0
B@

1
CA;

1

0

0

0
B@

1
CA;

1
3

2
ffiffi
2

p

3

0

0
B@

1
CA;

2
3ffiffi
2

p

3
2
3

0
B@

1
CA

8><
>:

9>=
>;: ð16Þ
From the center of the domain of interest, we define 24 tetrahedra based on T* shar-
ing this center, which are then recursively subdivided to partition the space at the
desired resolution.

An ART mesh based on a segmented image can be split into two distinct parts.
The first part describes the geometric structure of the volume mesh and consists of
all the ART tetrahedra. Once the geometric construction of an ART is achieved, the
labeling of the tetrahedra from a segmented image is only possible if we can com-
pute the proportion of each segmented object in each tetrahedron. By doing so,
we can affect the best label object to each tetrahedron (see next subsection). There-
fore, the second part consists of the vectors of proportions of each object in each
tetrahedron of the ART mesh. Thus, we obtain a discrete image based on
tetrahedra.

The segmentation step is outside the scope of this paper, but details can be found
in [17,25].

An example of ART construction at different resolutions is shown in Fig. 9.

5.2. Homotopic labeling

In this section, we introduce the homotopic labeling algorithm of an ART mesh.
This algorithm uses two main functions:

� initial model: this function is used to build the initial model which will then be
deformed. The topology of the initial model will be preserved during the
deformations.

� selection criterion: the choice of the tetrahedra which must be modified is done
using this function. It allows to guide the deformations towards the desired solu-
tion. First, this criterion selects only the simple tetrahedra based on our local
characterization (Section 4). This selection guarantees the topology of the model
during the labeling procedure. Moreover, the selection criterion is based on two
thresholds (lT et lN) and a Boolean lmax. The threshold lT allows for the evo-
lution of the model with respect to the proportion of each object in each tetra-
hedron. The threshold lN allows for the evolution of the model with respect to
the proportion of the tissue in the half, at least, of the neighbors by face of a



Fig. 9. Successive subdivisions of an ART (only one slice of the 3D volume is shown).
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given tetrahedron. Finally, lmax allows the evolution of the model with respect
to the proportion of each object in the ongoing labeling. This Boolean is true if
the object proportion, in the current labeling, is maximum compared to the pro-
portion of the other tissues. Considering neighbors by faces is a restriction (a
sub-case) with respect to our characterization, and leaves aside some simple tet-
rahedra. However, it reduces the number of tetrahedra to be checked, and it
leads to more regular meshes, better adapted to the needs of finite element
methods.

It is well known that a topology of interwoven spheres [26,27] is a good approx-
imation of the topology of head tissues (brain, skull, and scalp). Therefore, it is nec-
essary to use the homotopic labeling during the meshing process to impose the result
of the topology.

The labeling algorithm is applied sequentially on the different objects. First, the
algorithm is initialized from a connected object of the interior of the brain. This con-
nected object is simply a tetrahedron labeled as brain. The selection of the tetrahe-
dra, initially in the background, to be modified (i.e., to be added to the brain) is
Fig. 10. Homotopic labeling of the brain. Simple tetrahedra are shown in black (superimposed on the
head segmentation). A 3D rendering, and axial, frontal, and sagittal slices are shown (from left to right, in
each row).
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done by analyzing the simple tetrahedra belonging to the brain and the neighbors by
face which have a proportion of brain tissue greater than the threshold lT. The mod-
el does not evolve anymore when the total number of tetrahedra having a proportion
of the brain greater than the threshold lT defined in the tetrahedron selection is
reached, or when there are no more simple tetrahedra. At the end of this labeling
procedure, we obtain a connected object representing the meshed brain. This object
does not contain any cavity or tunnel and is homeomorphic to a sphere. This process
is illustrated in Fig. 10.

To get the interface for the skull, we consider the union of the skull with the brain
as one connected component. Therefore, the connected object obtained for the brain
before forms the initial model for the labeling procedure of the skull. The deforma-
tion algorithm of the skull detects the simple tetrahedra of the background using the
threshold lT which corresponds to the threshold of the proportion of the skull in the
simple tetrahedra, the maximal proportion of the skull lmax and the threshold lN
which corresponds to the proportion of the skull in the neighbors by face of the sim-
ple tetrahedra.

Similarly, we consider the union of brain, skull, and scalp as one connected com-
ponent for the labeling of the scalp and we apply the same labeling algorithm based
on our selection criterion.
Fig. 11. A 3D representation of an homotopic ART mesh of the head tissues. (A) Skull and brain; (B)
scalp and superimposition of all three meshes.
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Fig. 11 shows a 3D representation of an homotopic labeling based on an ART
mesh of the head tissues.

More details about the choice of the parameters can be found in [17,28,22]. Typ-
ical values are lT = 0.8 and lN = 0.6 to guarantee that the labeled meshed is closed
to the segmentation results.
6. Conclusion and perspectives

In this paper, we have proved a new characterization of simple elements in a tet-
rahedral mesh, based on homology theory. Many concepts in this paper depend only
on the fact that tetrahedra are convex. Therefore, they can be generalized to repre-
sentations composed of convex polyhedra.

This characterization applies for one object and the background. Future work
aims at extending the characterization to the case of several objects [29,30]. An ap-
proach similar to the one developed in [8] for cellular complexes could be investi-
gated too.

From this characterization, we derived a homotopic labeling procedure, and de-
scribed a method to generate 3D meshes from medical voxels datasets. These meshes
are targeted towards applications in the finite element method. Previous approaches
[31] required the formation of boundaries and well-defined polyhedral objects which
are hard to generate from medical image datasets. Moreover, we can find stability
problems of these algorithms applied to highly non-convex objects in the brain.
By spatial decomposition into ART of the voxels datasets followed by an homotopic
labeling of the ART, we could derive a numerically stable algorithm for the genera-
tion of tetrahedral grids. Our primary goal is to construct electromagnetic FE mod-
els of the head. These meshes can be used for a number of applications including
brain damages mechanical FE models, growth processes in the brain, or irradiation
in tumor therapy.
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