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Abstract Keeping a minimal number of channels is

essential for designing a portable brain–computer interface

system for daily usage. Most existing methods choose key

channels based on spatial information without optimization

of time segment for classification. This paper proposes a

novel subject-specific channel selection method based on a

criterion called F score to realize the parameterization of

both time segment and channel positions. The F score is a

novel simplified measure derived from Fisher’s discrimi-

nant analysis for evaluating the discriminative power of a

group of features. The experimental results on a standard

dataset (BCI competition III dataset IVa) show that our

method can efficiently reduce the number of channels

(from 118 channels to 9 in average) without a decrease in

mean classification accuracy. Compared to two state-of-

the-art methods in channel selection, our method leads to

comparable or even better classification results with less

selected channels.

Keywords Brain–computer interfaces � Channel

reduction � Time information � EEG � Fisher’s discriminant

analysis

Introduction

Brain–computer interfaces (BCIs) are systems that support

a direct communication between brain and computer

without any use of peripheral nerves and muscle move-

ments [1, 31]. The basic structure of a BCI typically

includes four essential parts: brain signal acquisition, fea-

ture extraction, feature-to-command translation and com-

mand output pathway. Some systems may contain a

feedback. The brain signal can be recorded by various

techniques, either invasive or noninvasive [19].

The BCIs based on electroencephalography (EEG) are

noninvasive BCIs, which record EEG signal with elec-

trodes placed on the surface of the scalp [1, 8, 23]. EEG

studies show that imaginary movements of different body

parts can cause a power decrease in sensorimotor rhythms

of EEG, i.e., l (8–13 Hz) and b rhythms (14–35 Hz), called

event-related desynchronization (ERD), at corresponding

‘‘active’’ cortex areas [25]; meanwhile, a power increase in

sensorimotor rhythms called event-related synchronization

(ERS) might be observed at other ‘‘idling’’ areas during the

motor imagery [24]. Thus, motor imagery of different body

parts can be identified by classifying ERD/ERS patterns,

which gives birth to a type of EEG-based BCI called motor

imagery BCI [31].

The advantage of this type of BCI is that it is inex-

pensive, of low risk and portable. However, due to volume

conduction through the scalp, skull and other layers of the

brain, the EEG recorded by a scalp sensor is a ‘‘blurred’’

copy of multi-source activities (e.g., visual-related
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Issy les Moulineaux 92794, France

123

Cogn Comput (2016) 8:505–518

DOI 10.1007/s12559-015-9379-z

Author's personal copy

http://crossmark.crossref.org/dialog/?doi=10.1007/s12559-015-9379-z&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s12559-015-9379-z&amp;domain=pdf


activities and motor imagery) [11, 22], which reduces the

signal-to-noise ratio (SNR) and therefore increases the

difficulty of signal decoding. The classical solution is to

use a multi-channel recording and spatial filtering algo-

rithms, such as common spatial patterns (CSP), to improve

the SNR and extract discriminative features from over-

lapping signals [7]. However, this setting may reduce the

portability and practicability of BCI, because it typically

requires a large number of EEG electrodes (e.g., 64 or

128), which represents a main drawback for final users in

daily usage (e.g., neuro-games) [36].

To develop a daily use system, several advanced algo-

rithms were proposed to reduce the number of electrodes in

BCI by selecting some key EEG channels [4, 12, 15, 16,

27, 30, 37]. A thorough review of channel selection algo-

rithms for EEG signal processing can be found in [2]. Most

of existing studies addressed the issue of channel selection

using only spatial information, disregarding the potential

impact of time and frequency information. In this case, the

optimal combination of time, frequency and channel

(electrode) position may not be achieved in a BCI design.

Although a recent study showed that a broad frequency

band (8–30 Hz) that covers both l (8–12 Hz) and b
(18–25 Hz) bands can generally be used when employing

features, called time domain parameters (TDPs) [28], the

existing channel selection methods mainly work with the

popular band power (BP) feature, which is sensitive to

frequency band and time segment [10, 17, 34].

As motor imagery BCIs typically rely on decoding sen-

sorimotor rhythm, in practice, many researchers simply

placed electrodes at three key positions (C3, Cz and C4 of

10–20 recording system [14]) in the sensorimotor areas to

reduce the number of electrodes, which we call 3C setup.

The advantages of the 3C setup are that it does not need a

full EEG cap, training data or machine learning methods to

find the optimal positions for recording. It can be used when

only a few electrodes are available. However, due to the

limited information and low SNR of signal, it may not

achieve good classification results in most cases. Our pre-

vious studies indicated that some preprocessing steps, such

as the time–frequency optimization, were often needed to

improve the performance of 3C setup (see [33, 34], for

details). Moreover, general users may not be skillful enough

to place the electrodes at the precise locations of C3, Cz and

C4 each time, if a standard EEG cap is not used.

Here, we present a novel channel selection method using

TDP features. As TDP features are less sensitive to fre-

quency band, we used broadband (8–30 Hz) EEG signals in

this work. Different from the existing methods [4, 12, 16, 27,

30, 37] and our previous work on channel selection [15], this

novel approach considers the effect of time window on

channel selection, so as to find the optimal combination of

time segment and subset of channels for BCI design. A new

criterion based on Fisher’s discriminant analysis, namely

F score, was used in our method to measure the discrimi-

nation power of TDP features extracted from different

channels and different time segments. The application of

this new criterion has first been demonstrated in our previ-

ous study by Yang et al. [34] for time–frequency opti-

mization in BCIs, showing better results than the state-of-art

methods. Later, this new criterion has also been successfully

applied to a motor cognition study by Ansuini et al. [3] for

classifying kinematic features.

We evaluated our method in a standard dataset (BCI

competition III dataset IVa [5]). We performed the com-

parisons between the channel selection using time infor-

mation (CSTI), the channel selection based on the long

time segment from the cue on-set to the ending of the cue,

the 3C setup, the full-cap-based CSP and two state-of-the-

art methods in channel selection (the l1-norm-based sparse

CSP [37] and the Riemannian distance-based channel

selection [4]) to validate the contribution of our method

(CSTI). Additionally, the effects of electrode misplacing

and data evolution were also examined to study their

potential influence on classification.

Materials and Methods

Time Domain Parameters

The EEG signals are band-pass-filtered between 8 and 30

Hz using a 5th-order Butterworth filter. For one channel

(electrode) and one trial, we denote by x(t) the filtered EEG

signal in a time segment ½t0; t0 þ T � 1�. Time domain

parameters (TDPs) are a set of broadband (i.e., 8–30 Hz)

EEG features defined in the time domain [28]:

TDPðpÞ ¼ log var
t2½t0;t0þT�1�

dpxðtÞ
dtp

� �� �
; p ¼ 0; 1; 2; . . .

ð1Þ

The logarithm is applied here to make the distribution of

TDPs approximately Gaussian (for details, see [28]), since

the linear classifier we use here typically assumes that the

input features follow Gaussian distributions [21]. Note that

the TDP of order 0, A ¼ TDPð0Þ, is the BP feature. It

characterizes the EEG pattern in terms of amplitude.

Although TDP features are defined in the time domain,

they can as well be interpreted as frequency domain filters.

Therefore, the frequency domain information has already

been integrated in the TDP features. The TDP of order 1,

M ¼ TDPð1Þ, can be considered as a feature that reflects the

EEG pattern in terms of high frequency (mainly the beta

band), and the TDP of order 2, C ¼ TDPð2Þ, reflects the

change in frequency [28]. We use these three TDPs,
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[A, M, C], in this work, since they carry more information

than the only BP feature, and have clearer physical

meanings than TDPs of higher orders in BCI research.

A Criterion Based on Fisher’s Discriminant

Fisher’s linear discriminant analysis (Fisher’s LDA) is a

very popular classification algorithm in BCI research [21],

because it has a very low computational cost and usually

yields good results for motor imagery BCIs [18]. It projects

high-dimensional data onto a direction and performs a

linear classification in this one-dimensional space. The

optimal projection is found by maximizing the separation

between two classes. Let us assume that we have two

classes of observations, h and f. In a one-dimensional

feature space, the separation between two classes is defined

using the Fisher criterion [21]:

FC ¼ ðlh � lf Þ2

ðrhÞ2 þ ðrf Þ2
ð2Þ

where lh and lf are the mean values of the feature over all

trials for classes h and f, respectively, and (rhÞ2
and (rf Þ2

are the variances of the feature.

In feature selection, FC can be used to evaluate the

discrimination power of each single feature [21]. However,

it is not directly suitable to evaluate the discrimination

power of a group of features. Thus, we proposed a novel

and simplified criterion based on Fisher’s discriminant,

called F score [34], F̂, and used it to estimate the dis-

crimination power of a group of features (here TDP feature

vector [A, M, C]):

F̂ ¼
l!h � l!f

��� ���2

2

trðRhÞ þ trðRf Þ
ð3Þ

where R denotes the covariance matrix of the feature

vector, l! denotes the mean of the feature vector, �k k2

denotes the L2-norm (Euclidean norm), and trð�Þ the trace

of a matrix.

Compared to FC, F̂ is a derived version relying on the

Euclidean distance between class centers, l!h � l!f
��� ���

2
, to

estimate the difference between classes, and employing the

trace of the covariance matrix to evaluate the variance

within a class. Note that this simplified expression avoids

estimating a projection direction as required by the general

multi-dimensional expression of Fisher’s LDA.

F Score-Based Channel Selection

A spatial filtering is performed in each channel based on

the small-distance Laplacian derivation [20] to reduce the

signal correlation and common noise among neighboring

channels. The TDPs, ½Av
eðiÞ;Mv

e ðiÞ;Cv
e ðiÞ�, are computed for

a time segment ½tn; tn þ T � 1� for each single trial i at

channel e for class v (v 2 h; ff g). Then, the discrimination

power of channel e is estimated by the F score:

F̂e ¼
�Ah
e � �Af

e

� �2þ �Mh
e � �Mf

e

� �2þ �Ch
e � �Cf

e

� �2

~Ah
e þ ~Af

e þ ~Mh
e þ ~Mf

e þ ~Ch
e þ ~Cf

e

ð4Þ

with

TDP
v
e ¼

1

Kv

X
i¼1

Kv

TDPv
eðiÞ ð5Þ

gTDPv
e ¼

1

Kv � 1

X
i¼1

Kv

TDPv
eðiÞ � TDP

v
e

� �2 ð6Þ

where TDP
v
eðiÞ and gTDPv

eðiÞ are the estimated means and

variances of time domain parameters (TDP, i.e.,

½Av
eðiÞ;Mv

e ðiÞ;Cv
e ðiÞ�); Kv is the number of training trials for

class v.

Existing methods typically determine the number of

selected channels based on user’s experience [30] or

exhaustive searching strategy [4, 16], which is either

arbitrary or time-consuming. Here, we propose an auto-

matic approach, by considering the properties of both

features and classifier to determine the size of the subset of

selected channels.

Let F̂m be the largest F score among all channels. The

relative discrimination power of each channel e is defined

as:

qFðeÞ ¼
F̂e

F̂max

ð7Þ

The value of qFðeÞ is between 0 and 1. A larger qFðeÞ
indicates a larger relative discrimination power. Thus, a

threshold q̂ can be set to extract the channels with

qFðeÞ[ q̂ to be used for classification. A lower value of q̂
tends to pick out more channels. In practice, the training

trials should have several times as many as the dimen-

sionality of features to guarantee a good performance of the

classifier [13]. Based on this knowledge, the range of q̂ can

be shrunk to [P, 1.0] to feed the classifier, where P is

obtained by:

min
P

NumðPÞ s:t:

P 2 ½0; 1:0�;NumðPÞ�K=3R
ð8Þ

where NumðPÞ is the number of selected channels with

qFðeÞ[P;K is the number of trials for training, and R is

the ratio of the number of trials to the number of features

for a specific classifier. Note that each channel yields three

TDPs, so here we have NumðPÞ�K=3R. As a linear

classifier, such as Fisher’s LDA, typically needs 5–10
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times training trials as many as the dimensionality of fea-

tures [18], we set R ¼ 5 to have a loose range of q̂ for

further optimization. Different subsets of channels

according to different q̂ 2 ½P; 1:0� are used to train the

classifier. The optimal q̂ is obtained by seeking the subset

with the lowest training error (ERR) in the classifier

training. The training error is defined as the observed

overall disagreement between classification outputs and

true classes. If there are more than one optimal value

obtained, we use the largest one.

Channel Selection Using Time Information (CSTI)

This method aims to find the optimal combination of time

segment and subset of channels for classification. The

general scheme of the method, called CSTI, is shown in

Fig. 1. First, we compute the TDP features and the F score

for each channel in a series of overlapping T-width time

segments ½tn; tn þ T � 1� (n ¼ 1; . . .;N), tnþ1 ¼ tn þ Ts (Ts
is the step), during the motor imagery duration ½T0; Te�,
where T0 is the beginning time of motor imagery and Te is

the ending time. Then, the optimal subsets of channels

SðtnÞ and their corresponding training error ERRðq̂�ðtnÞÞ
are obtained by the F score-based channel selection pro-

posed above for different time segments ½tn; tn þ T � 1�
(n ¼ 1; . . .;N), where q̂�ðtnÞ is the optimal q̂ in the time

segment ½tn; tn þ T � 1�. The optimal time segment ½t�; t� þ
T � 1� is found by seeking the lowest training error

ERRðq̂�ðtnÞÞ among all time segments, in order to obtain

the optimal subset of channels Sðt�Þ in the optimal time

segment ½t�; t� þ T � 1�.

Experimental Data and Goals

The dataset IVa [5] from BCI competition III is used in this

study. As it consists of EEG signals recorded using 118

electrodes, this dataset is very suitable for a fine selection

of EEG channels. Five subjects, denoted ‘‘aa,’’ ‘‘al,’’ ‘‘av,’’

‘‘aw’’ and ‘‘ay,’’ have performed 280 trials of cue-driven

motor imagery (right hand: 140 trials, right foot: 140 trial)

during the recording. The acquisition process was driven

by visual cues, presented during 3.5 s, and separated by

randomly chosen intervals, ranging from 1.75 to 2.25 s.

Subjects were required to perform the corresponding motor

imagery task during the presentation of a cue and to relax

in the intermission. Thus, T0 ¼ 0 is the time point of the

cue-onset, and Te ¼ 3:5 s is the ending of the cue. Ground

truth is available for all subjects in this dataset.

The aim of the experiment is to perform classification of

the signal, for each subject, into two classes (right hand and

right foot), with as few electrodes as possible. The F score-

based channel selection was performed in five (N ¼ 5)

overlapping time segments of 0–2.0, 0.5–2.5, 1.0–3.0, 1.5–

3.5 and 2.0–4.0 s after the cue on-set

(tn ¼ 0; 0:5; 1:0; 1:5; 2:0 s; T ¼ 2 s; Ts ¼ 0:5) to find the

optimal combination of time segment and subset of chan-

nels by CSTI. To verify the importance of time segment

selection, we also performed F score-based channel

selection in a long time segment from the cue on-set to the

ending of the cue for comparison. Moreover, we also

compared our method with full EEG cap-based CSP and

3C setup. The optimal CSP patterns are selected by using

an automatic algorithm proposed in our previous work

[32]. Fisher’s LDA was used as the classifier in this study,

since F score is based on Fisher’s discriminant, and it

works well with TDP and BP features [18, 28]. The paired-

sample t test was employed to reveal the statistical sig-

nificance of the difference between the results of different

methods.

First, we used the first 70 trials for each class for

training, and the remaining ones for the independent test-

ing, to evaluate the contributions of our methods. The

results are provided in ‘‘Effect of Time Segment on

Channel Selection and Classification’’ to ‘‘Comparisons

with Other Methods’’ sections. This choice of training/

testing data corresponds to a usual situation in real appli-

cations, where the training data are recorded before the

testing data. Using 50 % trials for training makes the

information for training comparable to that for testing.

Secondly, considering the data evolution, we also tested

our method with randomly selected training and testing

data (70 training trials vs. 70 testing trials for each class) to

evaluate the robustness of our method. The results are

provided in ‘‘Effect of Data Evolution’’ section.

Results and Discussion

Effect of Time Segment on Channel Selection

and Classification

The spatial distribution of the F score and the selected

electrodes in different time segments are shown in Fig. 2,

where the selected time segments are marked out by

squares. The testing results obtained when using the

selected electrodes in different time segments of 2 s are

provided in Table 1, and the results from the selected time

segments are in Italic. The results are evaluated by clas-

sification accuracy (ACC), which is defined as the observed

overall agreement between classification outputs and true

classes. From Fig. 2, we can see that the subsets of selected

electrodes vary with time segments for each subject, indi-

cating that time segment is an important factor that should

be considered in electrode selection. Among all possible

combinations of time segment and subset of electrodes, the

selected combination yields the highest classification

508 Cogn Comput (2016) 8:505–518
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accuracy (ACC) on the testing data. This result shows that

CSTI is effective in finding the optimal combination of

time segment and subset of electrodes. However, CSTI has

a computational cost, which is at least N times (N is the

number of different time segments, here N = 5) the one of

the methods only performing channel selection in only one

single time segment. In our experiments, the computational

time for CSTI was 11 s MATLAB 7.10.0, Window 7

Professional 64 bits, CPU 2.66 GHz, RAM 2.0 GB). It was

5 times the computational time for channel selection in a

single time segment (around 2 s). Nevertheless, this

additional calibration time remains acceptable for several

applications, such as neuro-games [36].

In this study, we also performed F score-based channel

selection in a long time segment (CSL) from the cue on-set

to the cue ending (that covers the whole period of motor

imagery) [35] to see: (1) whether a long time segment will

improve the results of channel selection (i.e., selecting less

electrodes and/or improving classification accuracy), (2)

whether the effect of time segment can be ignored by using

a long time segment that covers the full period of motor

Fig. 1 General scheme of CSTI
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imagery, so as to save computational time. Comparisons

between CSTI and CSL are provided in Table 2. Compared

to CSTI, CSL selected less electrodes (except for ‘‘ay’’)

and used less computational time (see Fig. 2 and Table 2).

However, CSL only improves ACC for one subject (‘‘av’’).

For the other subjects, CSL yields significantly worse ACC

Fig. 2 Topographic maps of the F score (color scale) and selected

electrodes (marked by bold points) in different time segments. The

number of selected electrodes is given below each map. The selected

time segments are marked out by rectangles. Results in the long time

segment obtained by CSL are provided in the last column

Table 1 ACC results when using the selected subset of electrodes in

different time segments

Subject 0–2.0 s 0.5–2.5 s 1.0–3.0 s 1.5–3.5 s 2.0–4.0 s

aa 0.53 0.67 0.67 0.67 0.64

al 0.78 0.89 0.87 0.87 0.88

av 0.49 0.61 0.61 0.61 0.58

aw 0.66 0.51 0.71 0.75 0.81

ay 0.73 0.90 0.92 0.84 0.80

The ACC obtained from the selected time segment is in Italic

Table 2 The effect of time information on channel selection and

classification

Subject NS CT (s) ACC

CSL CSTI CSL CSTI CSL CSTI FL FTI

aa 4 8 2 11 0.61 0.67 0.47 0.59

al 5 6 2 11 0.82 0.89 0.94 0.87

av 8 11 2 11 0.63 0.61 0.69 0.62

aw 1 10 2 11 0.74 0.81 0.94 0.56

ay 11 11 2 11 0.84 0.92 0.84 0.69

Mean 6 9 2 11 0.73 0.78 0.78 0.67

NS number of selected channels, CT computational time for channel

selection under the environment: MATLAB 7.10.0, Window 7 Pro-

fessional 64 bits, CPU 2.66 GHz, RAM 2.0 GB, ACC classification

accuracy, CSL channel selection using a long time segment, CSTI

channel selection using time information, FL full-cap classification

using a long time segment, LTI full-cap classification using time

information
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than CSTI does (t test: p\0:05). Considering the deterio-

rated ACC, using a long time segment in channel selection

cannot fully improve the results for most subjects. Thus,

the effect of time segment cannot simply be ignored by

using the long time segment.

Although CSTI tends to select more electrodes than CSL

does, the number of CSTI selected electrodes is no more

than 11 (see Fig. 2 and Table 2), which is comparable to

commercial BCI system Emotiv EPOC,1 which has 14

electrodes. Thus, the number of electrodes selected by

CSTI is still reasonable and acceptable for general appli-

cations (e.g., in a game environment).

Additionally, we also investigated the effect of time

segment selection on the classification accuracy with the

full-cap data. Experimental results show that time segment

selection alone did not improve the classification accuracy

(see Table 2). Thus, time segment selection may only be

necessary with channel selection.

Comparisons with Other Methods

Table 3 lists the testing results (evaluated by ACC) of the

full-cap CSP and the 3C setup using BP and TDP features,

as well as two state-of-the-art methods in channel selection

using BP features, i.e., the l1-norm-based sparse CSP

(SCSP) [37] and the Riemannian distance-based channel

selection method (Rd) [4]. To make the comparison easy,

the testing results of CSL and CSTI are also reminded in

Table 3.

For the full-cap CSP as well as for the 3C setup, using

TDPs yields better mean ACC (ACC ¼ 0:78 for full-cap

CSP, ACC ¼ 0:72 for 3C setup) than using BP (ACC ¼ 0:76

for full-cap CSP, ACC ¼ 0:71 for 3C setup). The difference

is not significant (p[ 0:05) due to the limited number of

subjects in this dataset. For most subjects, using TDPs did

improve ACC, which is in agreement with the results in [28].

With the BioSig toolbox [26], TDPs are easy and fast to

calculate (2 ms using MATLAB 7.10.0, Window 7 Profes-

sional 64 bits, CPU 2.66 GHz, RAM 2.0 GB). Unlike BP

which often requires the selection of frequency bands to

improve classification results [34], TDPs save computation

time during the frequency band selection. All of these indi-

cate the interest of using TDPs in motor imagery BCI.

The results obtained using CSTI (ACC ¼ 0:78) are

significantly better (p\0:05) than simply using 3C setup

(ACC ¼ 0:71 when using BPs, ACC ¼ 0:72 when using

TDPs). The mean classification accuracy when using CSTI

is better than using full-cap CSP with BP features

(ACC ¼ 0:76, not significant with p[ 0:05) and equal to

using full-cap CSP with TDP features (ACC ¼ 0:78 when

using TDPs). For some subjects (‘‘aa’’ and ‘‘ay’’), CSTI

even yields higher ACC than full-cap CSP. Thus, CSTI

meets the goal of largely reducing the number of electrodes

(from 118 channels to 9 in average), without a drop of the

mean classification performance. This result is better than

the l1-norm-based sparse CSP (SCSP) [37] with higher

mean ACC (0.78 vs. 0.73) and less selected channels (9 vs.

13). Although there is no difference between CSTI and the

Riemannian distance-based method (Rd) [4] in the mean

ACC over subjects (both ACC ¼ 0:78), CSTI selects

slightly less channels than the Riemannian distance-based

method (9 vs. 10) and leads to better individual results in

three out of five subjects (subject ‘‘av,’’ ‘‘aw’’ and ‘‘ay’’).

Moreover, CSTI uses a relatively shorter time segment (2 s

length) than the methods in comparison (3.5 s length). For

most subjects (except ‘‘aw’’), the classification outputs are

obtained before the ending of cue, which indicates that less

time (here, less than 3.5 s) is required for recording the

training data for these subjects.

Recently, Wang et al. [29] have introduced a sophisti-

cated method for a similar purpose as our method (CSTI).

Their experimental results showed that their method can

simultaneously achieve channel and feature selection with

a lower error rate (22.22 %). Thus, their classification

performance could be similar to our method (CSTI).

However, their method selected a larger number of chan-

nels (i.e., 17–23 channels) than our method for motor

imagery BCI.

Additionally, we found that CSL generates slightly

better mean ACC (ACC ¼ 0:73) than simply using 3C

setup. However, this improvement is not significant

(p[ 0:05) and does not occur for all subjects. Moreover,

CSL tends to select more than three channels and needs a

full EEG cap to acquire training data for seeking the

optimal subset of electrodes. Thus, CSL is not cost-effi-

cient in real applications.

Among all methods, the mean ACC of 3C setup is the

worst, but it uses the least number of electrodes (only three

channels) and can yield better ACC than the full-cap CSP

for one subject in the dataset (‘‘aa’’). Moreover, 3C setup has

no additional computational cost and does not need full-cap

training data for calculating CSP filters or seeking the

optimal subset of electrodes. Thus, for electrode reduction,

the choice between CSTI and 3C setup may depend on a

preference between the number of electrodes, the compu-

tation cost, the amount of training data and the classification

performance. This choice can be left to the user.

Effect of Electrode Misplacement

The electrode positions might have undergone slight

changes compared to the standard 10–20 recording system1 https://www.emotiv.com/.
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[14] in real applications, in particular for general users who

may not be proficient in EEG recording. For example, an

inexperienced user may put the EEG cap a little bit left; as

a result, all electrodes are placed at the left side of the

standard positions during the recording.

In practice, the training and testing data may be recorded

in two different ways. In the first way, they are recorded in

one session without re-placing the electrodes. In this case,

if misplacement happens, both the training and testing data

are recorded at the same non-standard positions. For

machine learning-based methods, e.g., CSTI, the effect of

electrode misplacement can be neglected, because the

optimal subset of electrodes is estimated based on the

actual positions, where the data are recorded, instead of

standard positions, while for 3C setup, this effect should be

examined, because the selected channels (C3-Cz-C4) are

defined according to the standard positions. When the cap

is put incorrectly, nominal channels (C3, Cz and C4) of 3C

setup will not be in their standard positions.

In the second way, the training and testing data are

recorded in two sessions (maybe in two different days)

with re-placing the electrodes. As a result, the training and

testing data may be recorded at different non-standard

positions. Usually, not only the shift of electrodes should

be considered in this case, but also the change of the mental

state of the user [6]. It is a very complicated problem, so-

called the challenge of ‘‘session-to-session transfer’’ [6]. In

fact, all methods face this challenge. As both the change of

mental state and the shift of electrodes may exist but are

unpredictable, even if a method has achieved a good per-

formance in one ‘‘session-to-session transfer’’ test, it may

fail in the next one if the changes are too large. In real

applications, commercial BCI systems (Emotiv and Neu-

rosky) require the user to wait a few seconds (or minutes)

for calibration after putting the cap (to check the electrode

impedance) and to perform a training session with feed-

back before the real play, to overcome this challenge. As a

result, this calibration costs users some additional time for

collecting the training dataset.

To examine the effect of electrode misplacement on 3C

setup, we compared the classification results obtained using

the standard 3C setup (C3-Cz-C4) and using the non-s-

tandard 3C setup with the electrodes placed a little left (C5-

C1-C2), right (C1-C2-C6), forward (FC3-FCz-FC4),

backward (CP3-CPz-CP4) with respect to the standard

positions (see Fig. 3). Table 4 shows that using the elec-

trodes placed a little backward, the classification results are

improved for subjects ‘‘aa,’’ ‘‘al’’ and ‘‘av,’’ but deterio-

rated for subjects ‘‘aw’’ and ‘‘ay.’’ However, for all sub-

jects, the results using the electrodes placed a little forward

are significantly worse than using the electrodes placed at

the standard positions (p\0:01) and a little backwards

(p\0:01). Using electrodes placed a little left or right, the

results are deteriorated compared to those obtained with the

electrodes placed at the standard positions. Compared to

those obtained with the electrodes placed a little right, the

results obtained when using the electrodes placed a little

left are better for subjects ‘‘aa,’’ ‘‘av’’ and ‘‘ay,’’ but worse

for subjects ‘‘al’’ and ‘‘aw.’’

Figure 4 shows that the large values of F score are

mainly distributed in the post-central areas of the brain for

all subjects,2 which explains why using the electrodes

placed a little backward always generates better results

than using the electrodes placed a little forward. Mean-

while, for subjects ‘‘aa,’’ ‘‘av’’ and ‘‘ay,’’ the distributions

of large values of F score show a left-brain dominance.

Thus, the results obtained with the electrodes placed a little

left are better than those obtained with the electrodes

placed a little right for those subjects.

To sum up, the effect of changes of electrode position on

classification results depends on the subject and the

direction of error placement. As an inexperienced user may

unconsciously misplace the electrodes, the effect will be

unpredictable when simply using 3C setup and may lead to

a deteriorated result. Concerning this effect, CSTI can be

recommended to users who are not very professional in

EEG recording. However, training data and computation

2 We provide the locations of electrodes selected by CSL instead of

CSTI for comparison, since this part of analysis is based on the whole

time period for 3C setup.

Table 3 Classification accuracy

(ACC) and mean number of

electrodes for different methods.

The best ACC with selected

channels for each subject is

marked in bold

Subject ACC for full-cap (118) ACC for selected channels (average number of channels)

CSP 3C setup (3) SCSP (13) Rd (10) CSL (6) CSTI (9)

BP TDPs BP TDPs BP BP TDPs TDPs

aa 0.46 0.47 0.64 0.59 0.57 0.74 0.61 0.67

al 0.94 0.94 0.79 0.81 0.87 0.98 0.82 0.88

av 0.68 0.69 0.58 0.59 0.54 0.59 0.63 0.61

aw 0.94 0.94 0.73 0.79 0.84 0.80 0.74 0.81

ay 0.75 0.84 0.81 0.82 0.84 0.81 0.84 0.92

Mean 0.76 0.78 0.71 0.72 0.73 0.78 0.73 0.78
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time are needed for finding the optimal subset of

electrodes.

Effect of Data Evolution

The non-stationarity of EEG is a common problem in BCI

[9]. As mentioned above, it is common to discuss this issue

for session-to-session transfer. However, the data evolution

problem may also exist in one session data when the

recording period is relatively long, since the non-station-

arity of EEG can result from several causes. For example,

changes in electrode impedance may occur when the

electrically conductive gel between skin and electrode dries

out or an electrode gets loose. Additionally, the task

involvement and attention level of a subject may change

over the course of a BCI experiment. All these factors will

lead to some unpredictable modulations in EEG signals

even when both training and testing data are recorded in the

same session, resulting in a poor SNR in a time segment or

at a channel, which may impact the selection of time

segment and channel.

To examine this effect, we randomly selected 140 trials

(70 trials for right hand and 70 trials for right foot) as the

training dataset to find the optimal combination of time

segment and subset of electrodes by CSTI for each subject,

the remaining data forming the testing dataset. We repeated

this procedure 100 times. For comparison, we also calcu-

lated the subset of electrodes based on the long time seg-

ment by CSL.

The experimental results generated by CSTI show that

the optimal time segments are not always the same for

different training datasets even for the same subject. A

possible reason for this result is that the subject may not

have the same response time to the cue in different trials

due to different mental states and possible fatigue during

the BCI experiment [10]. The distribution of optimal time

segments for each subject is given in Fig. 5. It shows that

the optimal time segments mainly appear in the range of

0.5–3.0 s (i.e., the second and third time segments) for

subjects ‘‘aa,’’ ‘‘av’’ and ‘‘ay,’’ while a little bit later (i.e.,

the fourth time segment 1.0–3.5 s) for subjects ‘‘al’’ and

‘‘aw,’’ indicating that some subjects may need relatively

longer time for recording the useful data in each trial

compared to other subjects. The subsets of selected elec-

trodes also vary with different training datasets for the

Fig. 3 Standard 3C setup (C3-

Cz-C4) and the non-standard 3C

setups with the electrodes

placed a little left (C5-C1-C2),

right (C1-C2-C6), forward

(FC3-FCz-FC4), backward

(CP3-CPz-CP4)

Table 4 ACC results for standard 3C setup (C3-Cz-C4) and the non-

standard 3C setups with the electrodes placed a little left (C5-C1-C2),

right (C1-C2-C6), forward (FC3-FCz-FC4), backward (CP3-CPz-

CP4)

Subject Standard Left Right Forward Backward

aa BP 0.64 0.57 0.48 0.52 0.69

TDP 0.59 0.56 0.51 0.49 0.63

al BP 0.79 0.65 0.74 0.61 0.80

TDP 0.81 0.70 0.77 0.68 0.86

av BP 0.58 0.54 0.53 0.59 0.61

TDP 0.59 0.64 0.59 0.62 0.62

aw BP 0.73 0.58 0.66 0.65 0.66

TDP 0.79 0.54 0.66 0.64 0.70

ay BP 0.81 0.77 0.50 0.69 0.79

TDP 0.82 0.74 0.59 0.66 0.77

The best performance for each subject is in Italic
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same subject. These results indicate that the effect of data

evolution exists not only for ‘‘session-to-session transfer’’

but also when the training and testing data are recorded in

the same session.

The probabilities of channels being selected are shown

in Fig. 6. The red areas indicate the important brain areas

where the channels are often selected. We also marked out

the key channels with the selection probabilities above

80 %. The similarity is shown between CSTI and CSL,

although there are more key channels when using CSTI.

For most subjects (except subject ‘‘av’’), the key channels

are distributed over the hand representative area of the

sensorimotor cortex. Motor imagery of the right hand

typically elicits strong ERD in the hand representative area

of the sensorimotor cortex of the left brain (see Fig. 7).

Nevertheless, for some subjects (e.g., subjects ‘‘al’’ and

‘‘aw’’), the key electrodes are also found over the right

hemisphere (see Fig. 6). The reason is that motor imagery

can also cause an ERS in a ‘‘non-active’’ area [24]. For

example, performing a foot motor imagery can generate an

ERS in the hand representation area (see Fig. 7). The ERS

can also contribute to classification [25]. Channels in

central, frontal and occipital cortices are with very low

selection probabilities, indicating that those areas are less

important for distinguishing motor imagery of foot and

hand. This result implies the possibility of using a part

instead of all of the electrodes in an EEG cap to find the

optimal subset of channel.

Among all subjects, subject ‘‘av’’ does not have any

key channels. Thus, compared to other subjects, subject

‘‘av’’ needs a relatively larger number of electrodes and

computation time for finding the optimal subset of

electrodes.

Conclusions and Future Work

Although earlier studies have presented the need for

selecting and reducing the electrodes required in a BCI

system [4, 16, 17, 30], they addressed this issue based only

on spatial information, disregarding the potential impact of

temporal information. The contribution in this paper, with

the proposition of a novel method, CSTI, emphasizes the

potential effects of the chosen time segment on channel

selection. A criterion derived from Fisher’s criterion is

proposed to evaluate the discrimination power of a group

of features and applied on time domain parameters (TDP),

which overcomes the disadvantage of classical Fisher’s

criterion [21] on TDP feature selection.

Comparisons between CSTI, CSL, 3C setup and full-cap

CSP were performed. The comparisons of their average

performances on classification accuracy and reducing the

number of channels, their computational costs and training

data required for finding the optimal subset of electrodes

can be summarized as follows:

• Mean classification accuracy: 3C setup \CSL\
CSTI ¼ full-cap CSP;

• Mean number of channels used: 3C setup

\CSL\CSTI\ full-cap CSP;

• Computational cost for finding the optimal subset of

electrodes: 3C setup = full-cap CSP (no computational

cost) \CSL (2 s in the experiment) \CSTI (11 s);

• Training data required for finding the optimal subset of

electrodes: 3C setup = full-cap CSP (not needed)

\CSL ¼ CSTI (needed).

A full-cap setup with the CSP algorithm employs the

largest number of electrodes among all methods. The

Fig. 4 Distribution of F score

for different subjects in the long

time segment from the cue on-

set to the ending of the cue.

Electrodes selected by CSL are

marked by bold points
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tedious placement of EEG electrodes unavoidably reduces

its practicability in non-clinical applications, such as for a

home use of BCI systems. Moreover, the classification

performance obtained by full-cap CSP is not always the best

and may be even worse than 3C setup in some cases. Thus,

the classification performance is not proportional to the

number of electrodes, and it is possible to reduce the number

of electrodes without deteriorating the classification results.

The 3C setup uses only three channels (C3, Cz and C4)

that cover the sensorimotor areas of the brain. This setting

has the lowest number of electrodes and does not need a

standard EEG cap, training data and computation time to

find the optimal subset of electrodes. It is an ideal choice

when only very few electrodes (i.e., less than 10) are

available. However, in most cases, its classification accu-

racies are not as good as for other methods due to the

limited information it exploits. Moreover, the 3C setup

relies on a precise placement of electrodes, so it may not be

easy to use for users who are not professional in EEG data

recording.

CSL often chooses more than 3 channels for classifica-

tion; however, it can only slightly improve classification

accuracy compared to 3C setup. Thus, it may not be a good

choice in most cases.

CSTI can largely reduce the number of channels (from

118 channels to 9 in average), shorten the time window

length and achieve the mean classification accuracy com-

parable to the full-cap CSP. Compared to two existing

Fig. 5 Distribution of optimal

time segment for each subject.

The horizontal axis n indicates

the time segments ½tn; tn þ T �
1� (n ¼ 1; . . .; 5). The vertical

axis shows the number of times

each time segment is selected
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channel selection methods, the experimental results on a

publicly accessible BCI dataset show that our method is

better than them with less selected electrode and higher

classification accuracy for most subjects. The number of

electrodes selected by CSTI is less than that of the com-

mercial BCI system Emotiv EPOC. Thus, our method can

be used in designing BCI systems using few channels

(electrodes) for subject-specific applications. This work

can also help the BCI system designer to decide on the best

compromise between accuracy, easy use and portability,

according to the user’s needs.

In this study, we performed a subject-specific channel

selection. Although a non-subject-specific channel selec-

tion seems more promising, the individual differences

between subjects are still hard to overcome. A non-subject-

specific channel selection based on the training datasets

Fig. 6 Topography of selection probabilities of channels for each subject. The key channels with probabilities more than 80 % are indicated by

‘‘o.’’ CSTI: channel selection using time information, CSL: channel selection using a long time segment

Fig. 7 Time–frequency

visualization of ERD/ERS for

subject ‘‘aw.’’ It was generated

by the BioSig toolbox [26],

using overlapping 2 Hz bands

(step = 1 Hz) in the frequency

range between 6 and 32 Hz,

from 1 s before cue on-set to 4 s

after cue on-set (for details, see

[25])
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recorded from a few subjects may not capture the whole

inter-individual variability. A robust non-subject-specific

selection requires a very large database, and estimating its

minimum size is still an open question. In the future, we

will try to solve this problem and extend the study to multi-

class BCIs.
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rhythm (de)synchronization and EEG single-trial classification of

different motor imagery tasks. NeuroImage. 2006;31(1):153–9.
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