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a b s t r a c t

The focus of this article is to develop mathematical morphology on hypergraphs. To this aim, we define
lattice structures on hypergraphs on which we build mathematical morphology operators. We show
some relations between these operators and the hypergraph structure, considering in particular transver-
sals and duality notions. Then, as another contribution, we show how mathematical morphology can be
used for classification or matching problems on data represented by hypergraphs: thanks to dilation
operators, we define a similarity measure between hypergraphs, and we show that it is a kernel. A dis-
tance is finally introduced using this similarity notion.

� 2012 Elsevier Inc. All rights reserved.

1. Introduction

Mathematical morphology, which appeared in the 1960s, is a
theory of non-linear information processing. It is now widely used
in image analysis and pattern recognition, with applications in
many domains [1–4]. In its deterministic part, mathematical mor-
phology relies on the algebraic framework of complete lattices and
increasing operators are defined from the core notion of adjunction
[5–8].1

Hypergraphs were also introduced in the 1960s as a generaliza-
tion of graphs [10], where edges become hyperedges and can con-
nect more than two vertices, which thus offers an increased
representation and expressivity power. Since then, they have been
intensively studied, and a substantial amount of research in graph
theory continues in hypergraph theory. They have shown their
interest in various fields such as computer science, game theory,
databases, data mining, optimization [11], image processing, seg-
mentation, and retrieval [12–16]. The theory of hypergraphs deals
with combinatorial set systems. So we can say that mathematical
morphology and hypergraphs have common bases, which deserve
to be further explored.

In order to deal with structured information, mathematical
morphology has been developed on graphs [17–20] and on simpli-

cial complexes [21], and it is based on adjunctions defined on ver-
tices and edges of (weighted) graphs. Specific forms of
morphological operators involve the notion of structuring element,
which represents a neighborhood or a binary relation between ele-
ments of the underlying space. Actually the notion of neighbor-
hood is central to define dilations and erosions on graphs, and is
most often defined from the binary relations between graph verti-
ces defined by the edges. However such binary relations can be
restrictive and relations of arity larger than two are needed in
many domains (databases, pattern recognition, data mining, rec-
ommendation systems, etc.). Therefore, introducing mathematical
morphology on hypergraphs seems relevant, and has not been ad-
dressed before to the best of our knowledge. The main objective of
this paper is therefore to define mathematical morphology opera-
tors on hypergraphs, based on appropriate lattice structures.

Comparing two structures (algebraic, combinatorial, etc.) can be
done via the notion of isomorphism. This notion is however often
too strong to find just the ‘‘concordance’’ between the structures.
Moreover, to date there is no efficient algorithm to compute an iso-
morphism between two graphs or two hypergraphs. Measures of
similarity between graphs play a fundamental role in many varied
fields. These concepts have been extensively studied because the
applications are countless [22]. Specifically, we find similarity
measures on graphs in chemistry, clustering, computer science,
World Wide Web network, etc. A very popular similarity tool con-
sists of kernels which can encode prior knowledge about objects in
machine learning [23]. Kernels can be viewed as a kind of inner
products. There are a lot of types of kernels, e.g. Gaussian kernels,
Fisher kernels, etc., which describe different notions of similarity
between objects. Little work has been done on the similarities
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between hypergraphs. Therefore, as another contribution, we pro-
pose original ways of comparing hypergraphs, based on morpho-
logical dilations. This should allow us to answer questions such
as ‘‘are the two hypergraphs illustrated in Fig. 1 similar? to which
extent are they similar?’’, and therefore constitutes a concrete
application of the morphological operators introduced on
hypergraphs.

We denote the universe of hypergraphs asH ¼ ðV; EÞwith V the
set of vertices and E the set of hyperedges. The powersets of V and
E are denoted by PðVÞ and PðEÞ, respectively. We denote a hyper-
graph by H = (V,E) with V #V and E # E.

After introducing some more notations and basic concepts re-
lated to hypergraphs in Section 2, we define in Section 3 complete
lattice structures ðT ;�Þ on the hypergraphs of H, with � a partial
ordering on T . Mathematical morphology operators on hyper-
graphs are then defined in Section 4. Sections 3 and 4 therefore
constitute the core of the proposed framework. In the next sec-
tions, we show how to use this framework for different hypergraph
concepts. In Section 5, we consider dual hypergraphs and establish
some links between morphological dilations and hypergraph dual-
ity concepts. In Section 6 we propose a similarity notion between
hypergraphs based on dilations. After introducing this concept
we show its relevance, and we associate to this similarity a positive
kernel. Section 7 is devoted to a distance on hypergraphs. A simple
example on an image represented by a hypergraph associated with
a simplicial complex is finally provided in Section 8. This paper ex-
tends our preliminary work in [24]. It shows the close connections
between the theories of hypergraphs and mathematical morphol-
ogy, which derive from their common bases relying on set theory
and lattices in particular. Therefore the extension we propose in
this paper can be considered as a natural follow-up of previous
works associating mathematical morphology with other structures
such as graphs and simplicial complexes. We also establish and
clarify the relations between the morphological operators on
hypergraphs and some useful hypergraph properties such as dual-
ity, transversals, similarity, and matching.

2. Basic concepts on hypergraphs

In this section, we recall some definitions which are used in the
next sections, using similar notations and concepts as in [10]. The
reader is referred to this reference for details.

A hypergraph H denoted by H = (V,E = (ei)i2I) is defined as a finite
set V of vertices and a finite family (ei)i2I, (where I is a finite set of
indices) of non-empty subsets of V called hyperedges.2 We generally
consider that hyperedges are non-empty, except when needed for

technical reasons. We also consider that H is without repeated
hyperedge, i.e. every hyperedge is uniquely represented in E.

Let (ej)j2J, with J # I be a sub-family of hyperedges of E. The set
of vertices belonging to these hyperedges is denoted by v([j2Jej) or
[j2Jv(ej), and v(e) denotes the set of vertices forming the hyperedge
e. If [i2Iv(ei) = V, the hypergraph is without isolated vertex (a vertex
x is isolated if x 2 Vn[i2I v(ei)). Note that if there is a hyperedge
e = {x} in E, then x is not isolated. Hence the notion of isolated ver-
tex in a hypergraph is not directly linked to the one of isolated
point in a graph, i.e. a connected component reduced to one point.
By definition the empty hypergraph is the hypergraph H; such that
V = ; and E = ;.

Let H = (V, (ei)i2I) be a hypergraph.

� The partial hypergraph H0 of H generated by J # I is the hyper-
graph (V, (ej)j2J).
� Given a subset V0 # V, a subhypergraph H0 is the partial hyper-

graph H0 = (V0, {ei, i 2 Ijv(ei) # V0}).
� The induced subhypergraph H(V0) of H with V0 # V is the hyper-

graph defined as H(V0) = (V0,E0) with E0 = {e0 = {v(e) \ V0}je 2 E and
v(e) \ V0 – ;}. Note that if V0 = V and hypergraphs are considered
without empty hyperedges, then H(V0) = H(V) = H.

Without loss of generality we can suppose that the empty
hypergraph, H; = (;,;) is a partial hypergraph, (resp. (induced) sub-
hypergraph) of any hypergraph.

The star centered at x, for x 2 V, is the set of hyperedges contain-
ing x, denoted by H(x). The value d(x) = j H(x)j is the degree of x.

The rank of H is the maximal cardinality of a hyperedge. A
hypergraph is linear if jei \ ejj 6 1 for i – j. A loop is a hyperedge
with a cardinality equal to one. A simple hypergraph is a hypergraph
H = (V,E = (ei)i2I) such that: ei # ej) i = j.

The dual H⁄ of a hypergraph without empty hyperedge and
without isolated vertex H is a hypergraph whose set of vertices is
isomorphic (denoted ’) to the set of hyperedges of H, and whose
hyperedges are given by X1, X2, . . . , Xn where Xj = {eijxj 2 v(ei)} for
each vertex xj of H. The transpose At of the incidence matrix
A = ((aij))i2{1,. . .,jVj},j2I, where V is the set of vertices and I is the index
set of the set of hyperedges E, of a hypergraph H (i.e. aij = 1 iff ver-
tex i belongs to hyperedge j) is the incidence matrix of H⁄ = (V⁄ ’ E,
E⁄ ’ (H(x))x2V): for v�j 2 V� and e�i 2 E�;v�j 2 e�i if and only if aij = 1,
and (H⁄)⁄ = H. Note that a hypergraph can be equivalently defined
as a family of hyperedges on a set of vertices, or as an incidence
matrix.3

A hypergraph H = (V,E) is isomorphic to a hypergraph H0 = (V0,E0)
(H ’ H0), if there exist a bijection f:V ? V0 and a bijection p:I ? J,
where I and J are the index sets of E and E0, respectively (i.e.
E ¼ ðeiÞi2I; E

0 ¼ ðe0jÞj2J), which induce a bijection: g:E ? E0 such that:
gðeiÞ ¼ e0pðiÞ, for all ei 2 E and e0pðiÞ 2 E0. The mapping f is then called
isomorphism of hypergraphs. Note that H ’ H0 if and only if
H⁄ ’ H

0⁄.
Let H = (V,E) be a hypergraph, E = (e1, e2, . . . , em). A path P in H

from xi1 to xisþ1 is an alternated vertex-hyperedge sequence
xi1 ; ei1 ; xi2 ; ei2 ; . . . ; xis ; eis ; xisþ1 such that fxik ; xikþ1

g# vðeik Þ; ðk ¼
1;2; . . . ; sÞ and xik – xij ; eik – eij ðik – ijÞ, where s is called the length
of path P.4 The distance between vertices x and y, d(x,y) is the

Fig. 1. Two hypergraphs (V,E1), (V,E2), defined on the same set of vertices.
Hyperedges are displayed as sets of vertices. Three hyperedges are the same, and
E1 contains an additional hyperedge (e4) with respect to E2. A quite high similarity
between the two hypergraphs should then be expected.

2 Note that definitions can be extended to the infinite case, but this is not
considered in this paper and we restrict ourselves to the finite case.

3 Note that the notion of bipartite graph could also be used, since a bipartite graph
can be associated with any hypergraph, where the set of vertices is the union of V and
E and the set of edges is built from the pairs (x, e), x 2 V, e 2 E, such that x 2 v(e).
However given a bipartite graph, two hypergraphs can be associated with it, one
being the dual of the other. Therefore we stay within the framework of hypergraphs
in this paper.

4 Note that the hyperedges eik and eikþ1
have necessarily at least xikþ1

as a common
vertex. The definition of a path as an alternated vertex-hyperedge sequence allows
defining precisely how the path goes from one hyperedge to the next one, i.e. through
which vertex.
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minimum length among those of all paths which connect x and y. If
for each pair of vertices {x,y} there is a path from x to y, the
hypergraph H is said connected. Moreover, the relation R defined
on V � V by:

xRy () there is a path from x to y or x ¼ y

is an equivalence relation. The equivalence classes are the con-
nected components of the hypergraph.

3. Lattice structures on hypergraphs

In this section we define a few lattices on hypergraphs, as the
basic algebraic structures on which mathematical morphology
operators are then defined.

A lattice on the set of vertices can be simply defined by
T ¼ ðPðVÞ; # Þ. This is the classical lattice defined on the powerset
of a set, with the standard set inclusion as partial ordering. It is a
complete lattice. However it is not really interesting here since it
does not say anything on the structure of the hypergraph. Simi-
larly, a lattice on the set of hyperedges can be defined by
T ¼ ðPðEÞ; # Þ. Again it is a classical complete lattice on the pow-
erset of a set and classical results can be used directly.

A more interesting lattice can be defined, based on closed sets of
vertices, involving the stars of vertices. Let H = (V,E) be a hyper-
graph and let V0 # V. We say that V0 is a closed set if "(x,y) 2 V

02,
v(H(x) \ H(y)) # V0. We denote by CðHÞ the family of closed sets
with the empty set.

Proposition 1. The structure ðCðHÞ; # Þ is a complete lattice. The
infimum is ^ = \ and the supremum is: 8ðV 0;V 00Þ 2 CðHÞ2;
V 0 _ V 00 ¼ \fV 000 2 CðHÞjV 0 [ V 00# V 000g, i.e. the intersection of all closed
sets containing V0 [ V00, and its extension to any family. The smallest
element is ; and the largest element is V. Note that CðHÞ is a Moore
family [25].

Proof. It is easy to show that # is a partial ordering on CðHÞ. The
intersection of closed sets is a closed set. Let us show this for two
closed sets V0 and V00. Let (x,y) 2 (V0 \ V00)2. Since (x,y) 2 V

02, we have
v(H(x) \ H(y)) # V0. Similarly we have v(H(x) \ H(y)) # V00, and
thus v(H(x) \ H(y)) # V0 \ V00. It is also easy to show that V0 \ V00

is the largest lower bound. This extends directly to any family.
For the supremum, the proposed formula is the lowest upper
bound by construction. Unfortunately we do not have a more
explicit formula. Hence ðCðHÞ; # Þ is a complete lattice. The
smallest element is

V
CðHÞ ¼ ; and the largest element isW

CðHÞ ¼ V . h

Note that closed sets are not intended in the classical topologi-
cal sense here. In particular, while the union of closed sets in a
topological space is closed, this is not the case here. For example,
let us consider V = {x1, . . . , x6} and E = {e1,e2,e3} with v(e1) = {x1,x2, -
x3}, v(e2) = {x3,x4,x5}, and v(e3) = {x5,x6}. It is easy to check that v(e1)
and v(e3) are closed sets. However, V0 = v(e1) [ v(e3) is not. In par-
ticular we have H(x3) \ H(x5) = {e2}, but v(e2) � V0(x4 2 v(e2) but
x4 R V0). Note also that a closed set is not necessarily a connected
component. Let us consider again the previous example, but now
with v(e2) = x4. The subsets v(e1) and v(e3) are still closed, and
now so is V0 = v(e1) [ v(e3) (this time H(x3) \ H(x5) = ; # V0). But
V0 is not a connected component.

Lattices on the hypergraphs themselves will now allow us to
better account for the whole structural information encoded in
hypergraphs, considering both vertices and hyperedges in the def-
inition of the lattice structure.

The simplest idea is to consider the inclusion on the powerset of
vertices and edges, respectively. Other ideas could be to define a
partial ordering based on the notions of induced sub-hypergraph,

partial hypergraph and sub-hypergraph. These are detailed in the
next subsections.

In all cases, T is defined as:

H ¼ ðV ; EÞ 2 T ()
V #V
E # E
fx 2 Vj9e 2 E; x 2 vðeÞg# V

8><
>: ð1Þ

The last condition ensures that H is actually a hypergraph, where
the hyperedges are sets of vertices of V, and can be equivalently
written as "e 2 E, v(e) # V. There is no equivalent restriction on V
if isolated vertices are accepted.

3.1. Partial ordering based on the inclusion on the powersets of
vertices and hyperedges

The first definition we propose relies on an inclusion relation on
both vertices and hyperedges.

Definition 1.

8ðH1;H2Þ 2 T 2;H1 ¼ðV1;E1Þ;H2 ¼ðV2;E2Þ; H1 �H2 ()
V1 #V2

E1 #E2

�
ð2Þ

This definition is similar to the one used in [17] for graphs.
Moreover, it reduces to the definition on graphs in the particular
case where hyperedges contain exactly two vertices, i.e. are edges
of a graph.

Proposition 2. The following properties hold:

� � defines a partial ordering on T .
� The infimum is: H1 ^ H2 = (V1 \ V2,E1 \ E2), and for any family

(Hi):
V

iHi = (
T

iVi,
T

iEi).
� The supremum is: H1 _ H2 = (V1 [ V2,E1 [ E2), and for any family

(Hi):
W

iHi = (
S

iVi,
S

i Ei).
� ðT ;�Þ is a complete lattice, which is moreover sup-generated. Its

smallest element is H; = (;,;) and its largest element is
H ¼ ðV; EÞ. We have

W
; ¼

V
T ¼ H; and

V
; ¼

W
T ¼ H.

Proof. Let H1 = (V1,E1) and H2 = (V2,E2) be any hypergraphs in T .
Let us first take H2 = H1. Then V1 = V2 and E1 = E2 and a fortiori

the inclusions hold, i.e. � is reflexive. If H1 � H2 and H2 � H1 then
V1 # V2 # V1, hence V1 = V2. Similarly E1 = E2. Thus H1 = H2 and �
is antisymmetric. If H1 � H2 and H2 � H3 then V1 # V2 # V3.
Similarly E1 # E3 and � is transitive. It is therefore a partial
ordering (which consists of classical inclusion on the subset of
vertices on the one hand and on the subset of hyperedges on the
other hand, hence the very direct proof).

Let us now consider H = (V1 \ V2,E1 \ E2). We have
H 2 T ;H � H1 and H � H2. Let us now assume that there is a
hypergraph H3 ¼ ðV3; E3Þ 2 T such that H3 � H1 and H3 � H2. We
have then V3 # V1,V3 # V2 and V3 # V1 \ V2. Similarly E3 # E1 -
\ E2. Thus H3 � H, and H is therefore the largest lower bound:
H = H1 ^ H2. The proof directly extends to any family (Hi). The proof
for the supremum is similar. Finally ðT ;�Þ is a poset such that
every family has a least upper bound and a largest lower bound. It
is therefore a complete lattice. Any H = (V,E) can be expressed as
H = ([x2V{x},[e2E{e}). A canonical decomposition will be detailed in
Section 4.2, as: H ¼ ð_e2EðvðeÞ; fegÞÞ _ ð_x2Vn[e2EvðeÞðfxg; ;ÞÞ. The
smallest element is

V
T ¼ ð\V2VV ;\E2EEÞ ¼ ð;; ;Þ ¼ H;. The largest

element is
W
T ¼ ð[V2VV ;[E2EEÞ ¼ ðV; EÞ ¼ H. h

Note that it is not complemented (in order to have E [ Ec ¼ E,
we would have to consider in Ec all hyperedges that are not in E,
including those which have vertices both in V and in Vc, so (Vc,Ec)
would not be a hypergraph in T ).

344 I. Bloch, A. Bretto / Computer Vision and Image Understanding 117 (2013) 342–354
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A restriction of Definition 1 can be derived from the natural
ordering produced by the notion of partial hypergraph.

Definition 2.

8ðH1;H2Þ 2 T 2;H1�pH2 ()
V1 ¼ V2

E1 # E2

�
ð3Þ

Proposition 3. �p is a partial ordering on T , and ðT V ;�pÞ is a com-
plete lattice, where T V denotes the set of hypergraphs with V as set of
vertices.

Proof. The proof is similar as for �, with the restriction that all
vertex sets are the same. Let Hi = (V,Ei), i 2 I, any family of hyper-
graphs having the same vertex set. As for �, it is easy to show that
^i2IHi = (V,\i2IEi) and _i2IHi = (V,[i2IEi). The smallest element is
(V,;) and the largest element is ðV ; EÞ. h

This is simply a restriction of � by considering only the hyper-
graphs with the same set of vertices, so it will not be further con-
sidered (once V is fixed, it would be equivalent to consider only
ðPðEÞ; # Þ).

3.2. Partial ordering based on the notion of sub-hypergraph and
induced sub-hypergraph

In this section, we provide a few other examples of possible par-
tial orderings on hypergraphs, based on the natural orderings in-
duced by the definitions of sub-hypergraph and induced sub-
hypergraph.

Let us first consider the sub-hypergraphs and the derived natu-
ral partial ordering.

Definition 3. H1 � sH2 if H1 is a sub-hypergraph of H2, i.e.:

8ðH1;H2Þ 2 T 2;H1�sH2 ()
V1 # V2

E1 ¼ fe 2 E2jvðeÞ# V1g

�
ð4Þ

Note that the condition on the hyperedges is stronger than
E1 # E2 since E1 should contain all hyperedges of E2 composed of
vertices of V1.

Another possibility would be to define a partial ordering �0s by
replacing the equality in the condition on the hyperedges by an
inclusion:

Definition 4.

8ðH1;H2Þ 2 T 2;H1�0sH2 ()
V1 # V2

E1 # fe 2 E2jvðeÞ# V1g

�
ð5Þ

Proposition 4. �s and �0s are partial orderings on T .

Proof. Let H1 = (V1,E1) and H2 = (V2,E2) be any hypergraphs in T .
Let us first take H2 = H1. Then V1 = V2, and E1 = {e 2 E1

jv(e) # V1}. Hence �s is reflexive. If H1 � sH2 and H2 � sH1, then
V1 = V2. We also have E1 = {e 2 E2jv(e) # V1} = {e 2 E2jv(e) # V2} =
E2, and thus �s is anti-symmetric. If H1 � sH2 and H2 � sH3, then
V1 # V2 # V3. For hyperedges, we have E1 = {e 2 E2jv(e) # V1} =
{e 2 E3jv(e) # V1and v(e) # V2} = {e 2 E3jv(e) # V1 \ V2 = V1},
which shows that �s is transitive. Hence it is a partial ordering.

Let us now consider �0s. The reasoning for the vertex sets is the
same as for �s. If H2 = H1, then {e 2 E1jv(e) # V1} = E1, and �0s is
reflexive. If H1�0sH2 and H2�0sH1; E1 # fe 2 E2jvðeÞ# V1 ¼ V2g ¼ E2.
Similarly E2 # E1 and E1 = E2. Hence �0s is anti-symmetric. If
H1�0sH2 and H2�0sH3, then E1 # {e 2 E2jv(e) # V1} # {e 2 E3

jv(e) # V1 andv(e) # V2} = {e 2 E3jv(e) # V1 \ V2 = V1}. Hence �0s
is transitive and it is a partial ordering. h

Definition 5. A partial ordering can be defined from the type of
inclusion which is implicit in the definition of induced sub-hyper-
graph, as:

8ðH1;H2Þ 2 T 2;H1�iH2 ()
V1 # V2

E1 ¼ ffvðeÞ \ V1gje 2 E2g

�
ð6Þ

i.e. H1 is the sub-hypergraph induced by H2 for V1.

Proposition 5. The relation �i is a partial ordering on T .
The proof is similar to the one for �s.
It might be more suitable (to allow for more frequent compari-

sons between hypergraphs) to propose a less strict version where
E1 is only required to be included in the set of hyperedges of the
induced sub-hypergraph (as for �0s):

Definition 6.

8ðH1;H2Þ 2 T 2;H1�0iH2 ()
V1 # V2

E1 # ffvðeÞ \ V1gje 2 E2g

�
ð7Þ

Proposition 6. The following properties hold:

� �0i is a partial ordering on T .
� ðT ;�0iÞ is a complete lattice.
� The infimum is: H1^0iH2 ¼ ðV1 \ V2; fe0 ¼ fvðeÞ \ V1 \ V2g
je 2 E1 \ E2g \ EÞ, and its extension to any family (Hj)j 2 J:
^0iðHjÞj2J ¼ ð\j2JV j; fe0 ¼ fvðeÞ \ ð\j2JV jÞgje 2 \j2JEjg \ EÞ.
� The supremum is: H1_0iH2 ¼ ðV1 [ V2; E1 [ E2Þ, and its extension to

any family (Hi).
� The smallest element is H; = (;,;) and the largest element is
H ¼ ðV; EÞ.

Proof. It is easy to show that �0i is a partial ordering (the proof is
similar as the one for �0s).

Let H1 = (V1,E1) and H2 = (V2,E2) be any hypergraphs in T , and
let H = (V1 [ V2,E1 [ E2). We have V1 # V1 [ V2 and V2 # V1 [ V2.
Let e 2 E1. We have v(e) \ V1 = v(e), e 2 E1 [ E2, and therefore
e 2 {{v(e) \ V1}je 2 E1 [ E2}. Similarly E2 # {{v(e) \ V2}je 2 E1 [ E2}.
Hence H1�0iH and H2�0iH. Let us now assume that H1�0iH3 and
H2�0iH3. We have V1 # V3 and V2 # V3, hence V1 [ V2 # V3.
We also have E1 [ E2 # {{v(e) \ V1}je 2 E3} [ {{v(e) \ V2}je 2 E3}
# {{v(e) \ (V1 [ V2)}je 2 E3}. Hence H�0iH3. Finally H is the least
upper bound and H1_0iH2 ¼ ðV1 [ V2; E1 [ E2Þ. This reasoning
extends directly to any family of hypergraphs (Hi).

Now let V ¼ V1 \ V2; E ¼ ffvðeÞ \ V1 \ V2g j e 2 E1 \ E2g \ E
and H = (V,E). We have V # V1 and V # V2. Let e 2 E. Then
$e0 2 E1 \ E2 such that v(e) = v(e0) \ V1 \ V2. We also have
v(e) = v(e0) \ V1 = v(e0) \ V2. Since e0 2 E1, it belongs to the set
{{v(e0) \ V2}je0 2 E1}. Similarly, e0 2 E2 and thus it belongs to the
set {{v(e0) \ V1}je0 2 E2}. Hence we have H�0iH1 and H�0iH2. Let us
now consider any hypergraph H3 = (V3,E3) such that H3�0iH1 and
H3�0iH2. We have V3 # V1 and V3 # V2, thus V3 # V. Since
E3 # {{v(e) \ V3}je 2 E1} and E3 # {{v(e) \ V3}je 2 E2}, we have
E3 # {{v(e) \ V1 \ V2}je 2 E1 \ E2}, and H3�0iH. Hence H is the
largest lower bound and H ¼ H1^0iH2. The proof for any family is
similar.

This shows that ðT ;�0iÞ is a complete lattice. The smallest element
is

V
T ¼ ð\V2VV ; ffvðeÞ \ ð\V2VVÞgje 2 \E2EEg \ EÞ ¼ ð;; ;Þ ¼ H;.

The largest element is
W
T ¼ ð[V2VV ;[E2EEÞ ¼ ðV; EÞ ¼ H. h

Another idea involves isomorphisms, as in the following
definition.
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Definition 7. Let H be the set of isomorphism classes of hyper-
graphs. A partial order on H can be defined, for all H1, H2 in H as:

H16f H2 () H1 is isomorphic ðby f Þ to an induced subhypergraph of H2 ð8Þ

Proposition 7. The structure ðH;6f Þ is a complete lattice. The supre-
mum is sup{H1,H2} = H1 _ H2 (as in Proposition 2 for �), and the inf-
imum inf{H1,H2} is the maximum common induced subhypergraph
(and their extension to any family).

Proof. Let us provide a sketch of the proof. It is easy to show that
6f defines a partial ordering on H. The reflexivity and the anti-sym-
metry follow from the fact that an hypergraph without repeated
hyperedge is its own induced subhypergraph. The proof for the
supremum is similar to the one for the other partial orderings con-
sidered before. For the infimum, it is the largest lower bound by
construction. h

3.3. Discussion

The partial ordering � and the corresponding lattice have clear
advantages over the simple examples ðPðVÞ; # Þ and ðPðEÞ; # Þ
mentioned at the beginning of this section, since both an ordering
on vertices and an ordering on hyperedges are considered, thus
taking the hypergraph structure into account. As already men-
tioned, �p is the same as � when ordering hypergraphs having
the same sets of vertices, which does not deserve to be further
investigated.

The other proposed partial orderings �s and �i (or �0s and �0i)
have the additional feature of imposing stronger links between
the structures of the two hypergraphs to be ordered than �. These
partial orderings may be interesting when the notions of (induced)
sub-hypergraphs are explicitly involved in the application at hand.
Examples include all problems where sub-hypergraphs isomor-
phisms have to be considered, for instance if partial views of a
scene, each of which being represented by a sub-hypergraph, have
to be compared, or if a matching between a partial view and the
complete scene has to be found.

An advantage of � is that supremum and infimum are very easy
to compute. While they can also be computed quite easily for �0i,
this is not straightforward for �i and �s, and close forms could
not be directly obtained.

In the following, we use � for defining in a general way a partial
ordering between two hypergraphs.

4. Mathematical morphology on hypergraphs

4.1. Algebraic dilation and erosion

Once we have a complete lattice, the whole algebraic apparatus
of mathematical morphology applies.

Let ðT ;�Þ and ðT 0;�0Þ be two complete lattices (which can be
any of those defined in Section 3, and do not need to be equal).
All the following definitions and results are common to the general
algebraic framework of mathematical morphology in complete lat-
tices [2,5,6,8,25].

Definition 8. An operator d : T ! T 0 is a dilation if:
8ðxiÞ 2 T ; dð_ixiÞ ¼ _0idðxiÞ, where _ denotes the supremum asso-
ciated with � and _0 the one associated with �0. An operator
e : T 0 ! T is an erosion if: 8ðxiÞ 2 T 0; e ^0ixi

� �
¼ ^ieðxiÞ, where ^ and

^0 denote the infimum associated with � and �0, respectively.

All classical properties of mathematical morphology then hold
[5,6,25], and are therefore not recalled here.

An important notion is the one of adjunction. A pair or operators
(e,d), with e : ðT 0;�0Þ ! ðT ;�Þ and d : ðT ;�Þ ! ðT 0;�0Þ is an
adjunction if and only if 8X 2 T ;8Y 2 T 0;X � eðYÞ () dðXÞ�0Y . A
classical result is that if (e,d) form an adjunction, then e is an ero-
sion and d is a dilation. The compositions de and ed are then an
opening (increasing, idempotent and anti-extensive operator) and
a closing (increasing, idempotent and extensive operator),
respectively.

4.2. Structuring element and morphological operations

In classical morphology dilations and erosions can be ex-
pressed by means of a set, called structuring element, which
defines a neighborhood at each point [1], and this idea has
been used for graphs as well [20]. The structuring element
‘‘centered’’ at x is denoted by Bx = d({x}). More generally, the
structuring element can be interpreted as a binary relation
between two elements, thus enabling the extension of this idea
to any lattice.

Defining morphological dilations on hypergraphs calls for
canonical decompositions of the elements of the considered lattice.

In the case of the lattice ðPðVÞ; # Þ, each subset of vertices V can
be trivially decomposed as V = [ x2V{x}, and a morphological dila-
tion then writes dB(V) = [ x2VBx = [x2Vd({x}).

In the case of the lattice ðPðEÞ; # Þ, each subset of hyperedges E
can be decomposed as E = [ e2E{e}, and a morphological dilation is
then dB(E) = [e2EBe = [e2Ed({e}).

Let us now consider the lattice of hypergraphs, with the partial
ordering � (see Definition 1). Let H = (V,E) be a hypergraph of this
lattice. For E, a natural decomposition consists of E = [ e2E{e}. For V
the decomposition should be consistent with the one of E, in order
to associate an ‘‘elementary’’ hypergraph to each e. We thus
consider v(e), the set of vertices associated with e. Additionally,
the decomposition should also involve all vertices that do not
belong to any hyperedge. We denote by VnE this set of vertices.
Finally we propose the following canonical decomposition of
H, from its sup generating property: H ¼ ð_e2EðvðeÞ; fegÞÞ_
ð_x2VnE ðfxg; ;ÞÞ.

The question of how the structuring element should be defined
depends on the application and on the type of desired results.
Examples are provided next.

4.3. Examples

Example 1. Let us consider T ¼ ðPðEÞ; # Þ. An example of struc-
turing element, defining the elementary dilation of each hyper-
edge, consists in taking all hyperedges which have at least one
vertex in common with the considered hyperedge:

8e 2 E; Be ¼ dðfegÞ ¼ fe0 2 EjvðeÞ \ vðe0Þ– ;g; ð9Þ

where the intersection applies on the sets of vertices defining e and
e0. Dilating a subset E by this structuring element means adding all
hyperedges that are directly connected to E.

As an illustration, let us consider the two hypergraphs depicted
in Fig. 1. For the first one, we have for instance d({e1}) = d({e3})
= {e1,e2,e3,e4}, d({e2}) = {e1,e2,e3}, d({e4}) = {e1,e3,e4}, and for the
second one, d({ei}) = {e1,e2,e2}, for i = 1, 2, 3.

Let us now consider the adjoint erosion. It is defined by
8E2PðEÞ; eðEÞ¼[fE0 2PðEÞjdðE0Þ#Eg¼[fE0 2PðEÞj[e02E0dðe0Þ#Eg¼
[fE0 2PðEÞj8e0 2E0; dðe0Þ#Eg. In the second example in Fig. 1 (right),
we have e({e1,e2,e3}) = {e1,e2,e3}, e({e1,e2}) = ;, etc. (the erosions of
all subsets of {e1,e2,e3} are empty, except for {e1,e2,e3}).
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Example 2. Another example, where less hyperedges are added,
can be obtained by imposing a minimal cardinality on the intersec-
tion: 8e 2 E;Bk

e ¼ fe0 2 EjjvðeÞ \ vðe0ÞjP kg. Note that such a con-
straint could not be imposed on graphs for k > 2, which is an
example of the enhanced features provided by hypergraph repre-
sentations. Let us consider again the example in Fig. 1 left. For
k = 2, we obtain now d({e1}) = {e1,e3,e4}, d({e2}) = {e2}, d({e3})
= d({e4}) = {e1,e3,e4}. For k = 3, the dilations of e1 and e3 are even
less extended: d({e1}) = {e1,e4} and d({e3}) = {e3,e4}.

Example 3. Let us now consider dilations from T ¼ ðPðEÞ; # Þ into
T 0 ¼ ðPðVÞ; # Þ. This will be useful later on when considering
dual hypergraphs (see Section 5). Then the elementary dilation
should map a hyperedge to a subset of vertices. A trivial example
is: 8e 2 E; Be ¼ dðfegÞ ¼ fx 2 Vjx 2 vðeÞg ¼ vðeÞ. This achieves the
required mapping, but it is not very relevant and interesting from
a practical point of view, since no additional vertex is added by the
dilation of a hyperedge. In a similar way, we can define in a
straightforward way a dilation d from ðPðVÞ; # Þ into ðPðEÞ; # Þ,
as: "x 2 V, d({x}) = {e 2 Ejx 2 v(e)}, and "X # V, d(X) = [ x2Xd({x}).

Example 4. More interestingly, we can define a structuring ele-
ment as in Example 1, but considering the resulting subset of ver-
tices to define a dilation from T ¼ ðPðEÞ; # Þ into T 0 ¼ ðPðVÞ; # Þ:
8e 2 E; Be ¼ dðfegÞ ¼ fx 2 Vj9e0 2 E; x 2 vðe0Þ and vðeÞ \ vðe0Þ – ;g
¼ [fvðe0Þjvðe0Þ \ vðeÞ– ;g. An example is illustrated in Fig. 2. As in
Example 2, we could add more strict constraints on the intersec-
tion, if we want the dilation to include less vertices.

Let us consider the adjoint erosion e, from T 0 into T . It is given
by:

8V 2 PðVÞ; eðVÞ ¼ [fE 2 PðEÞj8e 2 E; dðfegÞ# Vg ¼ fe 2 Ej8e0

2 E; vðe0Þ \ vðeÞ– ; ) vðe0Þ# Vg:

Let us consider the example in Fig. 2, and V as illustrated in Fig. 3.
We have e(V) = {e4}. An opening can be defined from an adjunction
as de. In this example, the opening of V is de(V) = d({e4}) =
v(e4) [ v(e5) and it is the set of all vertices enclosed in the blue line
in Fig. 2. This simple example illustrates the filtering effect of the
opening, which removes all vertices of V that do not belong to
hyperedges e such that v(e) # V, as illustrated in Fig. 4. As for
closing we have for this example ed({e4}) = {e4} and ed({e1}) =
e([i=1,2,3,5v(ei)) = {e1,e2,e3}.

Example 5. Let us now consider T ¼ ðfH ¼ ðV ; EÞg;�Þ. An elemen-
tary dilation can be defined according to the proposed canonical
decomposition as: "x 2 VnE, d({x},;) = ({x},;), for isolated vertices,
and for elementary hypergraphs associated with hyperedges:
8e 2 E; dðvðeÞ; fegÞ ¼ ð[fvðe0Þjvðe0Þ \ vðeÞ – ;g; fe0 2 Ejvðe0Þ \ vðeÞ
– ;gÞ. As an illustration, let us consider the example in Fig. 2. Let
V ¼ [i¼1;...;5vðeiÞ (i.e. all vertices shown in the figure),
E ¼ fe1; . . . ; e5g, and H ¼ ðV; EÞ. In the lattice T defined on H, let
us take H = (V,E), with V = v(e2) [ v(e3) and E = {e2,e3}. The canoni-
cal decomposition of H is: H = (v(e2), {e2}) _ (v(e3), {e3}). Its dilation
is then d(H) = d(v(e2), {e2}) _ d(v(e3), {e3}) = (v(e1) [ v(e2) [ v(e3),
{e1,e2,e3}) _ (v(e1) [ v(e2) [ v(e3) [ v(e5),{e1,e2,e3,e5}) = ([i=1,2,3,5v(ei),
{e1,e2,e3,e5}). This is illustrated in Fig. 5.

Fig. 2. Example of a dilation from T ¼ ðPðEÞ; # Þ into T 0 ¼ ðPðVÞ; # Þ (Example 4). The red line represents the dilation of e1 (d({e1}) = v(e1) [ v(e2) [ v(e3) [ v(e5)) and the blue
line the dilation of e4 (d({e4}) = v(e4) [ v(e5)). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Example of an erosion from T 0 ¼ ðPðVÞ; # Þ into T ¼ ðPðEÞ; # Þ. The red circled vertices on the left represent V. Its erosion is shown in blue on the right, and is equal to
{e4}. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Note that if we consider also attributes on the vertices (or
hyperedges), other examples can be provided by using a similarity
between attributes. For instance isolated vertices could be dilated
by adding all vertices that have similar attribute values.

Example 6. In our last example, we show how a specific dilation is
linked to the notion of transversal of a hypergraph. A transversal
(or hitting set) of a hypergraph H = (V,E) is a set T # V that has
non-empty intersection with every hyperedge, i.e. for all e 2 E,
T \ v(e) – ;. Computing the transversal of a hypergraph has applica-
tions in machine learning, game theory, indexing of databases, SAT
problems, data mining, optimization, etc. (see [26]). Let us define:

8V 0 # V ; EðV 0Þ ¼ fe 2 Ej9x 2 V 0; x 2 vðeÞg;

i.e. the set of the hyperedges that hit V0, and

8E0 # E;VðE0Þ ¼ fx 2 V j9e 2 E0; x 2 vðeÞg;

i.e. the set of vertices of all hyperedges of E0, which can be equiva-
lently written as VðE0Þ ¼ [e2E0vðeÞ. Let us consider the two lattices
ðPðVÞ; # Þ and ðPðEÞ;�Þ (i.e. the partial ordering is reversed in the
second one). Supremum and infimum are [ and \ for the first
one, and \ and [ for the second one. We define the two following
operators:

d : ðPðVÞ; # Þ ! ðPðEÞ;�Þ
V 0 # dðV 0Þ ¼ E n EðV 0Þ ¼ fe 2 EjV 0 \ vðeÞ ¼ ;g

ð10Þ

e : ðPðEÞ;�Þ ! ðPðVÞ; # Þ
E0 # eðE0Þ ¼ V n VðE0Þ ¼ V n ð[e2E0vðeÞÞ

Proposition 8. The operators d and e are a dilation and an erosion,
respectively. Moreover they form an adjunction.

Proof. Let ðA;BÞ 2 PðVÞ2. We have: d(A) \ d(B) = {e 2 EjA \ v(e)
= ;} \ {e 2 EjB \ v(e) = ;} = {e 2 EjA \ v(e) = ; and B \ v(e) = ;} =
{e 2 Ej(A [ B) \ v(e) = ;} = d(A [ B). Hence d commutes with the
supremum and is a dilation. In a similar way we have for
ðA;BÞ 2 PðEÞ2 e (A [ B) = e(A) \ e(B), hence e commutes with the
infimum and is an erosion.

Let us now consider A 2 PðVÞ;B 2 PðEÞ. We have
A # e(B)) d(A) � d(e(B)) (since d is a dilation, it is increasing).
We have dðeðBÞÞ ¼ fe 2 EjðV n [e02Bvðe0ÞÞ \ vðeÞ ¼ ;g. Let e 2 B. Then
vðeÞ#[e02Bvðe0Þ, and therefore ð[e02Bvðe0ÞÞc \ vðeÞ ¼ ; and
e 2 d(e(B)). Hence B # d(e(B)) and d(A) � B. Conversely we show
in a similar way that d(A) � B) A # e(B). Finally we have the
following equivalence: A # e(B), d(A) � B, and therefore (e,d) is
an adjunction. h

The following result characterizes the transversal by a morpho-
logical dilation.

Theorem 1. Let H = (V,E) be a hypergraph, T # V, and d the dilation
introduced in Eq. 10. The two following assertions are equivalent:

(i) the set T is a transversal;
(ii) we have d(T) = ;.

Proof. d(T) = {e 2 EjT \ v(e) = ;} = ; , "e 2 E, T \ v(e) – ; , T is a
transversal. h

Fig. 5. The figure on the left represents V (vertices represented as points) and E (hyperedges represented as closed lines). The red lines indicate the hyperedges of H. The
vertices of H are the points enclosed in these lines. The blue lines on the right represent the hyperedges of d(H) and its vertices are the points enclosed in these lines. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Example of an opening from T 0 ¼ ðPðVÞ; # Þ into T 0 ¼ ðPðVÞ; # Þ. The red circled vertices on the left represent V. Its opening is shown in blue on the right. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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An example is illustrated in Fig. 6. The set of vertices on the left
is a transversal and its dilation is empty, while the one on the right
is not (it does not intersect e4 and its dilation is {e4}, hence not
empty).

5. Dualities

In the sequel d({u}) will be simply denoted by d(u).
Let H = (V,E) be a hypergraph with V – ;, E – ;, and let H⁄ =

(V⁄,E⁄) its dual. In this section we consider operators in the lattice
ðPðVÞ; # Þ. Let d be such a mapping. From this mapping we define
another one d⁄, in the same lattice, such that:

8x 2 V ; d�ðxÞ ¼ fy 2 V jx 2 dðyÞg

which provides its values on singletons. We also define d⁄⁄ such
that:

8x 2 V ; d��ðxÞ ¼ fy 2 V jx 2 d�ðyÞg

The following proposition establishes basic results which will
be useful next for deriving other results on duality, an important
concept on hypergraphs. A particularly interesting result is the
one expressed in Corollary 1 at the end of this section, linking mor-
phological operators, derived rough spaces, and probability
distributions.

Proposition 9. Let H = (V,E) be a hypergraph with V – ;, E – ; and d
and d⁄ two mappings in ðPðVÞ; # Þ as introduced above; we have:

(a) for all X 2 PðVÞ; d�ðXÞ ¼
S

x2Xd�ðxÞ ¼ fy 2 V jX \ dðyÞ– ;g
(resp. d(X) =

S
x2Xd(x) = {y 2 VjX \ d⁄(y) – ;}) iff d⁄ is a dilation

(resp. d is a dilation);
(b) for all X 2 PðVÞ, if

S
x2Xd

⁄(x) = V (resp.
S

x2Xd(x) = V) then
X #

S
X\d�ðyÞ–;d

�ðyÞ (resp. X #
S

X\d(y)–;d(y));
(c) d⁄⁄ = d on V, i.e. on singletons: "x 2 V,d⁄⁄(x) = d(x);
(d) if d⁄⁄ and d are dilations then d⁄⁄ = d.

Proof.

(a) Assume that d⁄ is a dilation. The first equality is obvious by
definition. Let us show the second one. Let y 2 d⁄(X)
=
S

x2Xd
⁄(x) then there is a x 2 X such that y 2 d⁄(x), x 2 d(y),

so y 2 {z 2 VjX \ d(z) – ;}. Let X 2 PðVÞ, and y 2 {z 2 Vj
X \ d(z) – ;}, there is x 2 X such that x 2 d(y), y 2 d⁄(x),
consequently y 2

S
x2Xd

⁄(x).
Conversely, if the equalities hold, then it follows from the
first one that d⁄ commutes with the supremum, and is hence
a dilation.

(b) Obvious.
(c) Let z 2 d⁄⁄(x) then x 2 d⁄(z), and therefore z 2 d(x).

In the same way z 2 d(x)) x 2 d⁄(z) and z 2 d⁄⁄(x). So d⁄⁄ = d
on V.

(d) From the definition of a dilation. h

Let d : ðPðVÞ; # Þ ! ðPðVÞ; # Þ be a dilation. It gives rise to a
hypergraph Hd = (V, (d(x))x2V), where d(x) is seen as a hyperedge
built by the vertices defining d(x).

Proposition 10. Let d : ðPðVÞ; # Þ ! ðPðVÞ; # Þ be a mapping and
H = (V,E) be an hypergraph (V – ;, E – ;) without isolated vertex and
without repeated hyperedge. We have: H ’ Hd () H� ’ Hd� .

Proof. Suppose that H ’ Hd. Because a hyperedge is uniquely rep-
resented in H (we assume all through this paper that hypergraphs
are without repeated hyperedge), if x – y then d(x) – d(y), i.e.
d(x) = d(y) implies that x = y, so d is injective on V.

Let H = (V,E) and Hd = (Vd = V, Ed = (d(x))x2V) be hypergraphs. We
have:

H ’ Hd, there a bijection f:V ? Vd such that e 2 E, f(v(e)) =
d(x) 2 Ed, x 2 V. Since a hyperedge of Hd is uniquely represented,
notice that (d(x)x2V) is a set {d(x), x 2 V}.

It is known that H ’ Hd () H� ’ H�d, with H� ¼ ðV� ’ E; E� ’
ðHðxÞx2V ÞÞ;H

�
d ¼ V�d ’ ðdðxÞÞx2V

� �
; E�d ’ ðHðxÞx2V Þ. It is sufficient to

show that H�d ’ Hd� , with Hd� ¼ Vd� ’ V ; Ed� ’ ðd�ðxÞÞ2V

� �
. Let g be a

correspondence defined by:

g : fdðyÞ; y 2 Vg ! V

dðxÞ# gðdðxÞÞ ¼ x

Since d is injective on V, we have d(x) = d(y)) x = y =
g(d(x)) = g(d(y)), this correspondence is well defined, i.e. it is a
mapping.

Clearly g is surjective; moreover g is injective since
j{d(y),y 2 V}j = jVj. Hence g is a bijection.

Now, HðxÞ 2 E�d () HðxÞ ¼ fdðuiÞ; x 2 dðuiÞg ¼ fdðu1Þ; dðu2Þ; . . . ;

dðukÞg 2 E�d () gðHðxÞÞ ¼ fgðdðuiÞÞ; i 2 f1;2;3; . . . kgg ¼ fu1;u2;

. . . ;ukg ¼ d�ðxÞ, because x 2 d(ui), ui 2 d⁄(x).

Hence HðxÞ 2 E�d () gðHðxÞÞ ¼ d�ðxÞ 2 Ed� . So H�d ’ Hd� , and
finally H ’ Hd () H� ’ Hd� . h

Proposition 11. Let H⁄ = (V⁄,E⁄) be a hypergraph and let P =
(pi)i2{1,2,. . .,t} be a discrete probability distribution on V⁄, taking rational
values. This probability distribution gives rise to a dilation (respec-
tively an erosion).

Fig. 6. The subset T of vertices (indicated in red on the left) is a transversal, while the subset T0 in blue on the right is not. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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Let d be a dilation on V⁄, then this dilation gives rise to a discrete
probability distribution on V⁄.

Proof. To prove the proposition, we will exhibit a particular dila-
tion from P, and conversely a particular probability distribution
from a dilation.

Let P = (pi)i2{1,2,. . .,t} be a discrete probability distribution with
rational values on V⁄. For all i 2 {1, 2, . . . , t} there are

ai; bi 2 N; bi – 0, such that pi ¼ ai
bi
¼ ai jV�j

bi jV�j ¼
ai jV
� j

bi
jV�j . We have:

1¼
X

i

pi ¼
X

i

ai jV� j
bi

jV�j ¼
X

i

ai
bi
� jV�j

j k
jV�j

0
@

1
Aþ
jV�j�

X
j

aj

bj
� jV�j

j k

jV�j ¼
X

i

ai
bi
� jV�j

j k
þjV�j�

X
j

aj

bj
� jV�j

j k

jV�j

0
BB@

1
CCA:

Let

V�1 ¼ x�1; x
�
2; . . . ; x�ba1

b1
�jV�jc

� �
;

V�2 ¼ x�ba1
b1
�jV�jcþ1

; . . . ; x�ba1
b1
�jV�jcþba2

b2
�jV�jc

� �
; . . . ;V�tþ1 ¼ V� n

[t

i¼1

V�i

Without loss of generality, we can assume that V�i – ; for all
i 2 {1, 2, . . . , t + 1}. By construction we have: V�i \ V�j ¼ ; for all
i,j 2 {1, 2, . . . , t + 1}, i – j. Consequently V�i

� �
i2f1;2;...;tþ1g is a partition

of V⁄.
The hypergraph H⁄ = (V⁄,E⁄) can be seen as a dual of a

hypergraph H = (V,E). Because V� ’ E ()
Stþ1

i¼1 V�i ’
Stþ1

i¼1 Ei;K ¼
ðEiÞi2f1;2;...;tþ1g is a partition of E, where Ei is a subset of E, dual of V�i .
Let us define for A # E

eðAÞ ¼ fEi 2 KjEi # Ag and dðAÞ ¼ fEi 2 KjEi \ A – ;g:

It is easy to verify that e is an erosion and d a dilation from ðPðEÞ; # Þ
into ðPðPðEÞÞ; # Þ. Note that these two operators are not directly
linked to each other with an adjunction property since they are both
operators from ðPðEÞ; # Þ into ðPðPðEÞÞ; # Þ. Alternatively we can
define eðAÞ ¼ [fEi 2 KjEi # Ag and dðAÞ ¼ [fEi 2 KjEi \ A – ;g from
ðPðEÞ; # Þ into ðPðEÞ; # Þ, which then form an adjunction (i.e.
d(A) # B, A # e(B)).

Now, let d be a dilation on V⁄; the relation
x�i	dy�j () d x�i

� �
¼ d y�j
� �

is an equivalence relation on V⁄. We
then denote by V� i the equivalence classes:

V�=	d ¼ fV� i; i 2 f1;2; . . . tgg:

Let us now define pi ¼ jV
�

i j
jV�j

. We then have 0 6 pi 6 1 for all
i 2 {1,2, . . . t} and

P
ipi ¼ 1, thereby (pi)i2{1,2,. . .t} is a discrete proba-

bility distribution. h

This proposition is also interesting to establish links with rough
sets. The definition of lower and upper approximations in terms of
erosion and dilation, and the equivalence with rough sets have
been developed in [25,27]. This result extends these notions to
the case of hypergraphs, and e(A) and d(A) exhibited in the proof
are then lower and upper approximations of A in a rough space
(this is close to the approach proposed in [28]). Moreover, it adds
a link with probabilities.

Corollary 1. Any discrete rational distribution of probability on V⁄

gives rise to a rough space on E.
Conversely any rough space on E gives rise to a discrete rational

distribution of probability on V⁄.

6. Hypergraph similarity and hypergraph kernel based on
dilations

6.1. Hypergraph similarity

As an example of using mathematical morphology on hyper-
graphs, we propose a notion of similarity between hypergraphs,
based on dilations. It is well known that hypergraphs can be used
to model several types of networks, such as biological, computer
science, and semantic networks [29–31]. One of the most impor-
tant tasks is to compare two networks. This comparison can be
done using isomorphisms. However, there are two main drawbacks
related to the use of isomorphisms:

� the first one concerns tractability, since there is no efficient
algorithm to produce an isomorphism between two
hypergraphs;
� the second one is that the isomorphism assumption is too rigid,

and does not allow considering two hypergraphs as similar if
they are not strictly isomorphic.

So we propose to define a new type of ‘‘comparator’’ between
hypergraphs, based on dilation, which allows us to introduce some
‘‘tolerance’’ for comparing sets of hyperedges, defining a similarity
as a degree of overlap between dilated sets of hyperedges.

For any hypergraph (V,E), we define a dilation on the hyperedg-
es E, for example as:

d : ðPðEÞ; # Þ ! ðPðEÞ; # Þ
A # dðAÞ ¼ fe 2 EjvðAÞ \ vðeÞ– ;g

where vðAÞ ¼ [e02Avðe0Þ. In the sequel we suppose that if d(A) = ;
then A = ; (this typically holds when d is extensive). As before, we
denote the dilation of a singleton {e} by d(e) to simplify notations.

Definition 9. Let H1 = (V,E1) and H2 = (V,E2) be two hypergraphs
without empty hyperedge and dE1 and dE2 dilations defined on the
set of hyperedges of H1 and H2, respectively. We define a similarity
function s by:

s : PðE1Þ � PðE2Þ n ð;; ;Þ ! Rþ

ðA;BÞ# sðA;BÞ ¼ jdE1 ðAÞ \ dE2 ðBÞj
jdE1 ðAÞ [ dE2 ðBÞj

As an illustration, let us consider again the example in Fig. 1,
with the definition of dilation as in Eq. (9), illustrated in Fig. 7.
We have quite high similarity values, which fit with the intuition,
although the hypergraphs are not isomorphic: sðe1; eiÞ ¼ 3

4 ;

i 2 f1; 2; 3g; sðe2; eiÞ ¼ 3
3 ; i 2 f1; 2; 3g; sðe3; eiÞ ¼ 3

4 ; i 2 f1; 2; 3g;
sðe4; eiÞ ¼ 2

3 ; i 2 f1;2;3g; sðfe1; e2g; BÞ ¼ sðfe1; e3g; BÞ ¼ sðfe1; e4g;
BÞ ¼ sðfe2; e3g; BÞ ¼ sðfe2; e4g; BÞ ¼ sðfe3; e4g; BÞ ¼ 3

4, for B # E2,
B – ;; sðfe1; e2; e3g; BÞ ¼ sðfe2; e3; e4g; BÞ ¼ sðfe1; e3; e4g; BÞ ¼ sðfe1;

e2; e4g; BÞ ¼ 3
4, for B # E2, B – ;; and sðfe1; e2; e3; e4g; BÞ ¼ 3

4, for
B # E2, B – ;.

Proposition 12. Let H1 = (V,E1) and H2 = (V,E2) be two hypergraphs
without empty hyperedge, and dE1 and dE2 extensive dilations (i.e. for
each hyperedge e, we have e 2 dEi ðeÞ) defined on ðPðE1Þ; # Þ and
ðPðE2Þ; # Þ, respectively. We have the following properties:

(a) "(ei,ej) 2 E1 � E2, s((ei,ej)) = 0, E1 \ E2 = ;;
(b) "(ei,ej) 2 E1 � E2,s((ei,ej)) = 1) E1 = E2,
(c) if E1 = E2 then s is symmetrical.
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Proof.

(a) 8ðei; ejÞ 2 E1 � E2; sððei; ejÞÞ ¼ 0 () 8ðei; ejÞ 2 E1 � E2; dE1 ðeiÞ
\dE2 ðejÞ ¼ ; ) 8ðei; ejÞ 2 E1 � E2; ei R dE2 ðejÞ and ej R dE1 ðeiÞ
hence E1 \ E2 = ;. Indeed, since dE2 is extensive, ej 2 dE2 ðejÞ
and [ej

dE2 ðejÞ ¼ E2, and therefore having ei R dE2 ðejÞ for all
ej implies ei R E2. Similarly ej R E1.
Conversely, if E1 \ E2 – ;, then PðE1Þ \ PðE2Þ – ; and any
dE1 ðAÞ is disjoint from any dE2 ðBÞ.

(b) 8ðei; ejÞ 2 E1 � E2; sððei; ejÞÞ ¼ 1 () 8ðei; ejÞ 2 E1 � E2; dE1

ðeiÞ ¼ dE2 ðejÞ. Since d is extensive, 8ei 2 E1; ei 2 dE1 ðeiÞ, hence
ei 2 dE2 ðeiÞ and therefore ei 2 E2. Similarly "ej 2 E2, ej 2 E1.
Therefore E1 = E2.

(c) The symmetry of s is straightforward. h

6.2. Hypergraph kernel

Let X be a non-empty set. A function K : X � X ! Rþ such that.

� K(x,x0) = K(x0,x), for all x, x0 2 X,
� and

Pn
i¼1

Pn
j¼1Kðxi; xjÞcicj P 0, for all n 2 N and all x1, . . . ,xn 2 X

and c1; . . . ; cn 2 R

is a positive definite kernel or kernel for short. From the properties
above, an operator K is a kernel if it is symmetric and its associated
matrix is positive definite.

Let us consider the restriction to singletons of the similarity
introduced in Definition 9:

s : E� E! Rþ

ðei; ejÞ# sðei; ejÞ ¼
jdðeiÞ \ dðejÞj
jdðeiÞ [ dðejÞj

ð11Þ

where the subscript E is omitted to simplify notations. The associ-
ated matrix is M = (s(ei,ej))i,j2{1. . .m}, where m = jEj.

As in the previous subsection, considering overlap between di-
lated hyperedges provides more flexibility in the similarity measure

and the kernels that will be introduced next. The similarity will be
high if the hypergraphs differ, but are in better correspondence
(i.e. larger overlapping of hyperedges) if a dilation is applied. The
dilation then accounts for potential small differences (for instance
due to some imprecision in the representation) which are consid-
ered as non significant, and can be tuned according to the application
at hand. If the dilation is reduced to the identity mapping, which is a
particular case, then a strict overlap is required.

If A and B are m �m matrices, we denote by A 
 B their entry-
wise product, i.e. the matrix whose mi,j entry is ai,jbi,j. It is called
the Schur product of A and B, or the Hadamard product. It is well
known that if A and B are positive definite, then so is A
B. This will
be used in the proof of the following result.

Theorem 2. The matrix

M ¼ ðsðei; ejÞÞi;j2f1...mg;

for s defined as in Eq. (11) from a morphological dilation, is positive
definite.

Proof. Let H = (V,E) be a hypergraph with E = {e1, . . . , em} (jEj = m),
and d : ðPðEÞ; # Þ ! ðPðEÞ; # Þ be a dilation such that d(e) – ; for all
e 2 E. Let A = (ai,j)i,j2{1. . .m} be the following matrix:

ai;j ¼
jdðeiÞ \ dðejÞj if i < j;

jdðeiÞj if i ¼ j;
�jdðeiÞ \ dðejÞj if i > j:

8><
>:

This matrix can be written in the following way:

A¼

a1;1 a1;2 a1;3 a1;4 � � � � � � � � � � � � � � � a1;m

�a1;2 a2;2 a2;3 a2;4 � � � � � � � � � � � � � � � a2;m

�a1;3 �a2;3 a3;3 a3;4 � � � � � � � � � � � � � � � a3;m

..

. ..
. . .

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

�a1;j �a2;j �a3;j �a3;j . . . �aj�1;j aj;j aj;jþ1 . . . aj;m

..

. ..
. . .

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

�a1;m �a2;m �a3;m � � � � � � � � � � � � � � � �am�1;m am;m

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

Let Xt = (x1, x2, x3, . . . , xm) be a vector of Rm. We have:

XtAX ¼
Xm

i¼1

a1;ixix1 � a1;2x1x2 þ
Xm

i¼2

a2;ixix2 �
X2

i¼1

ai;3xix3 þ
Xm

i¼3

a3;ixix3

�
X3

i¼1

ai;4xix4 þ
Xm

i¼4

a4;ixix4 � � � � �
Xj�1

i¼1

ai;jxixj þ
Xm

i¼j

aj;ixixj � � � �

�
Xm�1

i¼1

ai;m�1xixm þ am;mx2
m

¼ a1;1x2
1 � a1;2x1x2 þ

Xm

i¼2

a1;ixix1 þ a2;2x2
2 þ

Xm

i¼3

a2;ixix2

�
X2

i¼1

ai;3xix3 þ a3;3x2
3 þ

Xm

i¼4

a3;ixix3 þ � � � þ aj;jx2
j þ

Xm

i¼jþ1

aj;ixixj � � � �

�
Xm�1

i¼1

ai;m�1xixm þ am;mx2
m

¼
Xm

i¼1

ai;ix2
i �

Xm

i¼2

a1;ix1xi þ
Xm

i¼2

a1;ixix1 �
Xm

i¼3

a2;ix2xi þ
Xm

i¼3

a2;ixix2

þ � � � �
Xm

i¼jþ1

aj;ixjxi þ
Xm

i¼jþ1

aj;ixixj þ � � � � am�1;m�1xm�1xm

þ am�1;m�1xmxm�1

¼
Xm

i¼1

ai;ix2
i > 0:

Fig. 7. Computing the similarity between two hypergraphs. Left (E1): d(e1) = {e1,
e2,e3,e4}, d(e2) = {e1,e2,e3} (shown in red on the second line left), etc. Right (E2):
d(ei) = {e1,e2,e3}, for i = 1, 2, 3 (in blue on the second line right). The obtained
similarity values are sðe1; eiÞ ¼ 3

4 ; sðe2; eiÞ ¼ 3
3 ; sðfe1; e2g; BÞ ¼ 3

4, for B # E2;B – ; . . ..
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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Consequently the matrix A is positive definite.
Let B = (bi,j)i,j2{1,. . .,m} be the following matrix:

bi;j ¼

1
jdðeiÞ[dðejÞj

if i < j;
1

jdðeiÞj
if i ¼ j;

� 1
jdðeiÞ[dðejÞj

if i > j:

8>><
>>:

This matrix can be written in a similar form as the matrix A. Hence
XtBX ¼

Pm
i¼1bi;ix2

i > 0. So B is positive definite.
It is easy to verify that M = A
B. We can conclude that M is a

positive definite matrix. h

Corollary 2. The similarity defined by sðei; ejÞ ¼
jdðeiÞ\dðejÞj
jdðeiÞ[dðejÞj

is a kernel.
If A is an m � n matrix and B is a p � q matrix, then the Kroneck-

er product A � B is the mp � nq block matrix

A� B ¼
a11B � � � a1nB

..

. . .
. ..

.

am1B � � � amnB

0
BB@

1
CCA

The Kronecker product of matrices corresponds to the abstract ten-
sor product of linear mappings. It is well known that if A and B are
positive definite matrices, then so is A � B.

Now let us consider two dilations d and d0 defined on ðPðEÞ; # Þ
and ðPðE0Þ; # Þ, respectively, and the associated similarity
functions:

s : E� E! Rþ

ðei; ejÞ# sðei; ejÞ ¼
jdðeiÞ \ dðejÞj
jdðeiÞ [ dðejÞj

and

s0 : E0 � E0 ! Rþ

ðe0i; e0jÞ# s0ðe0i; e0jÞ ¼
jd0ðe0iÞ \ d0ðe0jÞj
jd0ðe0iÞ [ d0ðe0jÞj

defining the two matrices M = (s(ei,ej))i,j2{1. . .m} and
M0 ¼ ðs0ðe0i; e0jÞÞi;j2f1;...;m0g, with m = jEj and m0 = jE0j.

Hence M00 = M �M0 defines a kernel. So we have the following
result:

Proposition 13. The mapping

s00 : ðE� EÞ � ðE0 � E0Þ ! Rþ

ððei; ejÞ; ðe0k; e0lÞÞ# s00ððei; ejÞ; ðe0k; e0lÞÞ ¼ sðei; ejÞs0ðe0k; e0lÞ

defines a kernel.
This kernel provides a comparison measure between two

hypergraphs or substructures of hypergraphs. This measure can
be computed with a polynomial time complexity in the number
of hyperedges. Interesting applications could be for instance the
comparison of sub-molecules between two molecules when they
are modeled by hypergraphs, or the comparison of two scenes in
images when they are again modeled by hypergraphs. A typical
example would be to consider vertices as image regions or objects,
and hyperedges representing binary or n-ary relations between
them (such as spatial relations). The two images to be compared
could be a model and a specific image, two images where changes
may occur, as in video sequences, or two images representing dif-
ferent instances of a phenomena (such as medical images of differ-
ent patients). Such examples have raised a lot of literature on
graph-based methods for solving recognition problems, but very
little using hypergraphs. Providing comparison tools is then a first
step towards this aim.

7. Morphological metric on hypergraphs

In this section we again consider a hypergraph H = (V,E), a dila-
tion d defined on ðPðEÞ; # Þ, and its restriction on singletons to de-
rive a metric on the hyperedges of H.

Proposition 14. Let H = (V,E) be a hypergraph equipped with a
dilation d on ðPðEÞ; # Þ that is assumed to be injective on E
("(e,e0) 2 E2, d(e) = d(e0)) e = e0). Then ~sðe; e0Þ ¼ 1� sðe; e0Þ is a
metric, where s is defined from d as in Eq. (11).

Proof. Clearly 8ðe; e0Þ 2 E2;~sðe; e0ÞP 0, and ~s is symmetrical.
As for the separation axiom, we have: ~sðe; e0Þ ¼ 0) sðe; e0Þ ¼

1) dðeÞ ¼ dðe0Þ ) e ¼ e0; the converse is obvious.

Let us now consider the triangular inequality. We have:

~sðe; e0Þ ¼ 1� jdðeÞ \ dðe0Þj
jdðeÞ [ dðe0Þj ¼

jdðeÞ [ dðe0Þj � jdðeÞ \ dðe0Þj
jdðeÞ [ dðe0Þj

¼ jdðeÞMdðe0Þj
jdðeÞ [ dðe0Þj :

The mapping d : X � X ! Rþ with d(e,e0) = jd(e)Md(e0)j is a metric.
Let (X;d) be a metric space and a 2 X then Dðx; yÞ ¼

2dðx;yÞ
dðx;aÞþdðy;aÞþdðx;yÞ is a metric on X.

Now: Dðe; e0Þ ¼ 2jdðeÞMdðe0Þj
jdðeÞM;jþj;Mdðe0ÞjþjdðeÞMdðe0Þj ¼

2jdðeÞMdðe0Þj
2jdðeÞ[dðe0 Þj ¼ ~sðe; e0Þ. So

~sðe; e0Þ is a metric called morphological metric. h

It is interesting to note that this distance involves the symmet-
rical difference between dilations of hyperedges. It could be used
to search patterns or regularities in a hypergraph, which can be
very useful in chemoinformatic for instance. In image understand-
ing, it could be used to extract common information (common
parts, regions or objects) in one or several images, based on their
hypergraph representations. For instance if an image presents sev-
eral instances of similar objects, a hypergraph representation could
represent the subparts of the objects as vertices and an object as a
hyperedge linking all its subparts. Finding similar hyperedges
would then allow extracting all objects of the same nature from
the image. Dilations can then be useful to increase robustness in
the case where imprecision occurs in the definition of objects sub-
parts, or to take also neighborhood regions (i.e. the local context of
each object) into account in the comparison. Distances can also be
used as relevant features in kernel based methods for classification
and recognition.

8. A simple illustrative example

As an example on images, we consider a simple case, where a
hypergraph is built from the elementary connectivity relation on
a binary image and the associated simplicial complex. Let us as-
sume that the 8-connectivity is considered on a 2D image. The pix-
el connectivity graph is C where the vertices are the image pixels
and the set of edges is associated with the connectivity relation (i.e.
any two 8-connected pixels in the image form an edge). This graph
generates a simplicial complex5:

� the set of vertices of C is the set of simplices with a dimension
d = 0,
� the maximal cliques of C is the set of simplices with a dimen-

sion d P 1.

5 A simplicial complex is a collection of subsets S of a set X = {v1, . . . , vn} such that:
if r 2 S and s # r then s 2 S. An element r 2 S is called a simplex of dimension
jrj � 1 and a subset of a simplex is called a face. A facet is a k � 1 dimensional face of a
k-dimensional simplex. The dimension of a simplicial complex is the maximal
dimension of its simplices.
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Hence this simplicial complex has a dimension d 6 3 and C is
the underlying graph. We associate a hypergraph H = (V,E) with
this simplicial complex as follows:

� V is the set of simplices with a dimension d = 0;
� E is the set of maximal simplices with a dimension d P 1.

For instance the hypergraph H = (V,E) associated with the sim-
plicial complex from Fig. 8 is:

� V = {{x1}, {x2}, {x3}, {x4}, {x5}, {x6}};
� E = {{x1,x2}, {x2,x3}, {x2,x4}, {x3,x4}, {x2,x5,x6}}.

Let us now give an example of morphological dilation on such a
simplicial simplex representing an image as a hypergraph
H = (V,E). Let us consider a dilation d on ðPðEÞ; # Þ, defined on
singletons as:

8e 2 E; dðeÞ ¼ fe0 2 EjvðeÞ \ vðe0Þ – ;g; ð12Þ

and for any subset:

8A # E; dðAÞ ¼ [e2AdðfegÞ: ð13Þ

This dilation is the one given in Example 1 in Section 4.3. For any A,
d(A) defines a partial hypergraph (V,d(A)) of H, which corresponds to
a unique subcomplex. This dilation is illustrated in Fig. 9.

Let us now consider a dilation similar to the one introduced in
Example 2 in Section 4.3, with a constraint on the cardinality of
hyperedges, for k > 1:

8e 2 E; dðeÞ ¼ fe0 2 EjvðeÞ \ vðe0Þ – ; and je0j ¼ kg; ð14Þ

and

8A # E; dðAÞ ¼ [e2AdðfegÞ: ð15Þ

This dilation is illustrated in Fig. 10. The dilation of the hyperedge
{x1, x2, x3} is provided for k = 3.

Defining morphological operators on simplicial complexes has
also been addressed in [21], relying on the same complete lattices.
Other forms of dilations were proposed, based on closure and star
operators, and considering the smallest complex which contains a
subset X, or the largest complex contained in X, respectively. Ad-
joint erosions were derived, as well as granulometries. Operators
acting on complexes of fixed dimensions were proposed too. Appli-
cations included alternate sequential filters on simplicial com-
plexes derived from 6-connectivity on a hexagonal grid, and
mesh filtering.

9. Conclusion

In this work we introduced mathematical morphology on
hypergraphs. We proposed several lattices built on hypergraphs,
the most interesting ones being when the structure of the hyper-
graphs is actually involved in the partial ordering. We then derived
morphological operators on these lattices, and provided several
concrete examples. One of them exhibits a particular dilation
which characterizes the transversals of a hypergraph. To show
the relevance of the relationship between the two domains of
mathematical morphology and of hypergraphs, we have exhibited
a notion of duality in mathematical morphology which corre-
sponds to the concept of duality which is important in the theory
of hypergraphs. Other properties of hypergraphs can undoubtedly
be expressed using morphological operators, such as matching
contained in a subset of vertices of a hypergraph. We are currently
investigating how to use mathematical morphology to improve
some results on hypergraphs.

A notion of similarity of hypergraphs was also introduced via
morphological operators. This allowed us to define a positive ker-
nel on hypergraphs. From similarity an original notion of distance
between hyperedges is derived. We are also currently investigating
how to compare this topology with those defined in [32,33]. Other
definitions of similarities between hypergraphs having different
sets of vertices have also to be investigated. In this paper, similar-
ities were defined from dilations. They could also be defined from

Fig. 8. Simplicial complex, in which the simplices of dimension d = 0 are {x1}, {x2},
{x3}, {x4}, {x5}, {x6}, the simplices of dimension d = 1 are {x1,x2}, {x2,x3}, {x2,x4},
{x2,x5}, {x2,x6}, {x3,x4}, {x5,x6}, and the simplices of dimension d = 2 are {x2,x5,x6}.

Fig. 9. A simple image equipped with the 8-connectivity relation. A partial
hypergraph and a subcomplex are represented by thin lines, thick lines and
triangles. The subcomplex generated by the dilation, defined in Eqs. (12) and (13),
of the hyperedge {x1, x2, x3} is given by the thick lines, triangles and the vertices
incident to the thick lines.

Fig. 10. As in Fig. 9, a partial hypergraph and a subcomplex are represented by thin
lines, thick lines and triangles. The subcomplex generated by the dilation, defined in
Eqs. (14) and (15) for k = 3, of the hyperedge {x1,x2, x3} is given by triangles, thick
lines and the vertices incident to these thick lines.
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other morphological operators, in particular closing, which would
bring additional filtering properties.

As an extension of the proposed framework and of the example
provided on a simple image, applications to image analysis and
classification can be foreseen from the concepts defined in this
article, and this will be addressed in our future work.
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