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In this paper, we address the issue of part-based tracking by proposing a new fragments-based tracker.
The proposed tracker enhances the recently suggested FragTrack algorithm to employ an adaptive cue
integration scheme. This is done by embedding the original tracker into a particle filter framework, asso-
ciating a reliability value to each fragment that describes a different part of the target object and dynam-
ically adjusting these reliabilities at each frame with respect to the current context. Particularly, the vote
of each fragment contributes to the joint tracking result according to its reliability, and this allows us to
achieve a better accuracy in handling partial occlusions and pose changes while preserving and even
improving the efficiency of the original tracker. In order to demonstrate the performance and the effec-
tiveness of the proposed algorithm we present qualitative and quantitative results on a number of chal-
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1. Introduction

Tracking an object in an accurate way is essential for applica-
tions like activity analysis, man-machine interaction and visual
surveillance. However, for many real-world problems, the ambigu-
ities inherent to the visual data and the tracking process make it
difficult to develop accurate, robust and efficient trackers. During
the tracking process, usually, the target object becomes occluded
by the other objects in the scene, its pose or appearance undergoes
some changes, or the lighting conditions vary.

A common solution to these issues is to use complementary
observations/cues from different sources. Within such a strategy,
each cue provides a likelihood or a matching score for the possible
positions of the object, and the tracker determines the final output
by the product of individual likelihoods or the summation of the
matching scores. This highly improves the tracking performance.
In the literature, such tracking frameworks are named multi-cue
trackers.

Multi-cue trackers require to use visual cues that are orthogonal
to each other as much as possible so that if one cue fails, the other
cue or cues can compensate its deficiency. There are mainly two
ways to obtain such orthogonal cues [1]. One possibility is to con-
sider visual cues that express different features of the target object.
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An alternative solution is to consider a single visual feature and to
use it to describe different sections of the target object within a
single framework. We provide a sample illustration of approaches
to multi-cue tracking in Fig. 1.

The trackers in the first line of works determine the target posi-
tion at each frame by combining cues that are based on several dif-
ferent visual features [2-4] (Fig. 1a). For example, in one of early
studies [2], Birchfield suggested to track heads using intensity gra-
dients and color histograms together. The critical point with this
approach is that during tracking the cues do not always provide
reliable information about the target object. Giving equal impor-
tance to all the features in determining the combined result gener-
ally leads to false outcomes. Triesch and von der Malsburg [5]
proposed a dynamic framework called the Democratic Integration
to adaptively integrate different cues, addressing this problem. In
their framework, each cue has an adaptive reliability value associ-
ated with it, and each cue contributes to the joint result according
to its reliability. A number of studies, e.g. [1,6,7], follow such a
strategy by performing an adaptive integration of cues to boost
the accuracy of the tracking process.

Considering a single feature and using it to describe different
sections of the target object via an explicit part-based model is an-
other strategy (Fig. 1b-i). For instance, in human trackers a human
can often be subdivided into parts corresponding to head, limbs
and torso [1,8]. Splitting an object into parts introduces a kind of
supplementary shape information regarding the target object by
providing the relative spatial arrangements of different object
sections. This offers an important advantage over the classical
region-based trackers where the content of the region of interest
is modeled with a single histogram with the loss of spatial
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Fig. 1. Multi-cue trackers employ complementary visual cues, which provide rich information about the target object, to improve the tracking performance. These visual cues
are based on either (a) different features (e.g., intensity, gradient, motion) or (b) a single feature (e.g., only intensity), which is used to describe different object sections via i. a

part-based model or ii. a model-free approach.

information. This kind of part-based trackers mostly aims at track-
ing articulated/non-rigid objects (e.g., [8,9]), and generally requires
the model of the target object to be known or given a priori.

Although one can easily devise such models for domain-specific
trackers (e.g. for faces or humans) and thus make use of strong
prior information, it is not convenient to use this approach for gen-
eric object tracking. The recently proposed robust fragments-based
tracker called FragTrack [10] mainly tackled this issue. In that
study, the target object is again represented with multiple image
fragments or patches each describing a different object section,
but these patches are extracted arbitrarily without considering
any reference object model (Fig. 1b-ii). This makes the suggested
part-based tracking algorithm applicable to any object without
changing the representation. Particularly, at each frame of the se-
quence, different object sections vote on possible target locations
and scales, and the tracker combines these votes using a robust
statistics scheme to obtain an outcome by performing an exhaus-
tive search on this combined vote map.

Another line of works that also tackles model-free tracking in-
cludes boosting-based tracking frameworks [11-14], and it has
drawn quite a bit of attention lately. Like in the FragTrack, in these
works the tracking is cast as a sequential detection problem but
the detection is performed via on-line learning of an object-specific
classifier using boosting. The common approach is to represent
the target object by a set of Haar-like features and to define the
strong classifier which serves as the object detector as an adaptive

Table 1
Multi-cue tracking algorithms.

combination of several weak classifiers that are selected from the
most discriminative features in the current set. The aforemen-
tioned multi-cue tracking strategies are summarized in Table 1.

In this paper, we also address the issue of part-based object
tracking. Our proposed model-free tracker combines the Frag-
Track’s arbitrary-fragments based object representation [10] and
the concept of adaptive multi-cue integration [5] (Fig. 2). Our main
contributions can be summarized as follows:

e Our algorithm employs an adaptive cue integration scheme [5]. A
reliability value is associated to each fragment that describes a
different part of the target object and it is dynamically adjusted
at each frame with respect to the current context. The vote of
each fragment contributes to the joint tracking result according
to its reliability, and the ones having low values have little effect
on the outcome. This allows us to achieve a better tracking
accuracy in handling partial occlusions and pose changes. Note
that FragTrack does not assign reliabilities to fragments and
does not adaptively integrate the corresponding cues.

Our adaptive cue integration scheme allows us to make infer-
ences about the current status of the target object as well,
through the fragments and the reliabilities associated with
them. The dynamic reliability maps present the most informa-
tive fragments at each frame according to the current context,
and for example might provide simultaneous information on
the visible and occluded object sections.

Tracking Algorithm Feature(s) used for tracking Model-free

Adaptive integration of Part-based target Online learning of

approach cues model appearance
Birchfield [2] Color, edge No No No No
Wu and Huang [3] Color, shape No No No No
Pérez et al. [4] Color, {sound or motion} No No No No
Triesch and von der Malsburg  Color, motion, shape, No Yes No No
[5] contrast
Maggio et al. [6] Color, orientation No Yes No No
Brasnet et al. [7] Color, texture, shape No Yes No No
Nickel and Stiefelhagen [1] Color, motion, detector, No Yes Yes No
stereo
Nejhum et al. [8] Intensity No Yes Yes No
Grabner et al. [11] Haar-like features Yes n/a No Yes
Grabner et al. [12] Haar-like features Yes n/a No Yes
Woodley et al. [13] Subspace model Yes n/a No Yes
Babenko et al. [14] Haar-like features Yes n/a No Yes
Adam et al. [10] Intensity Yes No No No
Ours Intensity Yes Yes No No
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Fig. 2. The proposed multi-cue tracker combines the arbitrary-fragments based object representation [10] with the concept of adaptive multi-cue integration [5]. A reliability
value is defined for each fragment, and it is dynamically adjusted at each frame with respect to the current context. Each fragment contributes to the joint tracking result
according to its reliability, and the ones having low values have little effect on the outcome. For the sample track illustrated in this figure, the reliabilities are shown in green
tones with the higher values shown in high intensity. As can be seen, when a fragment becomes occluded during tracking, the dynamic framework decreases its reliability
automatically, and by this way, tracking is affected to a minimal degree. (For interpretation of the references to colors in this figure legend, the reader is referred to the web

version of this paper.)

e Tracking is realized by means of a particle filter-based frame-
work [15-17], which enables the adaptive cue integration
scheme to be derived, and which additionally provides an
increased computational efficiency as exhaustive search on a
combined vote map is no more required. It also allows us to eas-
ily include the scale information into the object state and gives
a more natural way to estimate it.

e We present experimental results on challenging tracking
sequences, which show that the adaptive formulation proposed
in this paper results in a more accurate, efficient and robust
tracking than the FragTrack and it competes and even outper-
forms the recently proposed boosting-based trackers
[11,12,14] that use online appearance learning mechanisms.

The remainder of the paper is organized as follows: We begin
with a brief summary of the FragTrack algorithm in Section 2. It
is followed, in Section 3, by the description of the particle filter.
In Section 4, we introduce our fragments-based tracking algorithm
with an adaptive integration scheme, which is the main contribu-
tion of this paper. Following this, in Section 5, we present our
experimental results and discuss different aspects of the proposed
framework.

2. FragTrack-robust fragments-based tracking [10]

In the FragTrack algorithm, tracking is treated as a sequential
detection process. The target object is described by a template
patch T, and in each image frame I, the detection is carried out
by matching the template T to the image I. The output is a rectan-
gular region enclosing the target object. As we discussed in the
introduction, the novelty of the FragTrack comes from the arbitrary
image patches and the corresponding robust estimation scheme for
cue integration used in the template matching process.

Specifically, the tracking process is performed as follows: The
template patch T is subdivided into multiple image patches {Pr}
with each of them describing a different section of the target
object. The important point is that these multiple patches are

Fig. 3. The patches utilized to represent the target object in the FragTrack algorithm
[10].

chosen arbitrarily and are not based on any predetermined object
model. The authors suggested to use the patch layouts presented in
Fig. 3 (overall 36 patches; 18 vertical, 18 horizontal).

For a hypothesized object position (x,y) in the current frame I,
the patch Pr=(dx,dy,w,h) defines a corresponding rectangular im-
age patch Py, x,) with its center at (x + dx,y + dy) and having a width
w and a height h. Then, the dissimilarity between the patch Pr and
the related image patch Py, is used to measure the degree of the
compliance of the hypothesized object location (x,y) over the cur-
rent frame, which is denoted by Vp, (x,y) = d(Py,xy), Pr). The Frag-
Track algorithm uses the intensity histograms populated from
these patches and a metric d for comparing them to obtain this dis-
similarity or voting score.

The sequential detection is carried out by first extracting vote
maps for every patch Pr. That is, each object section described by
the patch Pr votes on the possible target locations in the current
frame. Due to computational efficiency, these vote maps are com-
puted only for the pixels which are in a neighborhood of the previ-
ous estimate of the target position (the search neighborhood is
defined with a fixed radius of 7 pixels from the previous target po-
sition). The real-time tracking capability is originated from the
Integral Histogram data structure [18], which is used for rapidly
determining the histograms required to extract these vote maps.

Once the vote maps are obtained, in the next step, the individ-
ual votes of the template patches are combined to obtain the joint
tracking result. For that, the authors adopted the following robust
estimation scheme for cue integration: For a hypothesized object
position (x,y), they simply sort the dissimilarity scores {Vp(x,y)}
and choose the Qth smallest one as the joint result C(x,y).

The final tracking result is determined by considering all the
joint dissimilarity scores {C(x,y)} over the search window and look-
ing for the image location with the minimal joint score. The param-
eter Q is related to the degree of potential occlusions that is
expected to be encountered in the tracking sequence. It determines
the maximal number of template patches that could always be re-
lied on for the measurements they provide. In [10], Q is taken as
25% of the total number of patches, i.e. it is presumed that at least
a quarter of the patches will be visible throughout the tracking se-
quence. The authors also extended the proposed tracking algorithm
so that a hypothesis about the scale of the target object is included
into the computations. This is carried out by additionally enlarging
and shrinking the template and accordingly the corresponding
template patches by 10%, and selecting the location and scale with
the lowest joint score.

It can be argued that the FragTrack algorithm uses a competitive
approach in the integration step since the joint result is based on
the dissimilarity value coming from a single template patch.
Although this single dissimilarity value is determined by consider-
ing the observations coming from all the fragments, it does not
reflect the dissimilarity values coming from the other fragments.
Multiple image patches compete with each other to describe the
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target object and in the end only one of them wins this competi-
tion, although the winner does not always provide is not the one
having the smallest score. The critical point here is that the winner
patch might not always provide sufficiently reliable measure-
ments. For instance, assume that only the fragments whose dissim-
ilarity scores are in the first 20% quantile of all the scores provide
reliable information regarding the target object. Then, even if the
tracker has accurate observations coming from these fragments,
it gives an inaccurate result since the result is determined by the
fragment whose estimated dissimilarity score falls into the 25%
quantile. In our work, as an alternative to this strategy, we propose
to use an adaptive collaborative integration scheme in which the
vote of each image patch directly contributes to the joint voting re-
sult according to its reliability, and which will allow us to achieve a
better tracking accuracy.

3. Particle filter framework

We realize tracking by means of a particle filter [15-17], and
propose a fragments-based method within this framework. For
the sake of completeness, we now recall in this section the main
lines of particle filtering.

The idea behind the particle filter is to approximate the poster-

. ~yN
ior p(si|z1.1) by a weighted set of particles {s,ﬁ”, n}j)}} as:
.

N
p(Sklzix) ~ 27'51(:)55;» (Sk)- (1)
i=1 ¢
In Eq. (1), 1., denotes the set of measurements up to and including
the time step k, s is the Dirac delta mass centered on s, and each
particle represents a possible state s, and a weight 7 € [0,1] asso-
ciated with it. The weights describe the confidence measures for the
corresponding states.
Considering this approximation scheme, the recursive estima-
tion process is performed as follows: First, a prediction phase

" . N

generates new particles from the old particle set {s,(('l],n;jll}l :
i
by sampling them from a known proposal function, s,((')~q
(s,JsSf,Fl,z]:k). The simplest choice for the proposal function is

q(-) = p(sk|sk_1), which means to use the state evolution model it-
self for sampling. This approach is known as the CONDENSATION
algorithm [16]. The second step of the recursive estimation in-
cludes a measurement phase which adjusts the weights of the
new particles according to the new observations z,. This is simply
performed by using the formula:

o Plas)p(sisl)

a0 «m :
k- 0
q (Sk|sozk,1 5 Zl:k)

(2)

k

with ZL n;f) = 1. One can additionally consider a resampling phase
that removes the particles with low weights and accumulates the
particles with high weights. Resampling is generally employed to
avoid the degeneracy of the particles [15]. Finally, the decision
about the tracking process for the current time step k can be ob-
tained from the particle set by estimating the weighted average of
the hypothesized states:

N
Sc=)Y m'sy. (3)
i=1

4. Proposed tracking algorithm

We propose a novel approach for tracking by integrating the
multiple-fragments based object representation [10] with a parti-

cle-filter based adaptive multi-cue integration scheme. We de-
scribe the target object by a template patch denoted by T, and
carry out tracking by searching for the image region in each frame
I of the tracking sequence with appearance characteristics similar
to the template T. This estimation process is done by splitting the
target object into multiple arbitrary patches with each of them
describing a different part of the target and accordingly providing
the multi-cue information.

In our work, an object is parameterized by a state vector
s =(X,Y,5%Sy). Consequently, each particle describes an image re-
gion whose center is at (x,y), and which has a width and height
of the size of the template T respectively scaled up with the scale
factors s, and s,. Including the scale information into the state
model makes the state dynamics handle the changes in the target’s
scale. Each particle represents a hypothesis that has additional
scale information. The computational cost is not affected much
since the computational complexity of the algorithm is mainly re-
lated to the number of particles used during tracking which pro-
vide the tested hypotheses.

We summarize the basic outline of our tracking algorithm in
Fig. 4. As it illustrates, we nearly follow the classic flow of a particle
filter-based framework. The proposed tracker consists of prediction,
measurement, resampling phases with an additional update step.
Among these phases, the measurement and the update steps are
the most important ones since we carry out the integration of
the multiple cues and the consequent adaptation of the cue models
in these steps.

4.1. Prediction step

For predicting the new locations of the particles, we follow the
CONDENSATION algorithm [16], and use the state evolution model
itself for sampling. The state dynamics is modeled using the fol-
lowing formula:

DP(Sk[Sk-1) ~ N (Sk-1, 1) (4)
with V(s,_1, A) denoting a Gaussian distribution with mean's,_; and
covariance matrix A = diag (aﬁ, 6;,02, ofy). This model assumes

mutually independent Gaussian random walks for each component
in propagating the old particle set to obtain the new particle set.

4.2. Measurement step

Once the new particles are generated by the prediction step,
they provide the hypothesized object locations and scales for the

Input: The particle set at time step k — 1, {ngll, W,(Ql};f\;l
1. prediction: generate the new particles by propagating
the old ones (Equation 4), s,(j) ~ p(sk | Sk—1)
2. measurement: evaluate the multiple cues and adjust the
weights of the new particles (Equation 6),
7r,<:) x p(zy, | s}f))

N

3. resampling: simulate a; ~ {m"}Y

{0, 1} « {s\"), 1}

and replace

4. update: adjust the cue reliabilities (Equation 7) and

adapt the cue models (Equation 10)

Output: The particle set at time step k, {S;ﬁ,ﬂg)} Al

Fig. 4. Outline of the proposed tracking algorithm.



E. Erdem et al./ Computer Vision and Image Understanding 116 (2012) 827-841 831

current frame I. In the measurement step, the likelihoods of these
hypotheses are determined by matching them to the template T.
One of the critical components of our tracker is this matching pro-
cess. For that, we split the template patch T into multiple smaller
arbitrary image patches or fragments denoted by {Pr} using the
patch layouts given in Fig. 3. Simply, a template patch
Pr=(dx,dy,w,h) consists of a displacement vector (dx,dy) from
the template center, a width w and a height h. For a sample particle

s = (x",y",sj(,s;), it defines a corresponding image patch Py
whose center is at (xi +sidx, ¥ + s} cly), and which has a width
siw and a height sih.

We represent each of these patches with an intensity histogram,
and as in [10], use the Integral Histogram data structure [18] to
estimate them in a fast way. Matching a template patch Pr and
the corresponding image patch Py is then carried out by esti-
mating the similarity between them by comparing their histo-

grams. For that purpose, we use the Bhattacharyya distance [19],
which is defined as:

B 1/2
D(hl,hz)<1—z hi_m,-_z) : (5)
i=1

with B denoting the number of bins, and h;; representing the ith bin
of histogram 1.

The similarity between Pr and Py, provides us a likelihood
value for the sample particle s”. The key point here is that we have
a number of similarity scores. Each template patch Pr gives us
some kind of confidence value regarding the target object’s loca-
tion. Thus, we need a mechanism to combine these similarities to
reach a final joint likelihood. How to integrate them is important
and has a direct effect on the tracking outcome. For example, dur-
ing tracking some parts of the target object may not be visible due
to external factors such as occlusions or changes in lighting condi-
tions, which makes the similarity scores estimated from these
parts unreliable.

Recall that the FragTrack algorithm performs the similar cue
integration by using a robust estimation scheme. The integration
is carried out based on an assumption on the maximal number of
template patches that could always be relied on for the measure-
ments they provide (Section 2), which can be seen as a drawback
of the method. In our work, we do not make any assumption
regarding the target object and the tracking sequence, and propose
to use an adaptive, more collaborative multi-cue integration
scheme in which each image patch contributes to the joint likeli-
hood according to its reliability as:

> preplP d(PI;(xvaT)Z
p(zls) = exp (— P

(6)

with s=(x,y,sss,) denoting a possible state, ¢ being a scalar,
P = {Pr} denoting the set of all template patches, rp, € [0,1] indi-
cating the reliability of the template patch Pr,}p e, = 1, and
d(Py(xy), Pr) being the Bhattacharyya distance between the histo-
grams of Py, and Py, respectively.

Given a state hypothesis (i.e. a particle) sf(i) at time step k, the
joint likelihood value in Eq. 6 provides the probability of the ob-
served outcome zi. This likelihood value is then used to define
the new confidence measure or the new weight for the correspond-
ing state as nff) o p(zk\s,((i)). In Eq. 6, the fragments having low reli-
ability values have little contribution on the value of the joint
likelihood. As a consequence, the framework assigns more accurate
confidence values for the particles. Since the final tracking result is
estimated by the weighted average of the hypothesized states (Eq.
3), we would then expect that the fragments with low reliabilities
are less taken into account in this step as well, which increases the
robustness of the tracking system.

4.3. Update step

The adaptive nature of our formulation stems from the fact that
the reliabilities of the template patches denoted by {rp} are
dynamically updated at each frame of the tracking sequence
depending on the current visual context. This update process is
performed based on the Democratic Integration approach [5]. The
goal of this adaption process is to suppress the fragments that
are not in agreement with the joint result, and at the same time
to give the fragments that are in line with the joint result a higher
influence in the future. This is carried out by using the following
dynamic update equation:

qp,
> preplp;

with g, denoting a quality measure which quantifies the degree of
agreement between the joint result and the result the cue (in our
case the fragment Pr) individually suggests, and t representing a
parameter which controls the speed of the adaptation.

The Democratic Integration of cues and tracking with particle fil-
ters have been addressed first by Spengler and Schiele in [20]. In
[20], the cue integration is, however, carried out by holding the
cue weights or reliabilities constant throughout the tracking pro-
cess. These weights are specified prior to tracking and are not al-
lowed to change. In our work, we go one step further by
including adaptive characteristics, which are key features of the
Democratic Integration method.

In the context of particle filter framework, Shen et al. [21] pro-
posed a novel quality measure for an individual cue, which can be
estimated from the current particle set. For a cue, its quality is esti-
mated by means of a sigmoid function of the Euclidean distance
between the result suggested by that cue alone and the tracking re-
sult that is currently agreed upon by all the cues. As pointed out by
Nickel and Stiefelhagen [1], this quality definition has some draw-
backs. For example, if the target becomes idle, the resampling step
of the particle filter framework could make the particles spread
around the true result. A cue providing unreliable observations
during this time assigns uniform likelihoods to all the particles,
and consequently the result obtained by that cue alone becomes
consistent with the joint tracking result. This makes the quality
of that cue be interpreted as high even with the cue is in fact not
successful in locating the object of interest.

In our adaptive integration scheme, we make use of a quality
measure in the line with the one proposed by Nickel and Stiefelha-
gen [1]. This quality measure depends on the proposition that a
reliable cue (in our case a template fragment) should not only offer
a result that is close to the joint hypothesis 8§ agreed upon all the
cues, but also give a high likelihood value at the location provided
by s.

To measure how well the outcome suggested by the hypothesis
s =(X,Y,5xSy) is according to the fragment Pr, we define the follow-
ing likelihood model:

d(Prixy, Pr)?
Pr, (2s) = exp (——( e 7 ) 8)

rho=(1-7r+1

)

;=

Table 2

Parameters for the tracking experiments.
# of particles N =500
# of bins B=16
Standard deviation of likelihoods c=0.1
Exponent for cue reliability i=4
Time constant for cue reliabilities 7=0.1
Time constant for cue adaptations 7.=0.01
Standard deviations of dynamics Ox=0,=5

05, =05, =25x107
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—block 1 ——block 2 ——block 3 ——block 4

0.7 T T
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0 100 200 300 400 500 600 900

frame number

Fig. 5. Sample frames with the superimposed reliabilities (using four fragments) and the plot of reliability values of each fragment along the sequence. Observe that the
reliabilities of the visible fragments are generally higher than those of the occluded fragments.

Fig. 6. Sample frames with the superimposed reliability maps (using 36 fragments; 18 vertical and 18 horizontal). Our method copes with the partial occlusions,
simultaneously providing information regarding which sections of the target object are occluded or not important for tracking.
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fixed reliabilities

‘

a ®. s

Fig. 7. Sample tracking results with the superimposed reliability maps. First two lines, reliabilities are fixed; last two lines, reliabilities are adapted depending on the context.
From the given results, it can be easily seen that adaptive multi-cue integration boosts the accuracy of the tracking process.

where d(Py,x,),Pr) denotes the Bhattacharyya distance between Pr
and the corresponding image patch Py, This model gives us a
likelihood value that is estimated considering only the part of the
target object pointed out by the template patch Pr. One can also
use it to assign an additional weight to each particle s,
n,(,? o pp, (z|s?) for Pr € P, providing a confidence value for the par-
ticle with respect to the individual template patch Pr.
The quality measure for a template patch Py is then given by:

— Zizl---n % |s(i) - §|/1

a i -pp. (Z/8 .
qPT Zi:]._.nﬂ:l(,l“s(i) _ §|f~ppr( | ) ( )

with the exponent 4 adjusting the distinctiveness of the quality
measures. The lower the value of 4, the more similar the patches’
qualities. The term pj_(z|$) within the formula makes the estimated
quality value depend on the success of the estimated joint result on
describing the target by considering only the part pointed out by
the template patch Pr. That is, a fragment has a high quality value
only if that fragment suggests a high likelihood value for the esti-
mated state. Additionally, the term Zizlmnng; |s®) — §| in the denom-
inator quantifies how well the particle set forms a group around the
joint result. The term 3, ; ,1|s® —§| which considers uniform
weights is for making the quality value independent of the actual
position of the particles.

The update step of our formulation also involves the adaptation
of the cue models. Instead of fixing the template T, and accordingly
the set of template fragments {Pr} extracted from T at the first
frame, and then using them during the whole sequence without
any update, we follow an additional re-calibration strategy. We ad-

180 ~- - fixed reliabilities N "
160 {——_adaptive reliabilities A -

140 /
120 N
100 f B
80F .
60 /
4/

position error (in pixels)

20

300 350 400 450 500 550

frame number

0 I i
100 150 200 250

Fig. 8. Error plots for the walking woman sequence: in blue, all the blocks have a
fixed reliability value, and in red, the reliabilities are adapted during the sequence,
depending on the context. (For interpretation of the references to colors in this
figure legend, the reader is referred to the web version of this paper.)

just all of the template patch models considering the current joint
result by using the following dynamic adaptation equation defined
for a single patch:

P =(1 -1 )Pt 4 1Py (10)

where Pr is the template patch extracted from the image region the
joint hypothesis s provides, and 7. denotes a time constant. We set
the parameter 7. to a small value (as compared to that of 7) since we
do not want the appearance model of the target object to be chan-
ged so quickly.
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Table 3
Center location errors (in pixels) w.r.t. manually marked ground truth (the best and the second best performances are indicated in bold and italics, respectively).
Video sequence 0AB1 OAB5 SemiBoost MILTrack FragTrack Our method (single scale) Our method (variable scale)
David Indoor 49 72 59 23 69 46 15
Sylvester 25 79 22 11 20 14 11
Occluded Face 44 105 41 27 5 4 5
Occluded Face 2 21 93 43 20 16 13 14
Girl 48 68 52 32 24 14 16
Tiger 1 35 58 46 15 39 33 34
Tiger 2 34 33 53 17 40 42 36
Coke Can 25 57 85 21 65 48 64

David Indoor

Occluded Face

| v MILTrack == FragTrack ===Our Method (single scale)  Our Method (variable scale)|

Fig. 9. In the David Indoor sequence, our method with the variable scale model provides the best performance. It deals with varying illumination conditions, and pose and
scale changes. In the Occluded Face sequence, our method and the FragTrack algorithm perform well and give nearly similar results. However, between the frames 515 and
580 where the occlusion is more severe than the others, our method performs better than the FragTrack (see the related error plot in Fig. 12).

4.4. Implementation details experiments, we used the fixed set of parameters given in Table 2
unless stated otherwise. Our implementation additionally includes

We have implemented the proposed algorithm in MATLAB on a some MEX C++subroutines, which helps us to achieve a real-time
MacBook with a 2.2 GHz Intel Core2 Duo processor. In all the tracking performance. For a video sequence containing 320 x 240
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Occluded Face 2

| ©MILTrack - - FragTrack===Our Method (single scale)

Our Method (variable scale) |

Fig. 10. The Occluded Face 2 and the Girl sequences show the target objects in occlusion and in different poses. For these sequences, our method generally gives better
results than the others. In the Girl sequence, our method with the variable scale model handles the changes in the target’s scale as well.

image frames, our tracker runs at approximately 10 frames per
second.

5. Experiments

In this section, we present our experimental results. We per-
form three groups of experiments to illustrate the performance
and the effectiveness of the proposed multi-fragments based track-
ing algorithm. In the first set of experiments, we demonstrate the
basic features of the proposed tracker on illustrative tracking se-
quences. The second set of experiments is about the qualitative
and the quantitative analysis of the proposed method in terms of
tracking accuracy. Following that, in the final group of experi-
ments, we compare the running times of the FragTrack and the pro-
posed algorithm. The videos showing the results of these
experiments are provided as Supplementary material. In these
experiments, the proposed tracker and the other trackers in

comparison are initialized by manually marking the image region
surrounding the target object in the first frame of the sequence un-
der consideration. At each frame, we use the weighted average of
the hypothesized states (Eq. 3) to represent the tracking result of
our algorithm.

5.1. Illustrative results

In this section, we focus on two key points: to show how the
fragments are working as complementary cues and to show how
the adaptive multi-cue integration works. For that, we begin with
a video sequence of tracking a woman'’s face. The main difficulty
with this sequence is that the face is often occluded by a magazine
throughout the sequence. To illustrate the key characteristics of
the proposed tracker in a more clear way, in our first experiment,
we divide the template patch into four fragments and run the
tracker accordingly. In Fig. 5, we present a few frames from the se-
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Tiger 1

'" 'Ll g

- MILTrack - - FragTrack = ==Our Method (single scale)

Our Method (variable scale) |

Fig. 11. In the Tiger 1 sequence, the target object moves very fast and its appearance changes quickly. To highlight these cases, we additionally give enlarged target regions
in the right-hand side of the sample tracking results. For this sequence, the MILTrack performs the best since it updates the appearance model at each frame using an online
learning mechanism. Our proposed tracker sometimes loses the track of the target object.

quence together with a plot of reliability values of each fragment
along the sequence. For the sample frames, the reliabilities are
shown in green tones where the higher values are shown in high
intensity.

As can be seen, the reliability of a fragment decreases when it is
hidden. For instance, fragments #2 and #4 correspond to an oc-
cluded part of the face around frame 300, and lower values of reli-
ability are obtained for these fragments. On the contrary, fragments
#1 and #3 correspond to visible parts of the face at that time, and
their reliabilities are then much higher. This is because the used
dynamics makes these adjustments in the fragments’ reliabilities
considering the changes in the current visual context. One should
keep in mind that the current reliability value of a fragment de-
pends not only on the current observation but also on the observa-
tion history of that fragment. For example, around frame 773,
fragments #3 and #4 have reliabilities smaller than that of frag-
ment #1 even if they are all visible. The reason of this is that frag-
ments #3 and #4 were previously considered unreliable seeing
them occluded in some of the preceding frames. When they become
visible again, the dynamics of the tracker increases their reliabilities
(see the related plot of reliabilities in Fig. 5). Around frame 800, all
the fragments are visible and all have nearly equal reliabilities.

Next, we employ the layout introduced in Fig. 3 to represent the
target object, and run the tracker accordingly. Here, the template
match is subdivided into 36 fragments (18 vertical and 18 horizon-
tal), which provides a more detailed description of the object. We
present sample frames in Fig. 6 where the superimposed reliability
maps are computed by adding the individual reliabilities of the
vertical and the horizontal fragments. In all our tests, we observed
that very low reliability values always correspond to occluded
areas. Moderately low values can also have other causes (strong
change in appearance, lack of information, etc.), and it is also an
interesting feature of our approach that in such cases the corre-
sponding fragments have a moderate influence on the tracking. It
is also important to note that the FragTrack lacks this feature,
and that it does not permit similar kind of inferences to be drawn
from the tracking results. Among the boosting-based tracking
frameworks mentioned in the introduction, only the one proposed

by Woodley et al. [13] has the ability to detect occluded parts of
the tracked object, but it achieves this by additionally learning a
generative object model from a set of relatively large number of
sample frames.

As a third experiment, we use a video sequence showing a walk-
ing woman. As illustrated in Fig. 7, the woman goes behind cars,
becomes occluded, and her pose undergoes some changes along
the sequence. Here, we compare two contrasting strategies: setting
the reliabilities of the fragments to a fixed value and adapting the
reliabilities of the fragments depending on the context. For both
cases, we used N =2000 particles and a variable scale model. For
the tracker that employs fixed reliabilities, all the fragments have
the same influence, such lowering the role of the really relevant
ones. For example, at some points, only a small part of the body re-
mains visible, corresponding to only few patches in the fragment
decomposition. As a result, the tracker does not accurately track
the target object. On the other hand, the proposed tracker never
loses the track of the target by adaptively modifying the fragment
reliabilities and consequently by adapting itself to the changes in
the scene. It is interesting to note that the tracking is successful
even only few fragments have a good reliability. For example,
when the bottom part of the woman is occluded by the car, strong
reliabilities are located on the relevant visible part of her body, in
particular in her shirt, which guarantees that they have the main
influence during the tracking. This experiment also illustrates that
using adaptive reliabilities allows the tracker to focus on key parts
of the target object. That is, a low reliability value does not always
mean that the corresponding part is occluded. It actually means
that the corresponding part has not a major role in tracking the ob-
ject of interest.

The contribution of adaptive multi-cue integration to tracking is
additionally evaluated by using the ground truth data of the se-
quence. The error plots are reported in Fig. 8. The error is small
and stable when reliabilities are adapted from the context. On
the opposite, when reliabilities are fixed and equal for all the
blocks, the tracking accuracy drastically decreases. For this se-
quence, we get an average center location error of 7.02 pixels with
adaptive reliabilities, and of 98.54 pixels with fixed reliabilities.
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Fig. 12. Error plots for the video sequences used in the quantitative analysis.

5.2. Qualitative and quantitative analysis

We evaluate our tracking algorithm on the video sequences
which have been used in a recent tracking paper [14], and for

which the ground truth information is available for every five
frames. These video sequences exhibit a wide variety of challenges
including changes in the pose, scale and orientation of the target
object, varying illumination conditions, and partial occlusions.
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Dudek

== FragTrack === Our Method (single scale)

Our Method (variable scale) |

Fig. 13. In the Dudek sequence, the target person undergoes significant pose, expression and appearance changes. Our method successfully deals with these changes during
tracking. The FragTrack algorithm, on the other hand, gives poor results. The Girl with Many Eyes sequence shows the target object in severe occlusion. From the given
results, we see that the proposed algorithm outperforms the FragTrack algorithm. Accurate tracking of the target under a high degree of potential occlusion is achieved as a

result of our adaptive formulation for the multi-cue integration.

We compare our results to those of the FragTrack [10] and the
boosting-based tracking frameworks? which respectively employ
Online-AdaBoost (OAB) [11], SemiBoost [12] and Multiple Instance
Learning (MILTrack) [14] algorithms. For the FragTrack algorithm,
we fixed the search radius to 7 pixels from the previous position of
the target object, the number of bins of the histograms to 16, and
used 25% of the number of fragments for the value of Q in the robust
integration scheme as suggested by the authors. We tested our
method considering both a variable scale model and a fixed single
scale model (with a5, = o, = 0) for the target object. Note that the
tested FragTrack and the learning-based trackers offer single scale
solutions. As pointed out in [14], the Haar-like features used in the

2 We used the results presented in [14] and the data provided by the authors at
http://vision.ucsd.edu/~bbabenko/project_miltrack.shtml.

learning-based trackers, however, provide an object representation
that is fairly insensitive to scale changes. If one wants to explicitly
incorporate multi-scale information into these trackers, the only
way is to enlarge and shrink the template box by a pre-determined
fixed scale, e.g. by 10%, when locating the target object in a new
frame, and accordingly to run several trackers at once with increased
computational load.

For quantitative analysis, we ran our tracker five times and took
the average for each video sequence since our formulation involves
some randomness. Table 3 summarizes these results. Figs. 9-11
show the initial templates and some sample tracking results for
five of the sequences. We also provide the error plots for each se-
quence in Fig. 12. For the sake of clarity, in these figures, we only
present the outcomes of our method and the FragTrack along with
those of the MILTrack since the MILTrack produced the best results
among the other boosting-based tracking frameworks. Apart from
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| == FragTrack == =Our Method (single scale)

Our Method (variable scale) |

Fig. 14. In the Dog sequence, the tracked object experiences large scale variation and pose changes. Thus, the approaches that consider fixed single scale models, including
ours, yield inaccurate outcomes. However, our approach with a variable scale model is able to keep track of the target well.

Table 4
Approximate runtimes (in frames per second) for the
Cartoon sequence.

Tracking method Runtime (fps)

FragTrack (r=7) 7
FragTrack (r=21) 4
FragTrack (r=35) 2
Our Method (o4 =0, =5) 10
Our Method (o, = 5, = 20) 10
Our Method (o, =0, = 35) 10

these sequences, we also provide our tracking outcomes for three
other sequences Dudek,? Dog? and Girl with Many Eyes of which
sample snapshots are given in Figs. 13 and 14. These sequences,
however, have not been evaluated against any ground truth. We only
present qualitative comparison against the FragTrack algorithm.

It can be seen from these results that the proposed algorithm
outperforms the FragTrack algorithm in terms of tracking accuracy.
The reason for this mainly stems from our adaptive cue integration
scheme. It removes the assumption that the FragTrack makes on
the degree of potential occlusions, and replaces its competitive ap-
proach to cue integration with a more cooperative strategy. At each
frame, the target is determined by using all the template patches,
but additionally considering their reliabilities, rather than by just
using a single patch which itself may provide poor or inaccurate
measurements. Moreover, our variable scale model copes well with
the scale changes in the target object during the tracking process.
However, sometimes with a variable scale model, there may be a
tendency for the target to shrink under partial occlusions (see
the Occluded Face 2 seq. in Fig. 10). This tendency is a result of
the partial vs. full explanation dilemma [10] when choosing the
scale, and is an important issue both for the FragTrack and our
method.

Boosting-based trackers are proved to be very robust against se-
vere appearance changes since they learn a new object model at

3 The sequence is available at http://www.cs.toronto.edu/vis/projects/
dudekfaceSequence.html.
4 The sequence is available at http://www.cs.toronto.edu/~dross/ivt.

each frame by using online appearance learning mechanisms.
However, they yield, in many cases, poor tracking results when
the target object becomes heavily occluded by the other objects
in the scene, and this is clearly noticeable in our experiments.
Our method and partly the FragTrack algorithm cope with these
kinds of occlusions better than most of the boosted trackers. As a
result, for most of the video sequences, our algorithm provides
the best results. However, the MILTrack and the OAB tracker give
better results than ours for the video sequences Tiger 1, Tiger
2, Coke Can. In these sequences, the appearances of the target ob-
jects vary too much due to either fast motion activity or changes in
the lightning conditions or both (e.g., see the sample close up shots
of the target object given in Fig. 11). Consequently, our (fragments-
based) object model which depends on a single view does not suf-
fice to produce meaningful results and our tracker sometimes loses
the track of the target. For these video sequences and the other se-
quences with similar characteristics, we believe that the tracking
can be improved by using multiple views of the target acquired
prior to the tracking [22]. The advantage of our formulation is its
adaptive nature which lets us easily combine different target
views, but generally with a loss of computational efficiency. It
would be interesting to focus on developing more efficient solu-
tions to this problem in future work.

5.3. Runtime analysis

Finally, in our last experiment, we investigate the runtime of
the FragTrack algorithm with respect to the search radius r, and
of the proposed method with respect to the standard deviations
ox and o,. These parameters are critical since they respectively
determine the hypothesis space of the methods, i.e. the region in
the current frame where the target object is searched for. In Table 4,
we summarize the runtime performances of both methods for dif-
ferent values of 1, and o, and o, for the Cartoon sequence® where
the target object moves very rapidly. We also provide sample track-
ing results in Fig. 15 (for the sake of clarity we only show the results

5 The sequence is from the authors of [8], and is available at http://www.cise.u-
fl.edu/~smshahed/tracking.htm.
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Fig. 15. Sample frames with the tracking results superimposed. The trackers lose the track of the target object when small values are used for r, and o, and o,. When their
values are increased, the trackers are able to follow the target and cope better with the jumps between the frames. However, for the FragTrack algorithm increasing the value

of r decreases the runtime performance (see Table 4).

obtained by using the smallest and the largest values). From these
results, we see that for small values of r, and o and o, both the Frag-
Track and our tracker could not cope with the rapid movement of the
target and lose its track. Increasing their values improves the track-
ing accuracy individually, however, for the FragTrack, this means a
loss in the runtime performance as increasing r increases the num-
ber of pixels examined during tracking. Increasing o, and ¢, on
the other hand, does not change the runtime performances since
the runtime complexity of our method is not related to g and gy,
but to the number of particles N.

6. Summary and discussion

In this paper, we have presented a new approach for model-free
tracking. It combines the arbitrary-fragments based object repre-
sentation [10] and the concept of adaptive multi-cue integration
[5]. Our approach associates the image fragments describing differ-
ent parts of the target object with some reliability values, which
are dynamically adjusted during tracking. In this way, the vote of
each fragment contributes to the joint tracking result according
to its reliability, allowing to achieve the needed precise cue inte-
gration. We have demonstrated the potential and the effectiveness
of the proposed approach on various challenging video sequences
with different tracking scenarios. As our experimental validation
reveals, the proposed approach works generally better than the
FragTrack tracker and the other tested learning-based trackers for
the sequences with significant amount of occlusions. When there
is smooth changes either in the target’s appearance or its move-
ments, i.e. when they do not change very abruptly, our method
can adapt itself accordingly by changing the fragments’ reliabilities
and their internal parameters, yielding more accurate and more ro-
bust outcomes.

Another important feature of our adaptive tracker algorithm is
the ability to estimate dynamic reliability maps. Through the frag-
ments and the reliabilities associated with them, at each frame, we
can form informative maps for the object of interest by adding the
individual reliabilities of the vertical and the horizontal fragments
used in our object representation. With an example, we present
that the tracking results superimposed with the corresponding
reliability maps provide simultaneous information on the distinc-
tive and occluded object sections (see Fig. 6).

An important issue for model-free tracking is the so-called drift-
ing problem. During tracking, a model-free tracker should be able
to adapt itself to the changes in the target’s appearance while pre-
venting drifting to the background or focusing on the occluding
elements in the scene. Although we do not directly address this
problem in our work, we obtained fairly good results as compared
to works that specifically learn object-specific detectors via object/
background classifiers [11-14]. As a future work, it would be inter-
esting to address this problem within our framework by consider-
ing the fragment reliabilities in updating the appearance model of

the target object or by combining different views of the target ob-
ject during tracking. Similarly, we think that one can use these dy-
namic reliabilities to find a way to guide the scale of the target and
to resolve the partial vs. full explanation dilemma that we men-
tioned in our experimental validation section.

Appendix A. Supplementary material

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.cviu.2012.03.005.
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