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Abstract

Scene interpretation guided by a generic model benefits from structural representations of objects and their spatial relationships. 
In this paper, we consider nested conceptual graphs for encoding objects and groups of objects, spatial relationships between 
objects or between groups of objects, along with the imprecision and uncertainty attached to the formal representations of such 
relationships. Scene interpretation is then formalized as a graph homomorphism problem for the identification of possibly multiple 
instances of the model in an image. We propose an extension of fuzzy constraint satisfaction problems (FCSP) to deal with complex 
objects. In particular, we extend FCSP arc-consistency checking to deal with groups of objects which can be related among them 
or have a spatial property such as being aligned. The instantiations of the model in the image are obtained by solving a FCSP. 
This framework is illustrated on the example of interpretation of Earth observation images. A method is proposed to find the 
instantiations of a nested conceptual graph, representing a generic model of the scene (such as harbor or airport) in an unlabeled 
image. Experimental results on high resolution satellite images show that the proposed approach successfully recognizes a given 
spatial configuration and is robust to image segmentation errors. The results demonstrate the interest of using complex spatial 
relations for the interpretation of images.
© 2014 Elsevier B.V. All rights reserved.
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1. Introduction

Image interpretation consists in recognizing different objects which compose a scene, understanding their spatial 
organization, and providing a description of this scene and a semantic labeling of the image. To interpret an image it 
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is necessary to use information within the image, but also contextual information relevant to the interpretation task. 
The contextual information should allow us to answer questions such as: which are the objects of interest? How to 
identify these objects or their parts? And how are these objects or parts related? This information depends on the 
domain, the objective of the description and the application. Thus when performing an automatic image interpretation 
a knowledge representation system should be developed. In this system we should be capable of encoding information 
about objects, spatial relations between objects or object parts, extraction algorithms, etc.

In this paper we focus on the interpretation of very high resolution Earth observation images, as an illustration. 
These images contain a large amount of information. They are the outcome of the combination of many different inten-
sities that can represent natural concepts such as vegetation, geomorphological and hydrological concepts, man-made 
objects such as buildings and roads, and artifacts caused by variations in illumination of the terrain, such as shad-
ows [43]. This large quantity of information allows the description of the images at different conceptual levels [23]:

• individual objects, for instance a house, a tree, a road segment,
• land cover type, for instance water, bare land, vegetation,
• complex or composite objects, which are new semantic objects formed by several spatially related individual 

objects, for instance airports, harbors, train stations, nuclear power plants, toll gates, stadiums, etc.

The conceptual level used to describe the image depends on the objective of the description as well as the resolu-
tion of the image. Moreover, Earth observation images contain objects of different sizes, which makes it unfeasible 
to analyze all the concepts of the image at the same scale. For instance, a building can be identified at a very high 
resolution using its shape, a city is better identified at a lower resolution as a texture. Therefore, according to the level 
of concept we are interested in, we should choose an appropriate scale of observation. In this work we concentrate on 
the interpretation of complex objects. One of the difficulties of this task lies in determining the important details to 
extract the objects which compose complex objects. Objects belonging to the same complex object can be observable 
at different scales. Furthermore, some objects in a complex scene cannot always be recognized with traditional meth-
ods using spectral and textural features. They often require the recognition of other objects having a spatial relation 
with them, and then use the spatial relation to identify them. Hence the spatial relations and the spatial arrangements 
of objects and of complex objects and their parts in the scene are of prime importance for the recognition of complex 
objects. Another difficulty encountered in the interpretation of complex objects is that the spatial arrangements can be 
expressed as complex relationships, i.e. spatial relations that are not necessarily expressed between two objects but 
between a group of objects and an object, or groups of objects having a spatial property, such as alignment. Hence, 
the interpretation method should be able to encode these complex relationships and deal with them.

In this work we propose a method to identify complex objects in an Earth observation image. We make use of 
knowledge on the spatial structure of the complex objects to guide their identification in the image. We describe a 
complex object through a nested conceptual graph. This model allows the representation of spatial information of the 
complex object, including complex spatial relationships. We assume that the image is already segmented and we only 
concentrate on the problem of labeling the regions according to the knowledge and information supplied by the model.

We formulate the problem of labeling the image regions as a homomorphism from the model to the image regions. 
Modeling the problem as a homomorphism permits to map the model to several regions of the image (several instan-
tiations), and thus account for uncertainty within the model. By uncertainty in the model we mean that even if all the 
objects in the model appear in the image, we are not certain about the number of instantiations. For instance in a har-
bor, a dock can have none, one or several boats adjacent to it. This type of uncertainty is present in Earth observation 
images. Moreover, when a model is used to represent the spatial arrangement of the objects that should appear in the 
scene, other types of information imperfections can be present:

• Imprecision on spatial relations. Many spatial relations can be imprecise by nature. Their satisfaction depends on 
the context or even on the size of the objects. For instance the relation near has a different interpretation according 
to the size of the reference object: the distance used to determine whether a building is near an airport is different 
from the one used to determine whether a building is near a tree.

• Uncertainty with labeling objects in the image. When labeling the objects in the image after a segmentation, labels 
may be uncertain.
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• Imprecision on the objects in the image. This can be due to different causes, such as the discretization of space 
(passing from a continuous scene to a digital image), or the processing methods (e.g. segmentation).

We express the problem of finding a graph homomorphism as a Fuzzy Constraint Satisfaction Problem (FCSP). 
Using a FCSP allows us to consider the different sources of imperfections. The imprecision of spatial relations is 
dealt by modeling the spatial relations as fuzzy relations which are handled by FCSP. The other two types of informa-
tion imperfections are modeled by using fuzzy membership functions (that consider information from the model) to 
perform an initial labeling of the objects in the image.

The main two contributions of this paper are (i) an interpretation method that starts from an unlabeled segmented 
image (possibly imprecisely and inaccurately segmented) and exploits knowledge about the scene to be recognized, 
and (ii) translate the problem as a FCSP and adapt the FCSP formalism to deal with complex spatial relations. The 
proposed framework was developed in [44].

We formulate the problem of image interpretation within the framework of Knowledge Based Systems (KBS). In 
Section 2, we introduce KBS, their use in image interpretation, and discuss the choice of the proposed method. In 
Section 3, we discuss nested conceptual graphs and their representation capabilities. In Section 4 we explain how the 
proposed problem can be represented as a Fuzzy CSP. The FCSP formalism has to be extended in order to allow the 
representation of embedded information, which is done in Section 5. Finally in Section 6, we illustrate the proposed 
method on two examples.

2. Knowledge Based Systems (KBS) for image interpretation

The important role played by knowledge in image interpretation explains the large development of KBS’s in this 
domain. A review of such systems can be found in [13,27,43]. KBS’s are inspired by human reasoning, and consist in 
representing and modeling the knowledge relative to a domain. Their objective is to reason on this knowledge in order 
to solve a concrete problem, such as identification, recognition, classification, diagnosis, configuration and planning, 
among others [27]. These systems are usually composed of three parts: the knowledge base, the observation base and 
the reasoning components.

For image interpretation, the knowledge base is typically composed of three types of knowledge:

• Image processing knowledge: it is used to extract low level features from the image and their numerical descrip-
tions, so that they can help identifying objects of interest in the image.

• Domain knowledge: it concerns knowledge about the semantics of the domain of the image.
• Knowledge about the mapping between image features and concepts: it establishes the link between the two 

previous types of knowledge. It concerns the knowledge used to map low level features and high level concepts 
related to the domain of interest. This mapping problem is also known as the semantic gap [26,41].

Image interpretation requires reasoning strategies which can deal with information imperfections. In the following, 
we review some methods for reasoning under uncertainty in the spatial domain. We discuss the reasoning aspects and 
how imperfections are represented.

Image interpretation methods can be divided into two strategies. In the first one, an image segmentation is per-
formed followed by a labeling, i.e. mapping image regions into concepts of a model. In the second one, the segmen-
tation and interpretation are performed simultaneously.

2.1. Segmentation followed by labeling

When following this strategy one should consider uncertainty when assigning a label to an image region. In
[24,29,35,39,47] an initial labeling of the regions is performed, and spatial relations are used to refine this label-
ing or to extract the objects of interest. For instance in [39] an initial membership degree is assigned to each region, 
representing a specific concept according to a classification score. The relabeling is improved by considering the bi-
nary spatial relations between concepts. Each relation is modeled as a fuzzy spatial relation. The spatial information 
is injected into a fuzzy constraint satisfaction problem, where the spatial relations represent the constraints, the con-
cepts, the variables, and the domain of the variables is constituted by the image regions. This approach assumes that 
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the initial segmentation is correct, which is very restrictive because usually a generic segmentation does not allow 
discriminating between objects belonging to different semantic concepts. For instance, the roof of a building is more 
homogeneous than a forest when observed in a satellite image. Thus the object of interest can be divided into several 
regions or two objects can be included in the same region. To overcome the problems raised by a generic segmen-
tation it is possible to: (i) include high level knowledge in the segmentation, (ii) use a multi-scale segmentation or 
(iii) consider an over-segmentation of the image where a concept of the model is represented by several regions. The 
first possibility is discussed in the next section, describing joint image segmentation and mapping systems. The multi-
scale segmentation approach is widely used in OBIA (Object Based Image Analysis) methods [2,29,33,40]. The main 
issue is to label relevant regions and to discard those not corresponding to objects, by exploiting the different scales. 
This labeling may rely on object properties and crisp spatial relations using rules as in [29], or neighboring regions as 
in [24]. These approaches illustrate the importance of considering spatial relations and uncertainty.

Finally the last possibility to get around the problems of generic segmentation is to perform an over-segmentation 
of the image. By performing an over-segmentation, the correspondence between the model and the regions of the 
image is not one to one, but a group of regions can represent an instantiation of a concept. This approach was studied 
in [15,16,37].

2.2. Joint image segmentation and mapping

In [6,9,34] the segmentation and interpretation problems are addressed simultaneously, and the information from 
the spatial relations is directly used to help the segmentation process. The authors applied this approach to the inter-
pretation of medical images, which can have a high variability. In [6,9], the interpretation starts with the segmentation 
of an anatomical structure which is relatively easy to identify. For instance in magnetic resonance images of the brain 
the right and left lateral ventricules are easy to segment due to their high contrast with the neighboring structures. Then 
the method searches another anatomical structure using its geometric properties and the spatial relations with the pre-
viously recognized structures. This method is performed sequentially. A strategy to optimize the order of recognition 
is proposed in [21]. In [34], the problem is expressed as a Constraint Satisfaction Network, encoding anatomical struc-
tures and relations. Propagators are defined for each relation, and iteratively applied to reduce the domains of each 
variable (i.e. anatomical structure to be recognized). This global approach provides upper and lower bounds of each 
structure, which are close to the desired result, and in which a precise segmentation is then performed.

The methods following the strategy of jointly segmenting and interpreting the image are innovative in the sense 
that they use spatial relations as another source of information to guide the segmentation and not only to verify it. 
Moreover, they account for imprecision of spatial relations as well as imprecision of objects in the image.

2.3. Discussion and proposed framework

When dealing with Earth observation images, the two strategies described above have pros and cons, that led us 
to propose an intermediate solution. Two strong characteristics of several model-based methods are the use of spatial 
relations between the objects and the modeling of different types of information imperfections. They will be also 
characteristics of the proposed approach.

The methods which perform jointly segmentation and interpretation are not directly confronted with the problem 
of correctly labeling a region. Moreover, these methods yield better results than the ones which separate the problem 
into segmentation followed by interpretation, because all the spatial information as well as the geometry and intensity 
are considered for making the decision, i.e. segment and recognize a structure. These types of methods have been 
applied for instance to the interpretation of brain and thorax images, which are strongly structured scenes and for 
which prior knowledge about the expected objects is available. Hence, it is possible to construct models containing 
all the structures that appear in the scene (the case of pathologies can be included in the model too [1]), as well as the 
relations between them, and therefore allow a very constrained formulation of the problem.

As mentioned in Section 1, in Earth observation images there is uncertainty with respect to the model. Thus if we 
try to formulate the interpretation problem using a similar approach as in [6,9,34], it may happen that, for a given 
object in the model, the region of space which represents the conjunction of the relations that should be satisfied 
by this object, according to the model, is not sufficiently restricted to contribute to the segmentation of the object. 
Additionally, multiple instances are difficult to handle.
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Fig. 1. Proposed method for determining the model’s instantiations.

The methods which perform an over-segmentation of the image, and use spatial reasoning to bring together re-
gions to form objects, also need a very constrained formulation of the model. Furthermore they usually have a high 
computational cost.

We propose an intermediate solution which combines several interesting characteristics of previous approaches. 
Fig. 1 illustrates the main ideas of our proposed method. First a multi-scale segmentation provides candidates for 
objects in the scene. Several methods can be used for this step, which is out of the scope of this paper. Since none of 
them provides perfect results, we define membership functions over the set of regions for each object in the model, 
as in [39]. These membership functions are designed using information from a classification procedure or knowledge 
about the radiometry of objects in the images. Using fuzzy spatial relations we identify the different concepts in the 
model. The problem is formalized as a Fuzzy Constraint Satisfaction Problem, which is the main contribution of this 
paper. We use an arc-consistency algorithm to reduce the number of possible regions that can be part of an instantiation 
of the model, and finally we find the instantiations.

3. Structural model

The model used to represent the scene has to be flexible enough in order to allow the representation of the following 
spatial situations which are frequent in Earth observation images:

S1. Two or more objects satisfying a spatial relation. For example, a “fountain between a road and a house”. Note 
that spatial relations can have any arity.

S2. A group of objects satisfying a spatial relation with another object, with potential relations among the members 
of the group. This allows the representation of situations such as “a house adjacent to a road”, and “the house has 
a shadow”.
In this situation it is necessary to consider the house and the shadow as a group because we do not know in 
advance whether the shadow can fall onto the road or not. Thus if we consider the house and the shadow as a 
group we only need to specify that the group is adjacent to the road without worrying about the exact relations 
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between the house, its shadow and the road (i.e. the house and the road may appear as adjacent or not in the image 
depending on the position of the shadow).

S3. A group of objects, as in situation S2, but the group has also a spatial property which characterizes the group, 
for example, a road parallel to a group of aligned trees or a group of houses surrounding a park. In this case the 
difficulty comes from the fact that the number of objects is unknown.

3.1. Conceptual graphs and nested conceptual graphs

We propose to build the model on the notion of conceptual graph, to represent adequately the situations S1–S3
described above. Conceptual graphs, introduced in [42], allow us to represent the first type of spatial situation (S1). 
Conceptual graphs are built over a vocabulary V = {(TC, ≤C), (TR, ≤R), I }, where TC and TR correspond to the 
ontologies representing the set of concepts and relations of the domain, and ≤C and ≤R their respective ordering 
relation. The set I , which corresponds to a set of names, called individual markers, is used to denote specific objects 
or entities.

Definition 1 (Conceptual Graph (CG)). (See [7].) A conceptual graph is a bipartite graph denoted by G =
{ÑC, NR, E, ̃l} where:

• ÑC and NR are the concept node and the relation node sets, respectively. The set of nodes of G is equal to 
ÑC ∪NR ,

• E is the family of edges,
• l̃ is a labeling function of the nodes and edges of G which satisfies:

– a concept node c ∈ ÑC is labeled by l̃(c) = (type(c), marker(c)), where type(c) ∈ TC , marker(c) ∈ I ∪ {∗}, 
and ∗ denotes a generic marker;

– a relation node r ∈NR is labeled by l̃(r) ∈ TR . l̃(r) is also called the type of r and is denoted by type(r);
– the degree of a relation node r is equal to the arity of type(r);
– edges incident to a relation node r are totally ordered and they are labeled from 1 to arity(type(r)).

This definition of conceptual graphs allows us to represent relations of any arity between the concept nodes, and 
thus the spatial situation S1. The set I is used to represent specific instantiations of the concepts. However, if we do 
not want to specify a particular instantiation, then it is possible to use the generic marker ∗. These types of graphs are 
appropriate to represent spatial relations between objects. However, they cannot represent hierarchically structured 
knowledge.

In [42] conceptual graphs were extended to nested conceptual graphs to allow the representation of internal and ex-
ternal information, zooming, partial description of an entity, or specific contexts. In a nested concept graph, the concept 
nodes can contain a conceptual graph. This formalism allows the representation of the spatial situations S2 and S3.

We will refer to nodes which contain a conceptual graph as complex concept nodes. To specify that a node is a 
complex concept node, a third field is added to each conceptual node, called description. Concept nodes which are 
not complex will have an empty description field, denoted by ∗∗.

Definition 2 (Nested Conceptual Graph (NCG)). A nested conceptual graph is a bipartite graph denoted by G =
{NC, NR, E, l} where:

• NC and NR are the concept node and the relation node sets, respectively. The set of nodes of G is equal to 
NC ∪NR ,

• E is the family of edges,
• l is a labeling function of the nodes and edges of G which satisfies:

– a concept node c ∈ NC is labeled by l(c) = (type(c), marker(c), description(c)), where type(c) ∈ TC , 
marker(c) ∈ I ∪ {∗} and description(c) ∈ {∗∗} ∪ Desc, where Desc is a set containing the labels of the de-
scriptions;

– a relation node r ∈NR is labeled by l(r) ∈ TR ;
– edges incident to a relation node r are totally ordered and they are labeled from 1 to arity(type(r)).
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Fig. 2. Examples of nested conceptual graphs. Concept nodes are represented by rectangles and relation nodes by ellipses.

The set of complex concept nodes of a conceptual graph is denoted by D(G). The nodes inside a complex concept 
node are called child nodes. A nested conceptual graph can be recursively defined from a basic conceptual graph 
(Definition 1) by adding the description field to the labeling of the concept nodes. Another representation for nested 
conceptual graphs is a tree of basic conceptual graphs (see [7] for more details). The label of a simple node c is written 
as type(c) : marker(c), and for simplicity, when the marker of a node is the generic marker ∗ then we just label it as 
type(c).

To represent relations between objects inside a complex concept node and concept nodes outside it, we can use a 
coreference concept. Coreference concepts represent two concepts which are equivalent and represent the same entity, 
and they are joined by a coreference link. The use of coreference concepts is important since the knowledge inside the 
complex node is contextualized by the hierarchical structure representing the group. For instance, Fig. 2(a) represents 
a house with its shadow as a group (the group is drawn as a box) which is near a road. The additional information that 
the house is between a green zone and a parking area is encoded by a coreference link (drawn as a dotted line).

We represent the groups endowed with a spatial property (spatial situation S3), as a complex concept node 
with the description explaining the spatial property. For instance, Fig. 2(b) represents a group of trees where the 
trees are arranged in a line, and we represent this property by adding the description “Aligned group” to the com-
plex concept node. In the NCG the group is parallel to a road. To represent that there are different elements 
(different instances of tree) we use a different marker to label each element. In [46] the spatial situation of ob-
jects being arranged in a line is studied and a measure to determine whether a group satisfies this property is 
proposed. For simplicity we will refer to the objects arranged in a line as “group of aligned objects”. More-
over, in this complex concept node we also represent the distance relation between the neighboring objects of the 
group.

3.2. Conceptual graph homomorphism

Nested conceptual graphs are not only appropriate to represent the spatial information used to describe the image, 
but also their reasoning mechanism is appropriate for dealing with the characteristics of Earth observation images. 
Reasoning in concept graphs is usually done through graph homomorphism. A conceptual graph homomorphism is 
defined in the following way.

Definition 3 (Conceptual graph homomorphism). (See [7].) Let GT = (NCT
, NRT

, ET , lT ) and GH = (NCH
, NRH

,

EH , lH ) be two conceptual graphs defined over the same vocabulary V = {(TC, ≤C), (TR, ≤R), I }. A homomorphism 
φ from GT to GH is a mapping from NCT

∪NRT
to NCH

∪NRH
, which satisfies:

• ∀(r, i, c) ∈ ET , (φ(r), i, φ(c)) ∈ EH ,
• ∀eC ∈ NCT

, lH (φ(eC)) ≤C lT (eC), and
• ∀eR ∈ NCR

, lH (φ(eR)) ≤R lT (eR),

where (r, i, c) ∈ E represents the edge labeled i between a relation r and a concept c, which means that c is the i-th 
argument of r . This definition implies that the homomorphism preserves the edges and may decrease concept and 
relation labels according to ≤C and ≤R , respectively.
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Fig. 3. Excerpt of the spatial relation hierarchy [25].

Using graph homomorphisms allows one graph model to be mapped to several instantiations in the image. Further-
more, we can represent a group of aligned objects, where the number of objects in the alignment is unknown, as a 
complex concept node with only three concept objects, because there is a homomorphism between an aligned group 
of objects with three elements and an aligned group containing more elements.

To find a graph homomorphism there are several algorithmic possibilities (see [7] for a review). One possibility is 
to express the problem as a Constraint Satisfaction Problem (CSP), where the relations represent the constraints, the 
concept nodes represent the variables of the CSP, and the values of the CSP are the regions of the image. Here we 
propose to use Fuzzy Constraint Satisfaction Problems (FCSP) to account for the information imperfections that we 
want to consider in our problem. FCSPs are introduced in Section 4.

3.3. Vocabulary

The vocabulary is composed of three parts: concept, relation hierarchies and individual marker sets. In our appli-
cation the concept hierarchy depends on the scene that we want to interpret, as it contains the objects that are found 
in the scene and which we want to recognize.

The relation hierarchy is based on the ontology proposed in [25] (Fig. 3). All these relations have been modeled 
as fuzzy spatial relations in [4,5,45,46]. Fuzzy representations allow us to fill the semantic gap between conceptual 
representations and the parameter or image domain, and the semantics of the relations are defined for each domain 
(typically, the parameters of the membership functions are tuned or learned according to the application, leading to 
different semantics of “near”, for instance depending on whether anatomical structures in medical images or objects 
in Earth observation images are considered). A relation is modeled:

• either as a fuzzy landscape, which defines a fuzzy region of space where the relation is satisfied with respect to a 
reference object,

• or as a degree of satisfaction, that allows us to determine to which degree the relation is satisfied between two 
given objects.

In the first case, the degree of satisfaction of a relation between a target object and the reference object is obtained by 
measuring the degree to which the target object is included in the region defined by the relation [4,5]. In this work we 
use an average measure. For instance, suppose that a and b are two regions of the image, which represent two objects, 
and we want to evaluate to which degree “a is near b”. Let γ b

near be the membership function representing the fuzzy 
landscape defining the region “near b”, then the degree of satisfaction of the relation “a is near b” is given by the 
average value of the membership function γ b

near over all the pixels of the region representing the object a:

μnear(b, a) =
∑

q∈a γ b
near(q)

|a| . (1)

In our experiments, all the metric relations except the parallel relation are modeled as fuzzy landscapes. The parallel 
relation is modeled as a degree of satisfaction. It is defined as a conjunction of the satisfaction of a fuzzy landscape 
(as in Eq. (1)) and a fuzzy relation measuring the similarity between the orientations of the two objects [46]. The 
adjacency relation is also modeled as a degree of satisfaction [4]:
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μadjacency(a, b) = μint
(
δν(a), b

)
, (2)

where δν is a fuzzy morphological dilation and μint defines a degree of intersection between two fuzzy sets.
In addition to these relations we also consider the spatial property of alignment which has been modeled as a fuzzy 

spatial relation in [46]. In [46] a satisfaction degree of the alignment relation for a group of objects is proposed, as 
well as a method to extract the groups of objects which are aligned to a certain degree. In the proposed model the 
alignment relation also implies the distance relations between the elements of the group. These distance relations are 
always specified in the conceptual graph, as in Fig. 2(b), however they are only considered when determining whether 
a group satisfies the spatial property of being aligned.

4. Fuzzy CSP

In this section, we summarize the main definitions and algorithms of Fuzzy CSP (FCSP). A Constraint Satisfaction 
Problem (CSP) is a generic framework for representing and solving problems whose aim is to find the solutions to a set 
of constraints. A constraint represents a relation, and a constraint satisfaction problem states which relations should 
hold between a set of decision variables. The authors in [17] extended CSP to FCSP in order to deal with flexible 
constraints. Such constraints include: fuzzy relations, soft constraints which express preferences between relations, 
and prioritized constraints which express the constraints which can be violated in the case where there exists a conflict. 
These flexible constraints were first considered in [38] to label objects in a scene.

The FCSP formalism is well adapted to our problem since it allows us to represent fuzzy relations. However, the 
representation of complex concept nodes needs an adaptation that is presented in Section 5.3, as a new contribution 
of this paper.

4.1. Definitions

Definition 4 (Fuzzy CSP). A FCSP is defined as P = {X , D, C}, where:

• X = {x1, . . . , xn} is a set of variables;
• D = {D1, . . . , Dn} is a set of domains. Each domain Di is associated with a variable xi , and represents the values 

which can be assigned to xi ;
• C = {C1, . . . , Ct } is a set of flexible constraints. A flexible constraint Ck is defined by a pair 〈Rk, Sk〉, where 

Sk ⊂ X is the set of variables which are involved in Ck , and Rk is a fuzzy relation over the Cartesian product 
of the domains Dk1 × . . . × Dkm of the variables in Sk . Rk is defined through its membership function μRk

:
Dk1 × . . . × Dkm → [0, 1]. For V = {vk1, . . . , vkm} ∈ Dk1 × . . . × Dkm , μRk

(vk1, . . . , vkm) represents the degree to 
which V satisfies the constraint Ck .

In our case, X represents the model of the objects that we want to instantiate in the image. They are represented 
as the concept nodes of the nested conceptual graph. D corresponds to the regions in the image obtained from a 
segmentation. The relations Rk represent the relation nodes of the model which are modeled as fuzzy spatial relations.

Given an instantiation {v1, . . . , vn} ∈ D1 × . . . × Dn, the degree to which {v1, . . . , vn} satisfies P is called the 
consistency degree and is defined as the conjunction of the satisfaction of each of its constraints [17]:

cons(v1, . . . , vn) = min
Ck∈C

μRk

(
(v1, . . . , vn) ↓Sk

)
(3)

where (v1, . . . , vn) ↓Sk
represents the projection of (v1, . . . , vn) onto the set of variables Sk . The degree to which a 

value v ∈ Di is suitable for representing a variable xi is represented as a fuzzy set μxi
over Di :

μxi
: Di −→ [0,1]

v �−→ μxi
(v)

where μxi
accounts for the imprecise or incomplete knowledge about xi . We will refer to μxi

as the membership 
function of the variable xi . Finding the instantiations which satisfy P to a degree α ∈ [0, 1] is NP-Hard [3]. Thus 
the problem is usually simplified by applying local consistency algorithms, and then searching for a solution in the 
reduced problem. A very common type of local consistency is arc-consistency.
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Arc-consistency for FCSP containing only binary constraints was defined in [17]. Given a FCSP P = {X , D, C}
of fuzzy constraints, P is said to be arc-consistent if, for every constraint Ck involving the variables xi and xj , every 
u ∈ Di satisfies:

μxi
(u) ≤ sup

v∈Dj

min
(
μRk

(u, v),μxj
(v)

)
. (4)

This means that the fuzzy set μxi
, representing the possible values of xi , should be included in the projection on xi of 

the conjunction of the fuzzy set μRk
with the cylindrical extension of the fuzzy set μxj

.
For m-ary constraints we use the generalized arc consistency for non-binary constraints as defined in [10] for 

Valued CSP. Let Ck be a m-ary constraint and xi a variable belonging to Sk . Then arc-consistency is given by:

μxi
(v) ≤ sup

A=(ak1 ,...,akm )∈Dk1×...×Dkm :A↓i=v

min
(
μRk

(ak1 , . . . , akm), min
kj ∈{k1,...,km}

j =i

μxj
(akj

)
)
. (5)

This definition of arc-consistency corresponds to 2-consistency in the Soft CSP framework [3].

4.2. The FAC-3 algorithm

Algorithm 1 shows a generalization of the FAC-3 algorithm to deal with fuzzy constraints of any arity. In the 
following we refer to this algorithm as FAC-3. This algorithm is a specialization of the algorithm presented in [10]. 
A record of the constraints which have not been revised is kept to ensure that their domains are arc-consistent. When 
the membership degree of a variable changes, all the constraints related to that variable are added to the CheckList so 
that they can be revised for arc-consistency. The variable ConsSup saves the maximum consistency value for a solution 
of the FCSP P . When applying RevisedFuzzyConstraint method on a constraint Ck the constraint is propagated 
through the domains of the variables in Sk by modifying their membership degrees. For every value v ∈ Di of a 
variable xi ∈ Sk , the membership degree μxi

(v) is replaced by the supremum in the right hand side of Eq. (5). If 
μxi

(v) is equal to zero then v is removed from the domain of Di . If μxi
changes, then the variable xi is marked as 

changed in order to check the arc-consistency with respect to other constraints.
For each variable xi the initial membership function μxi

is a constant function over Di equal to one. When more 
knowledge about the degree of satisfaction of the relations involving xi is acquired, the membership μxi

is modified 
to incorporate this new knowledge.

5. Extension of the FCSP model to handle complex concept nodes

To deal with complex concept nodes representing groups of regions satisfying some relations between them, Algo-
rithm 1 has to be extended and adapted.

Algorithm 1: FAC-3 algorithm used for determining the arc-consistency of a FCSP [17].
Input: A FCSP P = (X , D, C)

Output: Computes the arc-consistent closure of P if it exists, otherwise returns Failure
1 ConsSup = 1
2 ToCheck ←− C
3 while ToCheck = ∅ do
4 ToCheck ←− ToCheck \ {Ck} // Select Ck from ToCheck
5 foreach xki

∈ Sk do
6 Changed[ki ] ←− false

7 result ←− ReviseFuzzyConstraint(Ck) // see Algorithm 2
8 if result = EmptyDomain then
9 return Failure ;

10 if result = Changed then
11 foreach Cl = Ck such that there is xj ∈ Sk ∩ Sl and Changed[j ] = true do
12 ToCheck ←− ToCheck ∪ {Cl}
13

14 return ConsSup ;
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Algorithm 2: ReviseFuzzyConstraint method.
Input: Ck, Changed, ConsSup
Output: Propagates Ck and marks variables whose domain has changed in the Changed vector

1 foreach variable xi ∈ Sk do
2 remove from Rk every tuple A such that A ↓i /∈ Di

3 Height ←− 0
4 result ←− NoChange
5 foreach variable xi ∈ Sk do
6 foreach v ∈ Di do
7 newDegree ←− 0
8 foreach tuple A = (a1, . . . , am) in the domain of Rk such that v = A ↓i do
9 eval ←− min(μRk

(a1, . . . , am), min j∈{1,...,m}
j =i

μxj
(aj ))

10 height ←− max(eval, height)
11 newDegree ←− max(eval, newDegree)

12 if newDegree = 0 then
13 Delete v from Di

14 if Di = ∅ then return EmptyDomain

15 if newDegree < μxi
(v) then

16 Changed[i] ←− true
17 μxi

(v) ←− newDegree
18 result ←− Changed
19

20 ConsSup ←− min(ConsSup, Height)
21 return result

A complex concept node can be considered dually either as a constraint or as a variable. It is seen as a variable 
when it is viewed as an object (a group is then considered as one complex object) that can satisfy spatial relations with 
other objects or groups. It is seen as a constraint when we evaluate the relations or spatial properties that should be 
satisfied within the group of objects. Thus, we propose to define this constraint/variable by considering its two parts: 
(1) as a relation representing the conjunction of all the conditions that should be satisfied inside the complex concept 
node, and (2) as a membership degree in the domain of groups which depends on the satisfaction of the conditions 
inside the nested node, as well as the satisfaction of the relations of the group with other objects. We differentiate 
between the complex concept nodes which represent a group endowed with a spatial property, as alignment, and those 
which are not.

5.1. Dealing with complex nodes endowed with a spatial property

In our vocabulary we consider only the alignment relation as a spatial property. Hence in this section we only detail 
this relation, but the proposed formalism can be extended to other spatial properties. For the sake of simplicity, the 
aligned groups of objects are only considered for objects belonging to the same concept type. Let xi be the variable 
representing the type of the objects involved in the alignment, and let Di be its domain. Let xg denote the variable 
which represents the aligned group of objects considered as a variable, and let Cw represent the constraint of alignment 
of the group.

When the group is seen as a variable xg , the domain Dg is composed of the groups of objects of type xi which 
are considered to be aligned. These groups can be extracted using the algorithm proposed in [46]. Dg is a subset 
of the power set of Di . For a group V = {v1, . . . , vp} ∈ Dg the membership degree μxg(V ) depends on three fac-
tors:

1. the degree of alignment of V [46],
2. the degree of satisfaction of the spatial constraints (spatial relations) that are supposed to be satisfied by xg, and
3. the membership degree of its members to Di .
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Fig. 4. Illustration of the dual characteristic of the group V of aligned objects. Let D1 = {v1, v2, v3}, D2 = {b1}. Suppose that for every vj ∈ V

we have μx1 (vj ) = 1.0. Before we have any information about the satisfaction of the parallel relation we have μxg (V ) = μRaligned (V ) = 1, 
where xg is the variable that represents the group, and Caligned = 〈Raligned, Saligned〉 is the alignment constraint of the group. Suppose that we 
find that μRparallel (V , b) = 0.3, then the membership degree of V belonging to the domain of xg becomes μxg (V ) = 0.3, while we still have 
μRaligned (V ) = 1.

When the groups are extracted we do not have any information about the satisfaction of the spatial relations which 
involve V . Therefore, its initial degree of satisfaction is equal to the conjunction of the factors 1 and 3, listed above, 
using the minimum as conjunction:

μxg (V ) = min
(
μalig(V ), min

j∈{1,...,p}μxi
(vj )

)
(6)

where μalig(V ) is the degree of alignment of the objects in the group V [46]. The membership degree μxg(V ) changes 
as more information about the factors 2 and 3 is acquired.

When the group is considered as a constraint Cw, it evaluates the property of alignment of a group. As before, 
a constraint Ck is defined by a pair 〈Rk, Sk〉. Usually a relation representing a constraint is defined as a subset 
of a Cartesian product of the domains of its variables, and the number of domains and variables is fixed. How-
ever, this is not the case for the constraint Cw , since each group can have a different number of elements, which 
is a priori unknown. Therefore, to properly define the relation representing this constraint, it is necessary to spec-
ify for each p ≥ 3 a relation with arity p, to define the groups of aligned objects in Dp

i . Due to the lack of 
knowledge about the number of elements in a group, we use as a simplification the same notation to define the 
relations for each possible arity. Then the degree of satisfaction of the relation of a tuple (v1, . . . , vp) ∈ D

p
i is 

equal to the degree of alignment of the set V = {v1, . . . , vp}, and of the conjunction of the degrees μxi
of its ele-

ments:

μRw(v1, . . . , vp) = min
(
μalig(V ), min

j∈{1,...,p}μxi
(vj )

)
(7)

and Sw = {xi}, where xi represents the variable of the objects that satisfy the relation (recall that the rela-
tion is only defined for one type of object). At the beginning both μRw and μxg are identical. However, as 
we make Dg arc-consistent with respect to other constraints, the values of μRw and μxg start to differ. Fig. 4
shows an example where μRw = μxg when we do not have any information about the parallel relation. Once we 
have calculated the degree of parallelism between V and b1, the value of μxg changes, while μRw remains the 
same.

For a complex concept node representing an aligned group of objects, it is necessary to consider both de-
grees μRw(V ) and μxg (V ) because they represent different types of information. The membership degree μRw(V )

remains independent of the relations that the group satisfies, while the membership degree μxg(V ) varies according 
to the interaction of the group with other elements.

The dual characteristic of this constraint requires a careful evaluation of its satisfaction. In addition the constraint 
has to be evaluated before it is evaluated as a variable. In the following we present several considerations that should 
be taken into account when making Dg arc-consistent.

5.2. Adapting arc-consistency for groups of aligned objects

We first discuss the considerations dealing with the changes in the membership function μxi
, and then, those 

referring to the situation when the group is seen as an object.
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Fig. 5. The element v5 belonging to the group V = {v1, v2, v3, v4, v5} does not satisfy the relation “topologically surrounds” with a1, although 
this relation should be satisfied by all the members of the group. However, there are subgroups of V which satisfy all the constraints, such as 
{v1, v2, v3, v4}.

A member vj ∈ V does no longer belong to Di Let us assume that there is vj ∈ V for which μxi
(vj ) = 0. By Eq. (6)

this implies that μxg(V ) = 0. However, it is possible that there is an aligned subgroup U ⊆ V \ {vj } which is part of a 
consistent solution. For example, if we want to find the instantiations of the conceptual graph of Fig. 5(a) in the image 
of Fig. 5(b), the corresponding FCSP P is formulated as:

• X = {x1, x2, x3, x4}, where x1, x2 and x3 correspond to the concept nodes of Fig. 5(a) and x4 corresponds to the 
alignment variable.

• D = {D1, D2, D3, D4}, where D1 = {v1, v2, v3, v4, v5}, D2 = {b1}, D3 = {a1} and D4 = {V } for V =
{v1, v2, v3, v4, v5}.

• C = {Csurround, Cparallel_to, Caligned} where Csurround = 〈μsurround, {x3, x1}〉, Cparallel_to = 〈μ||, {x4, x2}〉 and
Caligned = 〈μalig, {x1}〉. Note that we do not consider the constraint referring to the “near” relation inside the 
aligned group, because it is embedded in the “aligned” relation (see Section 3.3).

Let us try to make P arc-consistent by following the procedure presented in the previous section. When we prop-
agate the constraint Csurround through its domain, we obtain μx1(v5) = 0 (because v5 is not surrounded by a1), and 
therefore the fuzzy set μx1 over D1 is modified. Thus, the constraint Caligned has to be checked, because x1 ∈ Saligned. 
When we revise Caligned the membership function μx4 is updated, and μx4(V ) = 0. Hence, D4 is empty and no solu-
tion is found. Nevertheless, the group U = {v1, v2, v3, v4} ⊆ V is part of a consistent instantiation. Thus, eliminating 
V without considering if any of its subgroups satisfied the relations was a too early decision. To avoid this, we propose 
to use a greedy strategy, where we start with a group of N elements and reconsider the group V \U when the elements 
of U ⊂ V does no longer belong to Di . This strategy is more efficient than considering all the possible subgroups of 
V for the domain of Dg .2 One should notice that the proposed strategy does not evaluate all the possible groups but 
only some of them, therefore we would not obtain all the possible solutions. In our application we are interested in 
the largest group which satisfies the constraint, and therefore once we find a solution it is not necessary to consider 
its subgroups. However, if one is interested in all the possible solutions then it is necessary to evaluate all the possible 
groups.

The membership function μxi
has changed Let vj ∈ V be an element of a group. Suppose that after checking the 

arc-consistency condition the membership degree of vj to Di has decreased. The decrease of μxi
(vj ) implies that it 

is less possible that xi takes the value vj than initially, i.e. at the time the aligned group was extracted. To integrate 
this new information into the membership degree of V , i.e. μxg (V ), we propose to add V \ {vj } to Dg (without 
removing V ), and update μxg . When adding this new group to Dg , the relations that involve xg have to be reevaluated, 
since Dg has changed.

2 The greedy strategy has a worst case complexity of evaluating N − 3 groups, while for the other strategy in the worst case scenario, the size of 
the domain of the constraint is 

∑N
k=3

(N
k

)
.
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The group V , considered as a variable, does not satisfy a constraint Due to the fact that we are considering only 
some of the groups, we need to consider what happens to the aligned subgroups of a group V when V does not satisfy 
a constraint that should be satisfied by the members of Dg.

Let us first remember that when a spatial relation is represented as a fuzzy landscape, the degree of satisfaction of 
a target object is measured using the mean (Eq. (1)). Now, let us consider the situation where xg is the target object of 
the relation.

Proposition 1. Let V = {v1, . . . , vp} ∈ Dg be an aligned group and Ct = 〈μRt , St 〉 be a binary constraint, such that 
St = {xg, xw}, and Rt is a relation from TR . Let b ∈ Dw , suppose that xg is the target object of the relation represented 
by Ct and that μRt (b, V ) = 0. Then for every aligned subgroup U ⊂ V we have μRt (b, U) = 0.

Proof. We consider each of the possible binary relations in TR:

(a) Let Rt be a relation which produces a fuzzy landscape denoted by γR.
If μRt (b, V ) = 0, then it means that for every pixel q belonging to V we have γR(q) = 0. This holds in particular 
for the pixels q in the region U ⊂ V , therefore μRt (b, U) = 0.

(b) If Rt corresponds to the adjacency relation [4], and μadjacency(b, V ) = 0, then the dilation of b does not intersect V , 
and it does not intersect U either, and μadjacency(b, U) = 0.

(c) If Rt corresponds to the parallel relation [46], and μparallel(b, V ) = 0, then it is either because the fuzzy landscape 
component is zero or because the orientations are not similar. If the fuzzy component is zero, then this is also 
true for U for the same reason as in (a). If the orientations are not similar then the orientation of U is not 
similar to the one of b, since the orientation of U can be considered equal to the orientation of V , and therefore 
μparallel(b, U) = 0. �

Now, let us consider the situation where xg is the reference object of the relation.

Proposition 2. Let V = {v1, . . . , vp} ∈ Dg be an aligned group and Ct = 〈μRt , St 〉 be a binary constraint, such that 
St = {xg, xw}, and Rt is a relation from TR . Let b ∈ Dw , and suppose that xg is the reference object of the relation 
represented by Ct and that μRt (V , b) = 0. Then for every aligned subgroup U ⊂ V we have μRt (U, b) = 0.

Proof. We consider each of the possible binary relations in TR:

(a) If Rt is a metric relation which produces a fuzzy landscape, then Rt produces a fuzzy landscape which is increas-
ing with respect to the reference object. Therefore, the landscape produced by U is contained in the one produced 
by V . So, μRt (U, b) = 0.

(b) If Rt is the adjacency relation, then the dilation of V does not intersect b. Since the dilation is increasing the 
dilation of U is a subset of the dilation of V , as U is a subset of V , therefore the dilation of U does not intersect b

and μadjacency(U, b) = 0
(c) If Rt is the parallel relation, and μparallel(V , b) = 0, then it means that either the part of the relation that is modeled 

as a fuzzy landscape is not satisfied or the orientation condition is not satisfied. In the case when the first condition 
is not satisfied, then as in the previous case it is not satisfied by U . If the orientation condition is not satisfied then 
it is not satisfied by U either. �

In [5] several definitions for the relation “between” are proposed. In our work we use the relation based on direc-
tional dilation. All the models proposed in [5] produce a fuzzy landscape, so the following propositions are valid for all 
these models. Moreover, the fuzzy landscape to represent the relation “between” a group of objects V = {v1, . . . , vp}
and another object b is modeled as the union of the fuzzy landscapes created for each element of the group. Hence, 
using similar arguments we can extend the previous propositions to deal with the ternary relation “between”.

Proposition 3. Let V = {v1, . . . , vp} ∈ Dg be an aligned group and Ct be a constraint representing the relation 
“between”, such that St = {xg, xw, xz}. Let a ∈ Dw , b ∈ Dz, and suppose that V is one of the reference objects of the 
relation and that μRt (V , a, b) = 0. Then for every aligned subgroup U ⊂ V we have μRt (U, a, b) = 0.
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Proposition 4. Let V = {v1, . . . , vp} ∈ Dg be an aligned group and Ct be a constraint representing the relation 
“between”, such that St = {xg, xw, xz}. Let a ∈ Dw , b ∈ Dz, and suppose that V is the target object of the relation 
and that μRt (a, b, V ) = 0. Then for every aligned subgroup U ⊂ V we have μRt (a, b, U) = 0.

After considering all the possible situations where a group does not satisfy a constraint, we can conclude that when 
a group V does not satisfy a constraint, then none of its aligned subgroups satisfies it. Therefore, we can remove V
from Dg without further considering its subgroups.

5.3. Dealing with groups not endowed with a spatial property

The other types of complex concept nodes are the groups which have a conceptual graph not representing an 
alignment (or more generally any other relation within the group). Suppose that we want to represent a complex 
concept node with child concept nodes represented by the set of variables {x1, . . . , xl} and child relations {R1, . . . , Rt }.

When the group is considered as a variable xg its domain is Dg = D1 × . . . × Dl . Let V = (v1, . . . , vl) ∈ D1 ×
. . . × Dl . Its membership degree μxg(V ) depends on:

• the degree of satisfaction of the child relations,
• the degree of satisfaction of the spatial constraints (spatial relations) that are supposed to be satisfied by xg, and
• the membership degree of its members to their respective domains.

As in Section 5.1, initially we do not have any information about the degree of satisfaction of V with other regions. 
Thus its initial degree μxg(V ) is equal to:

μxg (V ) = min

[
t∧

j=1

μRj
(V ↓Sj

), min
h∈{1,...,l}μxh

(vh)

]
(8)

where Sj is the set of variables involved in Rj , and 
∧

is a t-norm (the minimum has been used in our experiments).
When the group is considered as a constraint Cw, it evaluates that all the conditions inside the complex concept 

node are satisfied. Unlike the alignment case, we know in advance which are the members inside the complex concept 
node. Therefore the set of variables in Cw is Sw = {x1, . . . , xl}, which is the union of the sets of variables of its child 
relations: Sw = ⋃t

j=1 Sj . For a tuple V = (vw1 , . . . , vwl
) ∈ Dw1 × . . . × Dwl

the degree of satisfaction of the relation 
is:

μRw(vw1 , . . . , vwl
) = min

[
t∧

j=1

μRj
(V ↓Sj

), min
h∈{w1,...,wl}

μxh
(vh)

]
. (9)

As for the aligned groups, the degrees μRw(V ) and μxg (V ) are equal at the beginning but as more information is 
acquired, the degrees μRw(V ) and μxg (V ) may become different.

Behavior of the members of a group, when the group is the target object of a metric relation Let V = {v1, . . . , vl} ∈
Dg be a group (composed of objects that may be aligned or not) and Ct be a constraint representing a metric relation 
Rt between the group and another object or group, such that St = {xg, xu}. Suppose that Rt is modeled as a fuzzy 
landscape. Let b ∈ Du. The degree of satisfaction of the relation is non-zero if and only if there exists vi ∈ V such 
that μRt (vi, b) > 0. Moreover, if the elements of the group have a high satisfaction degree of Rt , then the group has a 
high degree of satisfaction of Rt .

Thus if the model conceptual graph has a relation node representing a metric relation Rt where the target object 
is a complex concept node representing a group and the reference object is another concept node cref (which can be 
complex or not), and Rt is modeled as a fuzzy landscape, then we can add a relation node having the same type as Rt

between each concept node inside the complex concept node and the node cref as reference (as shown in Fig. 6). This 
is a heuristic technique that we propose to help us to find an instantiation of the group with a high satisfaction degree 
of the relation Rt .

Other relations such as adjacency have a different behavior, and for a group to be adjacent to an object it is sufficient 
that one of its members is adjacent to the object (usually not all objects in the group satisfy the relation).
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Fig. 6. Illustration of the behavior of a group when the group is the target of a metric relation modeled as a fuzzy landscape. (a) Initial conceptual 
graph. (b) Modified graph after adding relation nodes having the relation Rt between x1 and each member of the group.

Algorithm 3: Basic algorithm used for arc-consistency checking in a nested constraint network with complex 
concept nodes.

Input: A constraint network P = (X , D, C)

Output: Computes the arc-consistent closure of P if it exists, otherwise returns Failure
1 ConsSup = 1
2 ToCheck = C // Initialize the Instantiated vector, mark as true all the variables which do not 

represent a group
3 foreach variable xi ∈ X do
4 if xi does not represent a group then Instantiated[i] = true else Instantiated[i] = false

5 foreach Ck ∈ C do
6 FirstEvaluation[k] = false

7 while ToCheck = ∅ do
8 ToCheck ←− ToCheck \ {Ck} // Select Ck from ToCheck
9 foreach variable xki

∈ Sk do
10 Changed[ki ] = false

11 if Ck represents a group then
12 result = ReviseGroupConstraint(Ck) // see Algorithm 5
13 else
14 if Ck represents an alignment then
15 result = ReviseAlignmentConstraint(Ck) // see Algorithm 7
16 else
17 result = ReviseSimpleConstraint(Ck) // see Algorithm 4
18

19 if result = EmptyDomain then
20 return Failure
21 if result = Changed then
22 foreach Cl = Ck such that there is xi ∈ Sl with Changed[i] = true do
23 ToCheck = ToCheck ∪ {Cl}
24 Change[i] ←− false

25 if Ck is inside a nested constraint Cl or is related to a variable that represents a nested node represented by the constraint Cl then
26 ToCheck = ToCheck ∪ {Cl}
27

28 return ConsSup ;

5.4. Proposed algorithm

In this section, we propose a new algorithm based on the FAC-3 algorithm which deals with nested constraints. 
The set of constraints C contains the constraints representing the relation nodes and the complex concept nodes.

The main algorithm presented in Algorithm 3 has the same structure as the one used in the original FAC-3 (see 
Algorithm 1). The main difference with respect to the FAC-3 algorithm is the adaptation of the revise function to each 
type of constraint. We use the methods ReviseGroupConstraint (Algorithm 5) and ReviseAlignmentConstraint (Algo-
rithm 7) for the constraints representing complex concept nodes. The method ReviseSimpleConstraint (Algorithm 4) 
is used for constraints representing relation nodes. We refer to these three methods as Revise methods. When updating 
the ToCheck list (lines 21 to 26 of Algorithm 3) we take into account the dual interpretation of the complex concept 
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Algorithm 4: ReviseSimpleConstraint: revise algorithm for those constraints which do not represent alignments 
nor groups, sub-part of Algorithm 3.

Input: a constraint Ck, Changed, ConsSup
Output: Propagates Ck if possible and marks variables whose domain has changed; returns EmptyDomain if a domain becomes empty, 

NoChange if no domain has been modified, otherwise Changed
// Verify that all the variables in Sk are instantiated

1 if Exists xi ∈ Sk such that Instantiated[i] = false then
2 return NoChange
3 if FirstEvaluation[k] then // Create the domain for Rk

4 Let Sk = {x1, . . . , xm}
5 foreach A = (a1, . . . , am) ∈ D1 × . . . × Dm do
6 if μRk

(a1, . . . , am) > 0 then Add A to the domain of Rk

7 FirstEvaluation[k] ←− false

8 else
9 foreach variable xi ∈ Sk do

10 remove from the domain of Rk every tuple A = (a1, . . . , am) such that ai /∈ Di

11 // Make the domains of the variables in Sk arc-consistent with respect to Ck

12 result ←− NoChange
13 height ←− 0
14 foreach variable xi ∈ Sk do
15 foreach v ∈ Di do
16 NewDegree = 0
17 foreach A = (a1, . . . , am) in the domain of Rk such that ai = v do
18 eval ←− min(μRk

(a1, . . . , am), min s∈{1,...,m}
s =i

μxs (as ))

19 height ←− max(eval, height)
20 NewDegree ←− max(NewDegree, eval)

21 if NewDegree = 0 then
22 Delete v from Di

23 if Di = ∅ then return EmptyDomain

24 if NewDegree < μxi
(v) then

25 μxi
(v) ←− NewDegree

26 result ←− Changed
27 Changed[i] ←− true
28

29 ConsSup ←− min(ConsSup, height)
30 return result

nodes, either as a variable or as a constraint. If the domain of a variable which is also a constraint has changed, then 
the corresponding constraint should be added to the ToCheck list.

The vector Instantiated indicates whether the domain of the variable has been already instantiated or not. This 
vector is needed to verify that the variables which represent a complex concept have been instantiated when the 
respective constraint is evaluated. In the Revise methods, we first verify that all the variables involved in the relation 
have been instantiated. When it is not the case, the constraint is not propagated.

ReviseSimpleConstraint The method ReviseSimpleConstraint in Algorithm 4 is composed of two parts. In the first 
part, if the constraint has not been evaluated, then it is evaluated for the first time and the domain of the relation is 
created. To create this domain we evaluate the relation according to the way it is modeled. If it is modeled as a fuzzy 
landscape, then we compute the landscape for each of the elements in the domain of the reference object, and evaluate 
the relation with all the elements in the domain of the target objects. Otherwise, if the relation is modeled as a number 
(satisfaction degree), we find the satisfaction degree for each possible tuple in the relation domain. To update we use 
the same strategy as in the Revise method of the FAC-3 algorithm (see Algorithm 2).

ReviseGroupConstraint The method ReviseGroupConstraint in Algorithm 5 is also composed of two parts. In the 
first part, we create or update the domain of the relation (Algorithm 6). This domain is created by making an exhaustive 
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Algorithm 5: ReviseGroupConstraint: revise algorithm for those constraints which represent a group, sub-part 
of Algorithm 3.

Input: a constraint Ck, Changed, ConsSup
Output: Propagates Ck and marks variables whose domain has changed; returns EmptyDomain if a domain becomes empty, NoChange if 

no domain has been modified, otherwise Changed
1 Let xg be the variable representing the nested group and Dg its domain
2 if Exists xi ∈ Sk such that Instantiated[i] = false then
3 return NoChange
4 height ←− 0
5 result ←− CreateOrUpdateGroupDomain (Ck , Dg ) // See Algorithm 6
6 if Dg = ∅ then
7 return EmptyDomain
8 // Make the domains of the variables in Sk arc-consistent with respect to Ck

9 foreach variable xi ∈ Sk do
10 foreach v ∈ Di do
11 NewDegree = 0
12 foreach A = (a1, . . . , al) in the domain of Rk such that ai = v do
13 height ←− max(μxg (A), height)

14 NewDegree ←− max(NewDegree, μxg (A))

15 if NewDegree = 0 then
16 Delete v from Di

17 if Di = ∅ then return EmptyDomain

18 if NewDegree < μxi
(v) then // Update Changed and the membership value of v

19 μxi
(v) ←− NewDegree

20 result ←− Changed
21 Changed[i] ←− true
22 Changed[g] ←− true

23

24 ConsSup ←− min(ConsSup, height)
25 return result

search of its domain and only adding the tuples for which the satisfaction degrees of all the child relations of the nested 
node are non-zero. The updating of the domain follows the same strategy as the original FAC-3 algorithm. The second 
part of Algorithm 5 corresponds to the updating of the domain of the variables representing the child nodes. We update 
the value of the membership function of xi by considering the value of the corresponding constraint. The membership 
function μxg considers the interactions between the members of the group as well as the satisfaction of the relations 
between the group and other variables, which may impact the satisfaction of the membership function of the child 
nodes.

ReviseAlignmentConstraint In the first part of the ReviseAlignmentConstraint method in Algorithm 7, we construct 
or update the domain of the constraint and its respective variables by calling the method CreateOrUpdateAlignment-
Domain (Algorithm 8). To create the domain we search for the aligned groups of objects in Dk we apply the algorithm 
proposed in [46]. When we update the domain Dg we check for each element aj of each group A its membership 
degree μxi

(aj ). If it is equal to zero then the aligned subgroups in Bt ⊆ A \ {aj } are added to the domain Dg . As we 
mentioned in Section 5.2 we do not make an exhaustive search of the aligned objects but we only look for the longest 
aligned groups that satisfy the constraints in our model. This is a heuristic technique to evaluate less constraints dealing 
with aligned groups of objects.

The second part of ReviseAlignmentConstraint propagates Ck in the domain Di . For each value aj ∈ Di we verify 
that there exists a group in Dg which contains it. To do this we replace the membership degree of μxi

(aj ) by:

μxi
(aj ) = max{V ∈Dg |aj ∈V }μxg (V )



M.C. Vanegas et al. / Fuzzy Sets and Systems 286 (2016) 1–29 19
Algorithm 6: CreateOrUpdateGroupDomain: sub-part of Algorithm 5.
Input: A constraint Ck representing a nested group, Dg domain of the corresponding variable
Output: Creates or updates the domain of Ck and of xg

1 Let Sk = {x1, . . . , xl} be the child variables, Tk = {Ct1 , . . . , Ctp } be the constraints representing the child relations.

2 if FirstEvaluation[k] then // Create the domain for Rk and xg

3 foreach A = (a1, . . . , al) ∈ D1 × . . . × Dl do

4 μRk
(a1, . . . , al) ←− ∧tp

j=t1
μRj

(a1, . . . , al)

5 if μRk
(a1, . . . , al) > 0 then

6 Add A to the domain of Rk and to Dg

7 μxg (A) ←− min[mins=1,...,l μxs (as ), μRk
(a1, . . . , al)]

8

9 FirstEvaluation[k] ←− false, Instantiated[g] ←− true, Changed[g] ←− true, result ←− Changed

10 else
11 foreach variable xi ∈ Sk do
12 remove from the domain of Rk every tuple A = (a1, . . . , al) such ai /∈ Di

13 foreach A = (a1, . . . , al) ∈ Dg do
14 //Update the membership degree
15 NewDegree ←− min[mins∈{1,...,l} μxs (as), μRk

(a1, . . . , al), μxg (A)]
16 if NewDegree = 0 then
17 Delete A from Rk and from Dg

18 if NewDegree < μxg (A) then // Update Changed and the membership degree of A

19 μxg (A) ←− NewDegree

20 Changed[g] ←− true
21 result ←− Changed

22

23 return result

Algorithm 7: ReviseAlignmentConstraint: revise algorithm for those constraints which represent an alignment, 
sub-part of Algorithm 3.

Input: a constraint Ck , Changed, ConsSup
Output: Propagates Ck and marks variables whose domain has changed; returns EmptyDomain if a domain becomes empty, NoChange if 

no domain has been modified, otherwise Changed
1 Let xg be the variable representing the nested group and Dg its domain
2 if Exists xi ∈ Sk such that Instantiated[i] = false then
3 return NoChange
4 height ←− 0
5 result ←− CreateOrUpdateAlignmentDomain (Ck , Dg ) // See Algorithm 8
6 if Dg = ∅ then
7 return EmptyDomain
8 // Make the domains of the variables in Sk arc-consistent with respect to Ck

9 foreach v ∈ Di do
10 NewDegree = 0
11 foreach A ∈ Dg such that v ∈ A do
12 height ←− max(μxg (A), height)

13 NewDegree ←− max(NewDegree, μxg (A))

14 if NewDegree = 0 then
15 Delete v from Di

16 if Di = ∅ then return EmptyDomain
17 if NewDegree < μxi

(v) then // Update Changed and the membership degree of v

18 μxi
(v) ←− NewDegree

19 result ←− Changed
20 Changed[i] ←− true
21 Changed[g] ←− true

22

23 ConsSup ←− min(ConsSup, height)
24 return result
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Algorithm 8: CreateOrUpdateAlignmentDomain: sub-part of Algorithm 5.
Input: A constraint Ck representing an aligned group, Dg domain of the corresponding variable, and Di the domain of the objects involved 

in the alignment.
Output: Creates or updates the domain of Ck and of xg ; returns EmptyDomain if a domain becomes empty, NoChange if no domain has 

been modified, otherwise Changed
1 Let Sk = {xi } be the variable involved in the alignment.
2 domainStatus ←− NoChange
// Create the domain for Rk and xg

3 if FirstEvaluation[k] then
4 Find G, the group of aligned objects belonging to the domain Di

5 foreach A = {a1, . . . , ap} ∈ G do
6 Let μalig(A) be the degree of alignment of A
7 μRk

(A) ←− min[mins∈{1,...,p} μxi
(as ), μalig(A)]

8 Add A to Dg and add the tuple (a1, . . . , ap) to the domain of Rk

9 μxg (A) ←− min[mins∈{1,...,p} μxi
(as ), μalig(A)]

10 FirstEvaluation[k] ←− false; Instantiated[g] ←− true
11 if Dk = ∅ then
12 Changed[g] ←− true; domainStatus ←− Changed
13 else return EmptyDomain return domainStatus
14 // Revise the alignment condition on each group
15 else
16 foreach A = {a1, . . . , ap} ∈ Dg do
17 if There is an element aj ∈ A which does no longer belong to Di then
18 Remove A from Dg and Rk

19 Let GA, be the group of aligned objects belonging to A \ {aj }
20 foreach B = {b1, . . . , bm} ∈ GA do
21 μRk

(b1, . . . , bm) ←− min[mins∈{1,...,p} μxi
(bs ), μalig(B)]

22 Add the set B to Dg

23 Add the tuple (b1, . . . , bm) to the domain of Rk

24 μxg (B) ←− min[mins∈{1,...,m} μxi
(bs ), μalig(B)]

25 Changed[g] ←− true
26 domainStatus ←− Changed
27 Set to true the value of FirstEvaluation for all the constraints involving xg

28

29

5.5. Illustration of the algorithm

We illustrate how the algorithm works on the following example. We assume that the image in Fig. 7(a) has already 
been segmented and the regions have been labeled as shown in Fig. 7(b). The aim is to find the instantiations in the 
image of the graph in Fig. 7(d), which is built over the vocabulary shown in Fig. 7(c). For the sake of simplicity, we 
only show one coreference link of the houses in the aligned group, but all the houses have the same coreference link 
as the one illustrated in the figure.

The corresponding CSP problem is formulated as:

• X = {xshadow, xhouse, xroad, xpool, xgarden, xgroup_houses} containing the variables representing the concept nodes of 
the conceptual graph, where xgroup_houses is the variable representing the group of aligned houses.

• C = {Cdirection, Cadjacent_1, Cbetween, Cnear, Csurrounds, Cadjacent_2, Caligned}, where Cdirection = 〈μ1350

direction, {xshadow,

xhouse}〉, Cadjacent_1 = 〈μadjacent, {xshadow, xhouse}〉, Cbetween = 〈μbetween, {xpool, xroad, xhouse}〉, Cnear =
〈μnear, {xhouse, xpool}〉, Csurrounds = 〈μsurrounds, {xgarden, xpool}〉, Cadjacent_2 = 〈μadjacent, {xhouse, xgarden}〉 and 
Caligned = 〈μalig, {xhouse}〉. We do not consider the constraints representing the near relations between the ele-
ments of the aligned group, because they are already considered in the alignment relation.

• D = {Dshadow, Dhouse, Droad, Dpool, Dgarden, Dgroup_houses} where Di represents the possible candidates for xi . 
The regions in each Di for i ∈ {shadow, house, road, pool, garden} are shown in Fig. 8.
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Fig. 7. Images and conceptual graph. (a) Example image. (b) Segmented and manually labeled image. The labels are: gardens in green, houses in 
orange, shadows in black, pools in blue, roads in gray. (c) Concept hierarchy. (d) Conceptual graph describing “the group of neighboring houses 
forming an aligned group which has a pool located in the garden at the “back” of the house, and which has a shadow”. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 8. Regions in the domains of each variable of the CSP problem representing the instantiations of the conceptual graph in Fig. 7(d) in the image 
shown in Fig. 7(b).

Table 1
Evolution of the fuzzy sets μhouses when making Dhouses arc-consistent at different iterations. Gray levels represent the values of
μhouses (white = 1, black = 0).

Tables 1, 2, 3, 4 and 5 show the evolution of μxi
for i ∈ {house, shadow, pool, road, garden}, respectively. 

Table 6 shows the domain of xgroup_houses, we only show the iterations for Dgroup_houses when it has changed. 
The membership degree of a region to μxi

is represented by its gray value. The images representing the groups 
belonging to Dgroup_houses only show the elements of Dgroup_houses, without the membership degrees. For il-
lustrative purposes we evaluate the alignment constraint at the first iteration in order to show the evolution 
of Dgroup_houses.

At the first iteration we check Caligned and obtain 17 groups. At iteration 4 the constraint Cbetween is propagated 
and the domain of xhouses is modified. As Dhouses has been modified the alignment condition is propagated again, 
and several groups are eliminated. At iteration 15 the constraint Cadjacent_2 is propagated, and again the domain of 
xhouses is modified. Hence, at iteration 16 the Caligned is propagated, resulting in the elimination of more groups 
and a modification in the domain of xhouses. At this iteration we observe the impact of the dual view of the Caligned



22 M.C. Vanegas et al. / Fuzzy Sets and Systems 286 (2016) 1–29
Table 2
Evolution of the fuzzy sets μshadow when making Dshadow arc-consistent at different iterations. Gray levels represent the values of μshadow.

Table 3
Evolution of the fuzzy sets μpool when making Dpool arc-consistent at different iterations. Gray levels represent the values of μpool.

Table 4
Evolution of the fuzzy sets μroad when making Droad arc-consistent at different iterations. Gray levels represent the values of μroad.

Table 5
Evolution of the fuzzy sets μgarden when making each Dgarden arc-consistent at different iterations. Gray levels represent the values of μgarden.

constraint, since it modifies both Dhouses when it is considered as a relation and Dgroup_houses when it is considered 
as a variable. The final results are shown at iteration 38, where two groups are obtained: one group is contained 
in the other group, thus it is equivalent as having one only group. This example illustrates how the proposed algo-
rithm is able to reduce the domains of the variables to obtain the regions in the image which satisfy the conceptual 
graph.

6. Interpreting an unlabeled image

When dealing with an unlabeled image, the difficulty lies in adequately creating the domain of regions which can 
represent each concept node of the model conceptual graph. As mentioned in Section 2.3, we tackle this difficulty by 
performing a multi-scale segmentation, which allows us to extract objects of different sizes. Moreover, the multi-scale 
segmentation provides an explicit hierarchical organization of the regions which can be useful for spatial reasoning. 
In our experiments, we used a hierarchical Mean Shift algorithm [14,36].

We assume that the regions obtained from the segmentation are object candidates. By considering this hypothesis 
we do not have to worry about segmentation problems such as a region containing two objects or an object split into 
several regions.

The membership functions of each domain of the FCSP are constructed over the set of regions obtained from the 
segmentation. To estimate the initial membership function we use two types of information:



M.C. Vanegas et al. / Fuzzy Sets and Systems 286 (2016) 1–29 23
Table 6
Objects belonging to Dgroup at different iterations in the process of solving the FCSP.

• the approximate size of objects represented by the concept nodes of the graph,
• the knowledge about the extraction of certain types of concepts of the vocabulary over which the conceptual graph 

is built.

For the first type of information, we assume that it is possible to know the typical sizes of the objects that we are 
searching, as in [8]. This information is given as linguistic terms {very small, small, medium, large, very large} which 
are modeled using trapezoidal membership functions over R. The parameters defining these functions can be learned 
according to the scene. The second type of information depends on the concepts. In remote sensing, we can exploit 
the fact that we know how to extract certain classes of concepts, for instance:

• water (using Normalized Difference Water Index NDWI [30]),
• vegetation (using Normalized Difference Vegetation Index NDVI [22]),
• shadow (using a hysteresis threshold over the intensity image), etc.

Let (TC, ≤C) be the concept hierarchy of the vocabulary over which the conceptual graph is built. Let HC be a set 
representing the classes of concepts that we know how to extract. We propose to add the concepts of HC to TC , and 
also add a concept “Other” to represent all the concept classes which are not “a_kind_of” one of the concepts in HC . 
For example Fig. 9(a) illustrates an initial concept hierarchy and Fig. 9(b) the augmented hierarchy.
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Fig. 9. (a) Initial TC . (b) Augmented TC using the concepts HC = {water, vegetation}.

We construct the membership functions of the domains over the regions provided by the segmentation using the 
inclusion relation between the categories of TC . First we extract in the image the regions corresponding to the classes 
of concepts in HC . Then we compute the “Other” class as the complement of the disjunction of the known classes. 
Suppose that we can define every c ∈ HC ∪ {“Other”} as a fuzzy set μc over the image space. Then for every concept 
node in the conceptual graph, represented as a variable xi , we construct its membership function over the regions of 
the image as:

μxi
(v) =

[ ∧
{c∈HC | type(xi )≤Cc}

F(μc, v)

]
∧ μsize_i(v) (10)

where μsize_i represents the membership function corresponding to the size of the objects represented by xi , and F
is a comparison measure which evaluates how well v matches with μc. For instance, F can be a mean measure. The 
first term in Eq. (10) is the conjunction of all the membership degrees of the classes of HC for which the type of the 
concept xi is a sub-category. Adding the “Other” class allows us to have an initial membership degree for each class 
which already excludes the other classes. Another alternative would be to give a membership degree equal to 1 to all 
the regions for which we do not have any information.

Once the initial membership functions for the variables that represent the concept nodes of the model are estimated, 
we can apply Algorithm 3 to find the arc-consistent domains. The proposed method is illustrated in Fig. 1.

6.1. Finding a solution

Applying the arc-consistency algorithm reduces the domain of search of the homomorphism (expressed as a FCSP). 
The instantiations of the model, or the solutions of the FCSP, are obtained by searching in the reduced domains using 
a branch and bound algorithm as in [17,31]. The regions of the image are then labeled according to the instantiations 
of the model. When labeling the regions, it is possible to encounter a conflict among two instantiations. A conflict 
between two instantiations arises when there is a region in an image that is labeled differently according to each 
instantiation. In case of a conflict we propose to eliminate the instantiation which is less important, according to some 
order.

There are several strategies to order the solutions obtained from a FCSP [18]. We propose to use an egalitarist 
approach [3], where the order is given by the least satisfied relation of the FCSP. An example of this type of approach 
is the maximin strategy: let V1 and V2 be two tuplets containing an instantiation of the model, we say that V1 ≤ V2
if and only if cons(V1) ≤max–min cons(V2). The egalitarist approach, in particular the maximin, preserves a basic 
property of FCSP, where a solution violating a constraint is not considered as feasible. However, one drawback of the 
maximin approach is that it is not capable of discriminating among solutions having different satisfaction degrees for 
each constraint except for the minimum degree [18,19]. To refine the ordering obtained by the maximin strategy, the 
authors in [3] propose to use a maxisum approach to discriminate between the solutions that cannot be discriminated 
using the maximin approach, and in [18,20,32,39] a lexicographical ordering is used to improve the discrimination of 
the maximin. Here we also use the leximin ordering as in [18,20,32,39] to define an order between solutions. Given 
two vectors A = (a1, . . . , an) and B = (b1, . . . , bn), assume that A∗ = (a∗

1 , . . . , a∗
n) and B∗ = (b∗

1, . . . , b∗
n) contain the 

elements of A and B in ascending order, respectively. We say that A is less than B according to the leximin order 
if and only if there exists k ≤ n such that a∗

k ≤ b∗
k and a∗

j = b∗
j for all j < k. The leximin order is applied using the 

original membership degrees defined over the regions before the arc-consistency algorithm was applied.
In our experiments we did not have a great number of conflicting instantiations. However if the number of conflict-

ing instantiations is very high then the ordering of the solutions according to the leximin can lead to an exponential 
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Fig. 10. Conceptual graph used for the interpretation of Fig. 11(a). This graph was built over the vocabulary from Fig. 11(b).

Fig. 11. (a) Quickbird image of a lake. (b) Image containing the objects detected as instantiations of the model. The green regions represent the 
true positive tiles where the model was correctly identified, at the interior of each tile the detected objects are represented in lighter green. The 
orange region represents a false negative tile where the algorithm did not detect the model. The red regions represent the false positive tiles where 
the algorithm incorrectly detected the model. And the black regions represent the true negative tiles where the model was correctly not detected. 
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

number of optimal solutions. To alleviate this problem it is possible to enforce arc-consistency based on the leximin 
criterion as proposed in [12]. Using this type of arc-consistency would enforce the leximin ordering while reducing 
the domains. Moreover it is possible to improve the performance of the arc-consistency algorithm using substitution 
techniques as in [28] or [11] where a method for arc-consistency based in the leximin criterion is proposed.

6.2. Results

We illustrate the proposed method in two situations: searching for the harbors in an image and interpretating an 
image containing an airport, in two Quickbird images with a resolution of 0.7 m.

Finding harbors We applied the method summarized in Fig. 1 to the image displayed in Fig. 11(a) to extract the 
harbors in the image. The conceptual graph that we used to represent the structure of a harbor is given in Fig. 10. In 
this example, we do not use alignments because of the low quality of the segmentation of boats.
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Fig. 12. Examples of instantiations of the model of Fig. 10 in the image tiles of Fig. 11(a). Figures (a), (c) and (e) correspond to the original tile, 
and figures (b), (d) and (f) to the model instantiations, respectively. In yellow the sea, in pink the boats and in blue the docks. (For interpretation of 
the references to color in this figure legend, the reader is referred to the web version of this article.)

The image in Fig. 11(a) has 5901 × 11 801 pixels. We divided the image into 72 tiles of approximately 985 ×
985 pixels, and applied the method in each tile. To extract the initial candidate regions for each domain, the set 
HC containing the known classes was {water, vegetation}, and in addition we used the fact that docks have a linear 
structure.3 Fig. 9(b) illustrates the concept hierarchy.

From the 72 tiles, we correctly detected the presence and no-presence of a harbor in 68 tiles. In Fig. 11(b) we show 
the true positive, true negative, false positive and false negative tiles. We can see that although we used a very simple 
graph it was possible to extract the zones of the image which correspond to the harbors. In Fig. 12 we show some 
examples of the instantiations of the model. We can see that in (a) to (f) the harbors are correctly detected. Even if 
the harbor of (c) is very small, the method finds satisfactory instantiations in (d). Most of the correct instantiations 
have a higher consistency value (Eq. (3)) than the false detections. This example illustrates how the method reduces 
considerably the regions of the image where we can search for a harbor.

Interpretation of an airport image The second example addresses the problem of interpretating the airport image of 
Fig. 13(a). For this example we used the model in Fig. 14(a) with the concept hierarchy in Fig. 14(b).

The results of the multiscale segmentation are shown in Figs. 13(b), (c) and (d). The instantiations of the model are 
shown in Fig. 13(e). We can see that although the segmentation produces more than 1000 regions, the instantiations 
coincide with the airport. There is only one building which was not detected, because it was split into two regions in 
the segmentation and one of the regions satisfies the condition of being adjacent to its shadow, but they do not satisfy 
the condition of being adjacent to the concrete surface.

3 To evaluate if a region is linear we computed the ratio of its largest principal moment by the smallest principal moment, and we considered that 
an object was linear if this ratio was equal or greater than 4. This value was set experimentally.
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Fig. 13. (a) Airport image. (b), (c) and (d) Results of the multiscale segmentation at 3 different scales. (e) Instantiations of the conceptual graph of 
Fig. 14(a) in the image of figure (a). In red the aligned green zones, in green the green zone which does not belong to the aligned group, in blue the 
concrete area, and in yellow the building and its shadow. (For interpretation of the references to color in this figure legend, the reader is referred to 
the web version of this article.)

Fig. 14. Knowledge used for the interpretation of Fig. 13(a).

Discussion Through these two examples we have shown the interest of the proposed approach for obtaining the 
instantiations of complex objects in an image. Although the segmentations in both examples were not perfect, the 
methodology was able to detect the instantiations of the models in the images. Moreover, we were able to extract the 
instantiations of the complex objects without needing to specify a method for extracting each object of the scene.
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The use of homomorphisms between the model conceptual graph and the image allows us to retrieve several 
instantiations of the objects composing complex objects. For instance we were able to retrieve the two groups of 
aligned green zones in the airport, or different boats which are adjacent to a dock in the harbors. Moreover, using 
the conceptual graphs for the representation of the desired structure allows us to represent groups having a relation 
with other objects and members of the group having relations with objects outside the group. The richness of this 
representation leads to the description of a complex structure like an airport in a simple way.

In these two examples we used very simple concept hierarchies and only few classes HC to help us to identify the 
initial candidates for the instantiations of the concept nodes in the image. However, if HC has more elements it is 
possible to have a smaller set for the initial candidates and the number of false detections can be reduced.

7. Conclusion

We have addressed the problem of incorporating complex spatial relations in a model which represents a scene that 
we want to find in an image. For this, we first adapted a representation scheme to introduce this type of information in 
a model, then we addressed the problem of identifying the model in the image, by simultaneously considering some 
of the possible information imperfections which are present in this type of problem.

The mapping problem was represented as a graph homomorphism which allows us to have several instantiations of 
a model in an image. This flexibility is adequate for satellite images since most of the time the number of instantiations 
of a model in an image is unknown. This is an important and new characteristic of the proposed approach.

The problem of obtaining the graph homomorphism in an image was formulated as a CSP, as in [7]. However, due 
to the imprecision of the spatial relations, it was necessary to move to a more flexible formalism such as FCSP. We 
adapted the algorithm to deal with groups of objects which can be aligned or not. This extension is a new contribution.

Finally, we proposed a methodology to find the instantiations of a conceptual graph in an unlabeled image. Our 
method was successfully applied to unlabeled images obtaining good results, even if there were segmentation errors. 
The results demonstrate the interest of using the spatial relations for the interpretation of images.

This work could also be used for different applications, such as in the medical domain, extending the work in 
[34] (using fuzzy relations but with crisp CSP) for instance. Different relations would be relevant but in general 
the proposed methodology can be applied. The extension of FCSP to groups of objects can be useful to represent 
pathologies that can occur at different locations (e.g. multiple sclerosis, groups of microcalcifications. . .).
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