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Abstract. Spatial information may be endowed with a bipolarity component. Typ-
ical examples concern possible vs forbidden places for an object in space, or “op-
posite” spatial relations such as “possibly to the right of an object and certainly not
to its left”. However, bipolarity has not been much exploited in the spatial domain
yet. Moreover, imprecision has often to be taken into account as well, for instance to
model vague statements such as “to the right of an object”. In this paper we propose
to handle both features in the framework of bipolar fuzzy sets. We introduce some
geometrical measures and mathematical morphology operations on bipolar fuzzy
sets and illustrate their potential for spatial reasoning on a simple scenario in brain
imaging.

1 Introduction

In many domains, it is important to be able to deal with bipolar information [34,
36, 37]. Positive information represents what is possible, for instance because it has
already been observed or experienced, while negative information represents what is
impossible or forbidden, or surely false. The intersection of the positive information
and the negative information has to be empty in order to achieve consistency of
the representation, and their union does not necessarily cover the whole underlying
space, i.e. there is no direct duality between both types of information.

This domain has recently motivated work in several directions, for instance
for applications in knowledge representation, preference modeling, argumentation,
multi-criteria decision analysis, cooperative games, among others [1, 5, 21, 23,
37, 38, 42, 43, 49, 50, 51]. In particular, fuzzy and possibilistic formalisms for
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bipolar information have been proposed [4, 5, 34, 36]. Interestingly enough, they
are formally linked to intuitionistic fuzzy sets [2], interval-valued fuzzy sets [60]
and vague sets, as shown by several authors [22, 33]. However, their respective
semantics differ.

When dealing with spatial information, in image processing or for spatial rea-
soning applications, this bipolarity also occurs. For instance, when assessing the
position of an object in space, we may have positive information expressed as a set
of possible places, and negative information expressed as a set of impossible or for-
bidden places (for instance because they are occupied by other objects). As another
example, let us consider spatial relations. Human beings consider “left” and “right”
as opposite relations. But this does not mean that one of them is the negation of the
other one. The semantics of “opposite” captures a notion of symmetry (with respect
to some axis or plane) rather than a strict complementation. In particular, there may
be positions which are considered neither to the right nor to the left of some refer-
ence object, thus leaving room for some indetermination [6]. This corresponds to
the idea that the union of positive and negative information does not cover all the
space. Similar considerations can be provided for other pairs of “opposite” relations,
such as “close to” and “far from” for instance.

An example is illustrated in Figure 1. It shows an object at some position in
the space (the rectangle in this figure). Let us assume that some information about
the position of another object is provided: it is to the left of the rectangle and not
to the right. The region “to the left of the rectangle” is computed using a fuzzy
dilation with a directional fuzzy structuring element providing the semantics of “to
the left” [6], thus defining the positive information. The region “to the right of the
rectangle” defines the negative information and is computed in a similar way. The
membership functions μL and μR represent respectively the positive and negative
parts of the bipolar fuzzy set. They are not the complement of each other, and we
have: ∀x,μL(x)+ μR(x) ≤ 1.

Fig. 1 Region to the left of the rectangle (positive information, μL) and region to the right of
the rectangle (negative information, μR). The membership degrees vary from 0 (black) to 1
(white).

Another example, for the pair of relations close/far, is illustrated in Figure 2. The
reference object is the square in the center of the image. The two fuzzy regions are
computed using fuzzy dilations, using structuring elements that provide the seman-
tics of “close” and “far” [7]. Again, the two membership functions μC and μF are
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Fig. 2 Region close to the square (μC) and region far from the square (μF )

not the complement of each other and actually define a bipolar fuzzy set, with its
positive and negative parts.

To our knowledge, bipolarity has not been much exploited in the spatial do-
main. A few works deal with image thresholding or edge detection, based on
intuitionistic fuzzy sets derived from image intensity and entropy or divergence
criteria [24, 29, 57]. Spatial representations of interval-valued fuzzy sets have also
been proposed in [25], as a kind of fuzzy egg-yolk, for evaluating classification er-
rors based on ground-truth, or in [44, 45] with preliminary extensions of RCC to
these representations. But there are still very few tools for manipulating spatial in-
formation using both its bipolarity (and not simply some kind of imprecision on the
membership values) and imprecision components.

The above considerations are the motivation for the present work, which aims at
filling this gap by proposing formal models to manage spatial bipolar information.
We consider here both objects and spatial relations between objects, as motivated by
the previous examples. Additionally, imprecision has to be included, since it is an
important feature of spatial information, related either to the objects themselves or
to the spatial relations between them. For spatial relations, we consider their spatial
representations, as proposed in [8], defining the regions of space where a relation to
a reference object is satisfied (to some degree). More specifically, we consider bipo-
lar fuzzy sets in the spatial domain, representing either objects or spatial relations
to some reference objects, and propose definitions of some geometrical measures
and of mathematical morphology operators (dilation and erosion) on these repre-
sentations, extending our preliminary work [12, 14]. The choice of mathematical
morphology for a first insight into the manipulation of spatial bipolar fuzzy sets is
related to its wide use in image and spatial information processing [52, 54], its inter-
est for modeling spatial relations in various formal settings (quantitative, qualitative,
or fuzzy) [11], and its strong algebraic basis [39].

In Section 2, we recall some definitions on bipolar fuzzy sets. Then we introduce
definitions of some simple geometrical measures on spatial bipolar fuzzy sets, in
Section 3. In Section 4, we extend our work on mathematical morphology and detail
definitions of erosion and dilation using a bipolar fuzzy structuring element, their
properties, and some derived operations. Finally, in Section 5, we suggest some
ways to define bipolar fuzzy representations of spatial relations, and we present
some examples for spatial reasoning in Section 6.
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2 Background

Let S be the underlying space (the spatial domain for spatial information process-
ing), that is supposed to be bounded and finite here. A bipolar fuzzy set on S is
defined by a pair of functions (μ ,ν) such that ∀x ∈ S ,μ(x)+ν(x)≤ 1. Note that a
bipolar fuzzy set is formally (although not semantically) equivalent to an intuition-
istic fuzzy set [2]. It is also equivalent to an interval-valued fuzzy set [60], where
the interval at each point x is [μ(x),1−ν(x)] [33]. Although there has been a lot of
discussion about terminology in this domain recently [3, 33], we use the bipolarity
terminology in this paper, for its appropriate semantics, as explained in our moti-
vation. For each point x, μ(x) defines the degree to which x belongs to the bipolar
fuzzy set (positive information) and ν(x) the non-membership degree (negative in-
formation). This formalism allows representing both bipolarity and fuzziness. Con-
cerning semantics, it should be noted that a bipolar fuzzy set does not necessarily
represent one physical object or spatial entity, but rather more complex information,
potentially issued from different sources.

Let us consider the set L of pairs of numbers (a,b) in [0,1] such that a + b ≤ 1.
This set is a complete lattice, for the partial order defined as [28]:

(a1,b1) � (a2,b2) iff a1 ≤ a2 and b1 ≥ b2. (1)

The greatest element is (1,0) and the smallest element is (0,1). The supremum
and infimum are respectively defined as:

(a1,b1)∨ (a2,b2) = (max(a1,a2),min(b1,b2)), (2)

(a1,b1)∧ (a2,b2) = (min(a1,a2),max(b1,b2)). (3)

The partial order � induces a partial order on the set of bipolar fuzzy sets:

(μ1,ν1) � (μ2,ν2) iff ∀x ∈ S ,μ1(x) ≤ μ2(x) and ν1(x) ≥ ν2(x). (4)

Note that this corresponds to the inclusion on intuitionistic fuzzy sets [2]. Simi-
larly the supremum and the infimum are equivalent to the intuitionistic union and
intersection.

It follows that, if B denotes the set of bipolar fuzzy sets on S , (B,�) is a
complete lattice.

3 Some Basic Geometrical Measures

3.1 Cardinality

Let (μ ,ν) ∈B be a bipolar fuzzy set defined in the spatial domain S . The cardinal-
ity of intuitionistic or interval valued fuzzy sets has been introduced e.g. in [56] as
an interval: [∑x∈S μ(x),∑x∈S (1− ν(x))], with the lower bound representing the
classical cardinality of the fuzzy set defining the positive part (the least certain
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cardinality), and the upper bound the cardinality of the complement of the nega-
tive part (i.e. the whole not impossible region is considered, leading to the largest
possible cardinality). The length of the interval reflects the indetermination encoded
by the bipolar representation. Several authors have used a similar approach, based
on interval representations of the cardinality.

When dealing with fuzzy sets, it may be more interesting to consider the cardi-
nality as a fuzzy number, instead as a crisp number, for instance using the extension
principle [35]: |μ |(n) = sup{α ∈ [0,1] | |μα |= n}, where μα denotes α-cuts, defin-
ing the degree to which the cardinality of μ is equal to n.

Here we propose a similar approach for defining the cardinality of a bipolar fuzzy
set as a bipolar fuzzy number, which contrasts with the previously interval-based
approaches.

Definition 1. Let (μ ,ν) ∈ B. Its cardinality is defined as:

∀n, |(μ ,ν)|(n) = (|μ |(n),1−|1−ν|(n)). (5)

Proposition 1. The cardinality introduced in Definition 1 is a bipolar fuzzy number,
i.e. a bipolar fuzzy set defined on N, with ∀n, |μ |(n)+ (1−|1−ν|(n))≤ 1.

In the spatial domain, the cardinality can be interpreted as the surface (in 2D) or
the volume (in 3D) of the considered bipolar fuzzy set. Let us consider the example
of possible/forbidden places for an object, represented by (μ ,ν). Then the positive
part of the cardinality represents how large is the possible set of places, while the
negative part is linked to the size of the forbidden regions.

An example is shown in Figure 3. For this example, the cardinality computed as
an interval would provide [11000,40000], which approximately corresponds to the
0.5-level of the bipolar fuzzy number.
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Fig. 3 Bipolar fuzzy set (positive part and negative part) and its cardinality represented as a
bipolar fuzzy number (the negative part, in green, is inverted)

3.2 Center of Gravity

Here we propose a simple approach to define the center of gravity of a bipolar
fuzzy set, that accounts for the indetermination. The underlying idea is that a point
should contribute a lot if it belongs strongly to μ (positive part) and weakly to ν
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(negative part). Just translating this idea as a weight for each point x ∈ S defined
as min(μ(x),1− ν(x)) is not interesting since this always provides μ(x) and the
indetermination is then not taken into account.

Therefore, we define the center of gravity by weighting each point by its mem-
bership to the positive part plus a portion of the indetermination.

Definition 2. The center of gravity of a bipolar fuzzy set (μ ,ν) ∈ B is defined as:

CoG(μ ,ν) = ∑x∈S x(μ(x)+ λ π(x))
∑x∈S (μ(x)+ λ π(x))

(6)

with π(x) = 1−μ(x)−ν(x) denotes the indetermination and λ is a weighting factor,
with λ ∈ [0,1].

The parameter λ allows tuning the influence of the indetermination. For λ = 0, Defi-
nition 2 leads to the classical center of gravity of a fuzzy set, by considering only the
positive part μ . For λ = 1, it leads to the center of gravity of 1−ν (i.e. everything
that is not impossible is included in the computation). Intermediate values of λ re-
alize a gradual compromise between these two extreme solutions. This is illustrated
in Figure 4.

CoG(  )μ 1−νμ,νCoG(       ) CoG(       )

μ 1 − ν ν

Fig. 4 A spatial bipolar set (crisp in this example) and its center of gravity for λ = 0.5
(corresponding to the center of the dashed circle in this case)

Other moments could be defined in a similar way.
It should be noted that this approach is mainly relevant if the bipolar fuzzy set

is considered as one spatial entity, which is not always the case, as mentioned in
Section 2. In cases where the bipolar fuzzy set represents some more complex infor-
mation, pertaining to a same situation but potentially representing different pieces
of information or knowledge coming from different sources, then the meaning itself
of a center of gravity has to be reconsidered.
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4 Mathematical Morphology

Mathematical morphology on bipolar fuzzy sets has been first introduced in [12].
Once we have a complete lattice, as described in Section 2, it is easy to define
algebraic dilations and erosions on this lattice, as operators that commute with the
supremum and the infimum, respectively:

δ ((μ ,ν)∨ (μ ′,ν ′)) = δ ((μ ,ν))∨δ ((μ ′,ν ′)), (7)

ε((μ ,ν)∧ (μ ′,ν ′)) = ε((μ ,ν))∧ ε((μ ′,ν ′)), (8)

and similar expressions for sup and inf taken over any family of bipolar fuzzy sets.
Their properties are derived from general properties of lattice operators. If we as-
sume that S is an affine space (or at least a space on which translations can be
defined), it is interesting, for dealing with spatial information, to consider morpho-
logical operations based on a structuring element, which are hence invariant under
translation. A structuring element is a subset of S with fixed shape and size, directly
influencing the spatial extent of the morphological transformations. It is generally
assumed to be compact, so as to guarantee good properties. In the discrete case con-
sidered here, we assume that it is connected, in the sense of a discrete connectivity
defined on S . The general principle underlying morphological operators consists
in translating the structuring element at every position in space and checking if this
translated structuring element satisfies some relation with the original set (inclusion
for erosion, intersection for dilation) [52]. This principle has also been used in the
main extensions of mathematical morphology to fuzzy sets [20, 30, 31, 46, 47, 53].
We detail the construction of such morphological operators, extending our prelimi-
nary work [12, 13], along with some derived operators.

4.1 Erosion

As for fuzzy sets [20], defining morphological erosions of bipolar fuzzy sets, using
bipolar fuzzy structuring elements, requires to define a degree of inclusion between
bipolar fuzzy sets. Such inclusion degrees have been proposed in the context of
intuitionistic fuzzy sets [32]. With our notations, a degree of inclusion of a bipolar
fuzzy set (μ ′,ν ′) in another bipolar fuzzy set (μ ,ν) is defined as:

inf
x∈S

I((μ ′(x),ν ′(x)),(μ(x),ν(x))) (9)

where I is an implication operator. Two types of implication are considered [27, 32],
among the different classes of implications, one derived from a bipolar t-conorm⊥1:

1 A bipolar disjunction is an operator D from L ×L into L such that D((1,0),(1,0)) =
D((0,1),(1,0)) = D((1,0),(0,1)) = (1,0), D((0,1),(0,1)) = (0,1) and that is increasing
in both arguments. A bipolar t-conorm is a commutative and associative bipolar disjunction
such that the smallest element of L is the unit element.
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IN((a1,b1),(a2,b2)) = ⊥((b1,a1),(a2,b2)), (10)

and one derived from a residuation principle from a bipolar t-norm �2:

IR((a1,b1),(a2,b2)) = sup{(a3,b3) ∈ L | �((a1,b1),(a3,b3)) � (a2,b2)} (11)

where (ai,bi) ∈ L and (bi,ai) is the standard negation of (ai,bi).

Two types of t-norms and t-conorms are considered in [32] and will be considered
here as well:

1. operators called t-representable t-norms and t-conorms, which can be expressed
using usual t-norms t and t-conorms T from the fuzzy sets theory [35]:

�((a1,b1),(a2,b2)) = (t(a1,a2),T (b1,b2)), (12)

⊥((a1,b1),(a2,b2)) = (T (a1,a2), t(b1,b2)). (13)

2. Lukasiewicz operators, which are not t-representable:

�W ((a1,b1),(a2,b2)) = (max(0,a1 + a2 −1),min(1,b1 + 1−a2,b2 + 1−a1)),
(14)

⊥W ((a1,b1),(a2,b2)) = (min(1,a1 + 1−b2,a2 + 1−b1),max(0,b1 + b2 −1)).
(15)

In these equations, the positive part of �W is the usual Lukasiewicz t-norm of a1

and a2 (i.e. the positive parts of the input bipolar values). The negative part of ⊥W

is the usual Lukasiewicz t-norm of the negative parts (b1 and b2) of the input values.
The two types of implication coincide for the Lukasiewicz operators [28].

Based on these concepts, we can now propose a definition for morphological
erosion.

Definition 3. Let (μB,νB) be a bipolar fuzzy structuring element (in B). The erosion
of any (μ ,ν) in B by (μB,νB) is defined from an implication I as:

∀x ∈ S ,ε(μB,νB)((μ ,ν))(x) = inf
y∈S

I((μB(y− x),νB(y− x)),(μ(y),ν(y))), (16)

where μB(y− x) denotes the value at point y of μB translated at x.

A similar approach has been used for intuitionistic fuzzy sets in [48], but with
weaker properties (in particular an important property such as the commutativity
of erosion with the conjunction may be lost).

2 A bipolar conjunction is an operator C from L ×L into L such that C((0,1),(0,1)) =
C((0,1),(1,0)) = C((1,0),(0,1)) = (0,1), C((1,0),(1,0)) = (1,0) and that is increasing
in both arguments. A bipolar t-norm is a commutative and associative bipolar conjunction
such that the largest element of L is the unit element.
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4.2 Morphological Dilation of Bipolar Fuzzy Sets

Dilation can be defined based on a duality principle or based on the adjunction
property. Both approaches have been developed in the case of fuzzy sets, and the
links between them and the conditions for their equivalence have been proved in [9,
16]. Similarly we consider both approaches to define morphological dilation on B.

4.2.1 Dilation by Duality

The duality principle states that the dilation is equal to the complementation of the
erosion, by the same structuring element (if it is symmetrical with respect to the ori-
gin of S , otherwise its symmetrical is used), applied to the complementation of the
original set. Applying this principle to bipolar fuzzy sets using a complementation c
(typically the standard negation c((a,b)) = (b,a)) leads to the following definition
of morphological bipolar dilation.

Definition 4. Let (μB,νB) be a bipolar fuzzy structuring element. The dilation of
any (μ ,ν) in B by (μB,νB) is defined from erosion by duality as:

δ(μB,νB)((μ ,ν)) = c[ε(μB,νB)(c((μ ,ν)))]. (17)

4.2.2 Dilation by Adjunction

Let us now consider the adjunction principle, as in the general algebraic case. An
adjunction property can also be expressed between a bipolar t-norm and the corre-
sponding residual implication as follows:

�((a1,b1),(a3,b3)) � (a2,b2) ⇔ (a3,b3) � IR((a1,b1),(a2,b2)). (18)

Definition 5. Using a residual implication for the erosion for a bipolar t-norm �,
the bipolar fuzzy dilation, adjoint of the erosion, is defined as:

δ(μB,νB)((μ ,ν))(x) = inf{(μ ′,ν ′)(x) | (μ ,ν)(x) � ε(μB,νB)((μ ′,ν ′))(x)}
= sup

y∈S
�((μB(x− y),νB(x− y)),(μ(y),ν(y))). (19)

4.2.3 Links between Both Approaches

It is easy to show that the bipolar Lukasiewicz operators are adjoint, according
to Equation 18. It has been shown that the adjoint operators are all derived from
the Lukasiewicz operators, using a continuous bijective permutation on [0,1] [32].
Hence equivalence between both approaches can be achieved only for this class of
operators. This result is similar to the one obtained for fuzzy mathematical morphol-
ogy [9, 16].
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4.3 Properties

Proposition 2. All definitions are consistent: they actually provide bipolar fuzzy sets
of B.

Proposition 3. In case the bipolar fuzzy sets are usual fuzzy sets (i.e. ν = 1− μ
and νB = 1− μB), the definitions lead to the usual definitions of fuzzy dilations
and erosions (using classical Lukasiewicz t-norm and t-conorm for the definitions
based on the Lukasiewicz operators). Hence they are also compatible with classical
morphology in case μ and μB are crisp.

Proposition 4. The proposed definitions of bipolar fuzzy dilations and erosions
commute respectively with the supremum and the infinum of the lattice (B,�).

Proposition 5. The bipolar fuzzy dilation is extensive (i.e. (μ ,ν)� δ(μB,νB)((μ ,ν)))
and the bipolar fuzzy erosion is anti-extensive (i.e. ε(μB,νB)((μ ,ν)) � (μ ,ν)) if and
only if (μB,νB)(0) = (1,0), where 0 is the origin of the space S (i.e. the origin
completely belongs to the structuring element, without any indetermination).

Note that this condition is equivalent to the conditions on the structuring element
found in classical and fuzzy morphology to have extensive dilations and anti-
extensive erosions [20, 52].

Proposition 6. The dilation satisfies the following iterativity property:

δ(μB,νB)(δ(μ ′
B,ν ′

B)((μ ,ν))) = δδ(μB ,νB)((μ ′
B,ν ′

B))((μ ,ν)). (20)

Proposition 7. Conversely, if we want all classical properties of mathematical mor-
phology to hold true, the bipolar conjunctions and disjunctions used to define inter-
section and inclusion in B have to be bipolar t-norms and t-conorms. If both duality
and adjunction are required, then the only choice is bipolar Lukasiewicz operators
(up to a continuous permutation on [0,1]).

This result [15] is very important, since it shows that the proposed definitions are
the most general ones to have a satisfactory interpretation in terms of mathematical
morphology.

4.4 Interpretations

Let us first consider the implication defined from a t-representable bipolar t-conorm.
Then the erosion is written as:

ε(μB,νB)((μ ,ν))(x) = inf
y∈S

⊥((νB(y− x),μB(y− x)),(μ(y),ν(y)))

= ( inf
y∈S

T (νB(y− x),μ(y)), sup
y∈S

t(μB(y− x),ν(y))). (21)

This resulting bipolar fuzzy set has a membership function which is exactly the
fuzzy erosion of μ by the fuzzy structuring element 1 − νB, according to the
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original definitions in the fuzzy case [20]. The non-membership function is exactly
the dilation of the fuzzy set ν by the fuzzy structuring element μB.

Let us now consider the derived dilation, based on the duality principle. Using
the standard negation, it is written as:

δ(μB,νB)((μ ,ν))(x) = (sup
y∈S

t(μB(x− y),μ(y)), inf
y∈S

T (νB(x− y),ν(y))). (22)

The first term (membership function) is exactly the fuzzy dilation of μ by μB, while
the second one (non-membership function) is the fuzzy erosion of ν by 1− νB,
according to the original definitions in the fuzzy case [20].

This observation has a nice interpretation, which fits well with intuition. Let
(μ ,ν) represent a spatial bipolar fuzzy set, where μ is a positive information for
the location of an object for instance, and ν a negative information for this location.
A bipolar structuring element can represent additional imprecision on the location,
or additional possible locations. Dilating (μ ,ν) by this bipolar structuring element
amounts to dilate μ by μB, i.e. the positive region is extended by an amount rep-
resented by the positive information encoded in the structuring element. On the
contrary, the negative information is eroded by the complement of the negative in-
formation encoded in the structuring element. This corresponds well to what would
be intuitively expected in such situations. A similar interpretation can be provided
for the bipolar fuzzy erosion.

Let us now consider the implication derived from the Lukasiewicz bipolar oper-
ators (Equations 14 and 15). The erosion and the dilation are then expressed as:

∀x ∈ S ,ε(μB,νB)((μ,ν))(x) =

inf
y∈S

(min(1,μ(y)+1−μB(y−x),νB(y−x)+1−ν(y)),max(0,ν(y)+ μB(y−x)−1)) =

( inf
y∈S

min(1,μ(y)+1−μB(y−x),νB(y−x)+1−ν(y)), sup
y∈S

max(0,ν(y)+μB(y−x)−1)),

(23)

∀x ∈ S ,δ(μB,νB)((μ,ν))(x) =

( sup
y∈S

max(0,μ(y)+μB(x−y)−1), inf
y∈S

min(1,ν(y)+1−μB(x−y),νB(x−y)+1−μ(y)).

(24)

The negative part of the erosion is exactly the fuzzy dilation of ν (negative part of
the input bipolar fuzzy set) with the structuring element μB (positive part of the bipo-
lar fuzzy structuring element), using the Lukasiewicz t-norm. Similarly, the positive
part of the dilation is the fuzzy dilation of μ (positive part of the input) by μB (pos-
itive part of the bipolar fuzzy structuring element), using the Lukasiewicz t-norm.
Hence for both operators, the “dilation” part (i.e. negative part for the erosion and
positive part for the dilation) has always a direct interpretation and is the same as the
one obtained using t-representable operators, for t being the Lukasiewicz t-norm.

In the case the structuring element is non bipolar (i.e. ∀x∈S ,νB(x)= 1−μB(x)),
then the “erosion” part has also a direct interpretation: the positive part of the erosion
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is the fuzzy erosion of μ by μB for the Lukasiewicz t-conorm; the negative part of
the dilation is the erosion of ν by μB for the Lukasiewicz t-conorm. This case is then
equivalent to the one where t-representable operators are used with Lukasiewicz t-
norm and t-conorm.

4.5 Ilustrative Example

Let us now illustrate these morphological operations on the simple example shown
in Figure 1. Let us assume that an additional information, given as a bipolar structur-
ing element, allows us to reduce the positive part and to extend the negative part of
the bipolar fuzzy region. This can be formally expressed as a bipolar fuzzy erosion,
applied to the bipolar fuzzy set (μL,μR), using this structuring element. It corre-
sponds to situations where the initial bipolar fuzzy set was too “permissive” and
provided too large possible regions. Figure 5 illustrates the result in the case of a
classical structuring element and in the case of a bipolar one. It can be observed
that the region corresponding to the positive information has actually been reduced
(via a fuzzy erosion), while the region corresponding to the negative part has been
extended (via a fuzzy dilation).

μB = 1−νB

1−ν ′
B μB +ν ′

B

ε(μB,νB)((μG,μD)): ε(μB,νB)((μG,μD)): ε(μB,ν ′
B)((μG,μD)):

positive information negative information positive information

Fig. 5 Illustration of a bipolar fuzzy erosion on the example of Figure 1, using Definition 3
with t-representable operators derived from min and max. A first non bipolar structuring
element (μB,νB) with νB = 1−μB is used. The results show the reduction of the positive part
via an erosion of μL with 1−νB = μB and an extension of the negative part via a dilation of
μL by μB. Next, another structuring element, which is truly bipolar, (μB,ν ′

B) with μB +ν ′
B ≤ 1

is used. The negative part is the same as in the first case (since μB is the same). The positive
part undergoes a stronger erosion since 1−ν ′

B ≥ 1−νB.

An example of bipolar fuzzy dilation is illustrated in Figure 6 for the bipolar
fuzzy set close/far of Figure 2. The dilation corresponds to a situation where the
structuring element represents by how much the positive part of the information can
be expanded (positive part of the structuring element), for instance because new
positions become possible, and by how much the negative part of the information
should be reduced (negative part of the structuring element), for instance because it
was too severe. These operations allow modifying the semantics attached to the
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concepts “close” and “far”: in this example, a larger space around the object is
considered being close to the object, and the regions that are considered being far
from the object are put further away.

μB = 1−νB

1−ν ′
B μB +ν ′

B

δ(μB,νB)((μC ,μF)): δ(μB,νB)((μC,μF)): δ(μB,ν ′
B)((μC,μF )):

positive information negative information negative information

Fig. 6 Illustration of a bipolar fuzzy dilation on the example of Figure 2, using Definition 4
with t-representable operators derived from min and max. Results with a non bipolar fuzzy
structuring element (μB,νB) with νB = 1− μB show the extension of the positive part via a
dilation of μC by μB and a reduction of the negative part via an erosion of μF by 1− νB =
μB. Another structuring element (μB,ν ′

B) is used next, which is bipolar: μB + ν ′
B ≤ 1. The

positive part is the same as in the first case (same μB). The negative part is more eroded, since
1−ν ′

B ≥ 1−νB.

positive information μL negative information μR Conjunctive fusion of Disjunctive fusion of
positive information negative information

Fig. 7 Fusion of bipolar information on direction (μL,μR) and on distance δ(μB,ν ′
B)((μC,μF ))

of Figure 6

When several pieces of information are available, such as information on direc-
tion and information on distance, they can be combined using fusion tools, in order
to get a spatial region accounting for all available information. This type of approach
has been used to guide the recognition of anatomical structures in images, based on
medical knowledge expressed as a set of spatial relations between pairs or triplets
of structures (e.g. in an ontology), in the fuzzy case [18, 26, 41]. This idea can be
extended to the bipolar case. As an example, a result of fusion of directional and
distance information is illustrated in Figure 7. The positive information “to the left”
of the reference object (and the negative part “to the right”) is combined with the
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dilated distance information shown in Figure 6. The positive parts are combined in
a conjunctive way (using a min here) and the negative parts in a disjunctive way (as
a max here), according to the semantics of the fusion of bipolar information [34].
The meaning of the positive part is then “to the left and close to” and the one of
the negative part is “to the right and far from”. This example shows how the search
space can be reduced by combining spatial relations to reference objects, expressed
as bipolar fuzzy sets. This can be considered as an extension to the bipolar case of
attention focusing approaches. Further examples will be given in Section 6.

4.6 Derived Operators

Once the two basic morphological operators, erosion and dilation, have been defined
on bipolar fuzzy sets, a lot of other operators can be derived in a quite straightfor-
ward way. We provide a few examples in this section.

4.6.1 Morphological Gradient

A direct application of erosion and dilation is the morphological gradient, which
extracts boundaries of objects by computing the difference between dilation and
erosion.

Definition 6. Let (μ ,ν) a bipolar fuzzy set. We denote its dilation by a bipolar fuzzy
structuring element by (δ+,δ−) and its erosion by (ε+,ε−). We define the bipolar
fuzzy gradient as:

∇(μ ,ν) = (min(δ+,ε−),max(δ−,ε+)) (25)

which is the set difference, expressed as the conjunction between (δ+,δ−) and the
negation (ε−,ε+) of (ε+,ε−).

Proposition 8. The bipolar fuzzy gradient has the following properties:

1. Definition 6 defines a bipolar fuzzy set.
2. If the dilation and erosion are defined using t-representable bipolar t-norms and

t-conorms, we have:

∇(μ ,ν) = (min(δμB(μ),δμB(ν)),max(ε1−νB(ν),ε1−νB(μ))). (26)

Moreover, if (μ ,ν) is not bipolar (i.e. ν = 1− μ), then the positive part of the
gradient is equal to min(δμB(μ),1−εμB(μ)), which is exactly the morphological
gradient in the fuzzy case.

An illustration is displayed in Figure 8. It illustrates both the imprecision (through
the fuzziness of the gradient) and the indetermination (through the indetermination
between the positive and the negative parts).
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Bipolar fuzzy structuring element
Positive part Negative part Positive part Negative part

Original set Dilation

Erosion Gradient

Fig. 8 Gradient using a fuzzy bipolar structuring element and t-representable operators
derived from min and max

Another example is shown in Figure 9. The object is here somewhat more com-
plex, and exhibits two different parts, that can be considered as two connected

Positive part Negative part Positive part Negative part

Original set Dilation

Erosion Gradient

Fig. 9 Gradient using a fuzzy (non bipolar) structuring element (νB = 1−μB as in Figure 6)
on a more complex object
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components to some degree. The positive part of the gradient provides a good ac-
count of the boundaries of the union of the two components, which amounts to
consider that the region between the two components, which has lower membership
degrees, actually belongs to the object. The positive part has the expected interpre-
tation as a granted position and extension of the contours. The negative part shows
the level of indetermination in the gradient: the gradient could be larger as well, and
it could also include the region between the two components.

4.6.2 Conditional Dilation

Another direct application of the basic operators concerns the notion of conditional
dilation (respectively conditional erosion) [52]. These operations are very useful
in mathematical morphology in order to constrain an operation to provide a result
restricted to some region of space. In the digital case, a conditional dilation can be
expressed using the intersection of the usual dilation with an elementary structuring
element and the conditioning set. This operation is iterated in order to provide the
conditional dilation with a larger structuring element. Iterating this operation until
convergence leads to the notion of reconstruction. This operation is very useful in
cases we have a marker of some objects, and we want to recover the whole objects
marked by this marker, and only these objects.

The extension of these types of operations to the bipolar fuzzy case is straightfor-
ward: given a bipolar fuzzy marker (μM,μN), the dilation of (μM,μN), conditionally
to a bipolar fuzzy set (μ ,ν) is simply defined as the conjunction of the dilation of
(μM,μN) and (μ ,ν). It is easy to show that this defines a bipolar fuzzy set. An ex-
ample is shown in Figure 10, showing that the conditional dilation of the marker is
restricted to only one component (the one including the marker) of the original ob-
ject (only the positive parts are shown). Iterating further this dilation would provide
the whole marked component.

Fig. 10 Conditioning set, marker and conditional dilation (only the positive parts are shown)

4.6.3 Opening, Closing, and Derived Operators

Applying a dilation and then an erosion by the same structuring element defines
a closing, while applying first an erosion and then a dilation defines an opening.
Thanks to the strong underlying algebraic framework (see [12] for details), opening
and closing have all required properties: they are idempotent and increasing (hence



Bipolar Fuzzy Spatial Information: Geometry, Morphology, Spatial Reasoning 91

they define morphological filters), opening is anti-extensive and closing is extensive
(whatever the choice of the structuring element), if Lukasiewicz operators are used
(up to a permutation on [0,1]) since the adjunction property is required for these
properties. The closing of the bipolar fuzzy object shown in Figure 9 is displayed
in Figure 11. The small region between the two components in the positive part has
been included in this positive part (to some degree) by the closing, which is the
expected result.

Positive part Negative part

Fig. 11 Bipolar fuzzy closing using Lukasiewicz operators. The fuzzy bipolar structuring
element (μB,ν ′

B) of Figure 6 was used here.

Another example is shown in Figure 12, where some small parts have been intro-
duced in the bipolar fuzzy set. The opening successfully removes these small parts
(i.e. small regions with high μ values and small regions with low ν values are re-
moved from the positive part and the negative part, respectively). A typical use of
this operation is for situations where the initial bipolar fuzzy set represents possi-
ble/forbidden regions for an object. If we have some additional information on the
size of the object, so that it is sure that it cannot fit into small parts, then opening
can be used to remove possible small places, and to add to the negative part such
small regions.

Positive part Negative part Positive part Negative part

Bipolar fuzzy sets with small regions Result of the opening

Fig. 12 Bipolar fuzzy opening using Lukasiewicz operators. Circles indicate small regions
that are removed by the opening (see text). The bipolar fuzzy structuring element (μB,ν ′

B) of
Figure 6 was used in this example.
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From these new operators, a lot of other ones can be derived, extending the classi-
cal ones to the bipolar case. For instance, several filters can be deduced from open-
ing and closing, such as alternate sequential filters [52], by applying alternatively
opening and closing, with structuring elements of increasing size. Another exam-
ple is the top-hat transform [52], which allows extracting bright structures having a
given approximative shape, using the difference between the original image and the
result of an opening using this shape as a structuring element. Such operators can
be directly extended to the bipolar case using the proposed framework.

4.7 Distance from a Point to a Bipolar Fuzzy Set

While there is a lot of work on distances and similarity between interval-valued
fuzzy sets or between intuitionistic fuzzy sets (see e.g. [55, 57]), none of the existing
definitions addresses the question of the distance from a point to a bipolar fuzzy
set, nor includes the spatial distance in the proposed definitions. As in the fuzzy
case [7], we propose to define the distance from a point to a bipolar fuzzy set using
a morphological approach [17]. In the crisp case, the distance from a point x to a set
X is equal to n iff x belongs to the dilation of size n of X (the dilation of size 0 being
the identity), but not to dilations of smaller size (it is sufficient to test this condition
for n−1 in the discrete case). The transposition of this property to the bipolar fuzzy
case leads to the following definition, using bipolar fuzzy dilations [17].

Definition 7. The distance from a point x of S to a bipolar fuzzy set (μ ,ν)
(∈ B) is defined as: d(x,(μ ,ν))(0) = (μ(x),ν(x)) and ∀n ∈ N

∗,d(x,(μ ,ν))(n) =
δ n

(μB,νB)(x)∧ c(δ n−1
(μB,νB)(x)), where c is a complementation (typically the standard

negation c(a,b) = (b,a) is used) and δ n
(μB,νB) denotes n iterations of the dilation,

using the bipolar fuzzy set (μB,νB) as structuring element.

In order to clarify the meaning of this definition, let us consider the case where the
structuring element is not bipolar, i.e. νB = 1− μB. Then the dilation is expressed
as: δ(μB,1−μB)(μ ,ν) = (δμB(μ),εμB(ν)), where δμB(μ) is the fuzzy dilation of μ by
μB and εμB(ν) is the fuzzy erosion of ν by μB. The bipolar degree to which the
distance from x to (μ ,ν) is equal to n is then written as: d(x,(μ ,ν))(n) = (δ n

μB
(μ)∧

εn−1
μB

(ν),εn
μB

(ν)∨ δ n−1
μB

(μ)), i.e. the positive part is the conjunction of the positive
part of the dilation of size n (i.e. a dilation of the positive part of the bipolar fuzzy
object) and the negative part of the dilation of size n − 1 (i.e. an erosion of the
negative part of the bipolar fuzzy object), and the negative part is the disjunction of
the negative part of the dilation of size n (erosion of ν) and the positive part of the
dilation of size n−1 (dilation of μ).

Proposition 9. The distance introduced in Definition 7 has the following proper-
ties: (i) it is a bipolar fuzzy set on N; (ii) it reduces to the distance from a point to
a fuzzy set, as defined in [7], if (μ ,ν) and (μB,νB) are not bipolar (hence the con-
sistency with the classical definition of the distance from a point to a set is achieved
as well); (iii) the distance is strictly equal to 0 (i.e. d(x,(μ ,ν))(0) = (1,0) and
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∀n �= 0,d(x,(μ ,ν))(n) = (0,1)) iff μ(x) = 1 and ν(x) = 0, i.e. x completely belongs
to the bipolar fuzzy set.

An example is shown in Figure 13. The results are in agreement with what would
be intuitively expected. The positive part of the bipolar fuzzy number is put towards
higher values of distances when the point is moved to the right of the object. After
a number n of dilations, the point completely belongs to the dilated object, and the
value to which the distance is equal to n′, with n′ > n, becomes (0,1). Note that the
indetermination in the membership or non-membership to the object (which is truly
bipolar in this example) is also reflected in the distances.

Bipolar fuzzy object:
positive part negative part

Test points in red (numbered 1 to 5 from left to right)
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Fig. 13 A bipolar fuzzy set and the distances from 5 different points to it, represented as
bipolar fuzzy numbers (positive part in red and negative part in green)

These distances can be easily compared using the extension principle [40, 58],
providing a bipolar degree d≤ to which a distance is less than another one. For the
examples in Figure 13, we obtain for instance : d≤[d(x1,(μ ,ν)) ≤ d(x2,(μ ,ν))] =
[0.69,0.20] where xi denotes the ith point from left to right in the figure. In this case,
since x1 completely belongs to (μ ,ν), the degree to which its distance is less than
the distance from x2 to (μ ,ν) is equal to [supa d+(a), infa d−(a)], where d+ and
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d− denote the positive and negative parts of d(x2,(μ ,ν)). As another example, we
have d≤[d(x5,(μ ,ν)) ≤ d(x2,(μ ,ν))] = [0.03,0.85], reflecting that x5 is clearly not
closer to the bipolar fuzzy set (μ ,ν) than x2.

5 Definition of Bipolar Fuzzy Spatial Relations

As mentioned in the introduction, several spatial relations go by pairs of “opposite”
relations, such as left/right, above/below, close/far, etc. This is one of the motiva-
tions for handling them as bipolar information. Now the question that remains open
in the previous sections is: how to define the bipolar fuzzy sets representing these
relations in the spatial domain with respect to an object of reference? (i.e. how to
construct the representations shown in Figure 1 for instance). Here we assume that
the reference object can be crisp or fuzzy, but not bipolar. Our proposal is to rely
on our previous work for defining fuzzy spatial representations of spatial relations
using dilations with fuzzy structuring elements providing the semantics of the rela-
tions [6, 7, 10]. For instance the region to the right of a reference object is defined as
the dilation of the reference object with a specific structuring element (see Figure 1
where μR and μL have been defined using this approach).

Let (μ ,ν) be a pair of fuzzy sets in S representing a pair of “opposite” relations
with respect to a reference object. The main problem to be solved is to guarantee
that ∀x ∈ S ,μ(x)+ ν(x) ≤ 1. This property may not hold depending on the shape
of the reference object: for instance a concavity of an object can be both to the right
and to the left of the object, leading to conflicting areas.

In cases the property does not hold directly, we propose three approaches,
inspired from [34]:

1. indulgent approach: the positive part is kept unchanged and the negative part is
reduced so as to achieve the bipolar constraint. For instance ν can be modified as
ν ′(x) = min(ν(x),1−μ(x)), and (μ ,ν ′) is then bipolar. Note that only the points
for which the property is not satisfied are modified. This approach corresponds
for instance to cases where the negative part can be interpreted as rules that can
be modified in order to achieve consistency with observations.

2. severe approach: the negative part is kept unchanged and the positive part is
modified, e.g. μ ′(x) = min(μ(x,1 − ν(x)), so as to have (μ ′,ν) bipolar. This
means that the negative part is privileged in the conflicting areas.

3. tunable compromise: both parts are modified in the conflicting areas, e.g. as:

μ ′(x) = μ(x)−λ (μ(x)+ ν(x)−1)

ν ′(x) = ν(x)− (1−λ )(μ(x)+ ν(x)−1)

with λ ∈ [0,1]. Points x for which μ(x)+ ν(x) ≤ 1 are not modified. This leads
to μ ′(x)+ ν ′(x) = 1 for the modified points, i.e. the conflict has been replaced
by a duality constraint. The first approach is included in this one by taking λ = 0
and the second one for λ = 1.
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6 Application to Spatial Reasoning

Mathematical morphology provides tools for spatial reasoning at several levels [19].
Its features allow representing objects or object properties, that we do not address
here to concentrate rather on tools for representing spatial relations. The notion of
structuring element captures the local spatial context, in a fuzzy and bipolar way
here, which endows dilation and erosion with a low level spatial reasoning feature,
as shown in the interpretation part (Section 4.4). This is then reinforced by the de-
rived operators (opening, closing, gradient, conditional operations...), as introduced
for bipolar fuzzy sets in Section 4.6. At a more global level, several spatial relations
between spatial entities can be expressed as morphological operations, in particular
using dilations [10, 19], leading to large scale spatial reasoning, based for instance
on distances [17].

In this section, we illustrate a typical scenario showing the interest of bipolar
representations of spatial relations and of morphological operations on these repre-
sentations for spatial reasoning[15]. Note that this is not a complete application yet,
but should only be considered as an illustrative example.

An example of a brain image is shown in Figure 14, with a few labeled structures
of interest.

LLV

RTH

RCN

LTH

tumor

LPU

LCN

RLV

RPU

Fig. 14 A slice of a 3D MRI brain image, with a few structures: left and right lateral ventricles
(LLV and RLV), caudate nuclei (LCN and RCN), putamen (LPU and RPU) and thalamus
(LTH and RTH). A ring-shaped tumor is present in the left hemisphere (the usual “left is
right” convention is adopted for the visualization).

Let us first consider the right hemisphere (i.e. the non-pathological one). We con-
sider the problem of defining a region of interest for the RPU, based on a known seg-
mentation of RLV and RTH. An anatomical knowledge base or ontology provides
some information about the relative position of these structures [41, 59]:

• directional information: the RPU is exterior (left on the image) of the
union of RLV and RTH (positive information) and cannot be interior (negative
information);
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• distance information: the RPU is quite close to the union of RLV and RTH (pos-
itive information) and cannot be very far (negative information).

Fig. 15 Fuzzy structuring elements νL, νR, νC and νF , defining the semantics of left, right,
close and far, respectively

These pieces of information are represented in the image space based on mor-
phological dilations using appropriate structuring elements [10] (representing the
semantics of the relations, as displayed in Figure 15) and are illustrated in Figure 16.
A bipolar fuzzy set modeling the direction information is defined as:

(μdir,νdir) = (δνL(RLV∪RTH),δνR(RLV∪RTH)),

where νL and νR define the semantics of left and right, respectively. Similarly a
bipolar fuzzy set modeling the distance information is defined as:

(μdist ,νdist) = (δνC(RLV∪RTH),1− δ1−νF (RLV∪RTH)),

Fig. 16 Bipolar fuzzy representations of spatial relations with respect to RLV and RTH. Top:
positive information, bottom: negative information. From left to right: directional relation,
distance relation, conjunctive fusion. The contours of the RPU are displayed to show the
position of this structure with respect to the region of interest.
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where νC and νF define the semantics of close and far, respectively. The neutral area
between positive and negative information allows accounting for potential anatom-
ical variability. The conjunctive fusion of the two types of relations is computed as
a conjunction of the positive parts and a disjunction of the negative parts:

(μFusion,νFusion) = (min(μdir,μdist),max(νdir,νdist)).

As shown in the illustrated example, the RPU is well included in the bipolar fuzzy
region of interest which is obtained using this procedure. This region can then be
efficiently used to drive a segmentation and recognition technique of the RPU.

Let us now consider the left hemisphere, where a ring-shaped tumor is present.
The tumor induces a deformation effect which strongly changes the shape of the
normal structures, but also their spatial relations, to a less extent. In particular the
LPU is pushed away from the inter-hemispheric plane, and the LTH is pushed to-
wards the posterior part of the brain and compressed. Applying the same procedure
as for the right hemisphere does not lead to very satisfactory results in this case
(see Figure 18). The default relations are here too strict and the resulting region of
interest is not adequate: the LPU only satisfies with low degrees the positive part of
the information, while it also slightly overlaps the negative part. In such cases, some
relations (in particular metric ones) should be considered with care. This means that
they should be more permissive, so as to include a larger area in the possible re-
gion, accounting for the deformation induced by the tumor. This can be easily mod-
eled by a bipolar fuzzy dilation of the region of interest with a structuring element
(μvar,νvar) (Figure 17), as shown in the last column of Figure 18:

(μ ′
dist ,ν

′
dist) = δ(μvar,νvar)(μdist ,νdist),

where (μdist ,νdist) is defined as for the other hemisphere. Now the obtained region
is larger but includes the correct area. This bipolar dilation amounts to dilate the
positive part and to erode the negative part, as explained in Section 4.4.

Fig. 17 Bipolar fuzzy structuring element (μvar,νvar)

Let us finally consider another example, where we want to use symmetry infor-
mation to derive a search region for a structure in one hemisphere, based on the
segmentation obtained in the other hemisphere. As an illustrative example, we con-
sider the thalamus, and assume that it has been segmented in the non pathological
hemisphere (right). Its symmetrical position with respect to the inter-hemispheric
plane should provide an adequate search region for the LTH in normal cases. Here
this is not the case, because of the deformation induced by the tumor (see Figure 19).
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Fig. 18 Bipolar fuzzy representations of spatial relations with respect to LLV and LTH. From
left to right: directional relation, distance relation, conjunctive fusion, Bipolar fuzzy dilation.
First line: positive parts, second line: negative parts. The contours of the LPU are displayed
to show the position of this structure.

Since the brain symmetry is approximate, a small deviation could be expected, but
not as large as the one observed here. Here again a bipolar dilation allows defining
a proper region, by taking into account both the deformation induced by the tumor
and the imprecision in the symmetry.

Fig. 19 RTH and its symmetrical, bipolar dilation defining an appropriate search region for
the LTH (left: positive part, right: negative part)

7 Conclusion

New concepts on bipolar fuzzy sets are introduced in this paper, in particular geo-
metrical measures, morphological dilations and erosions and derived operators, for
which good properties are exhibited and nice interpretations in terms of bipolarity
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in spatial reasoning can be derived. Further work aims at exploiting these new op-
erations in concrete problems of spatial reasoning, as illustrated in the last part of
this paper, in particular for handling the bipolarity nature of some spatial relations.
This will require to design a method for evaluating the degree of satisfaction of a
bipolar fuzzy relation. Also relations with respect to a bipolar fuzzy set would be an
interesting extension of this work.
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