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Abstract

Robust real-time tracking of non-rigid objects is a challenging task. Particle filtering has proven very successful for non-linear and non-

Gaussian estimation problems. The article presents the integration of color distributions into particle filtering, which has typically been used

in combination with edge-based image features. Color distributions are applied, as they are robust to partial occlusion, are rotation and scale

invariant and computationally efficient. As the color of an object can vary over time dependent on the illumination, the visual angle and the

camera parameters, the target model is adapted during temporally stable image observations. An initialization based on an appearance

condition is introduced since tracked objects may disappear and reappear. Comparisons with the mean shift tracker and a combination

between the mean shift tracker and Kalman filtering show the advantages and limitations of the new approach.

q 2002 Published by Elsevier Science B.V.
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1. Introduction

Object tracking is required by many vision applications

such as human-computer interfaces [2], video communi-

cation/compression [22] or surveillance [3,9,27]. In this

context, particle filters provide a robust tracking framework

as they are neither limited to linear systems nor require the

noise to be Gaussian.

The idea of a particle filter–to apply a recursive Bayesian

filter based on sample sets–was independently proposed by

several research groups [8,12,14,18]. Our work has evolved

from the Condensation algorithm [12,14] which was

developed in the computer vision community and was

typically used with edge-based image features [11,12,14,20]

. At the same time this filtering method was studied both in

statistics and signal processing known in that context as

Bayesian bootstrap filter [8] or Monte Carlo Filter [18].

We propose to use such a particle filter with color-based

image features. Color histograms in particular have many

advantages for tracking non-rigid objects as they are robust

to partial occlusion, are rotation and scale invariant and are

calculated efficiently. A target is tracked with a particle filter

by comparing its histogram with the histograms of the

sample positions using the Bhattacharyya distance. Fig. 1

shows the application of the color-based particle filter for

tracking the face of a soccer player.

The novelty of the proposed approach mainly lies in the

original mixture of efficient components that together yield

a reliable and fast tracking performance for non-rigid

objects.

In general, tracking methods can be divided into two

main classes specified as bottom-up or top-down

approaches. In a bottom-up approach the image is

segmented into objects which are then used for the tracking.

For example blob detection [19] can be used for the object

extraction. In contrast, a top-down approach generates

object hypotheses and tries to verify them using the image.

Typically, model-based [12,14] and template matching

approaches [5] belong to this class. The proposed color-

based particle filter follows the top-down approaches, in the

sense that the image content is only evaluated at the sample

positions.

The related mean shift tracker by Comaniciu et al. [5]

also uses color distributions. By employing multiple

hypotheses and a model of the system dynamics our

proposed method can track objects more reliably in cases

of clutter and occlusions. Jepson et al., McKenna et al.

and Raja et al. [16,21,26] have already discussed

adaptive models, but these approaches employ Gaussian

mixture models while we use color histograms together

with multiple hypotheses. Isard et al. [15] have already

employed color information in particle filtering by using
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Gaussian mixtures. In comparison, our target model has

the advantage of matching only objects that have a

similar histogram, whereas for Gaussian mixtures objects

that contain one of the colors of the mixture will already

match. Recently, Pérez et al. [25] introduced an approach

that also uses color histograms and a particle filtering

framework for multiple object tracking. The two

independently proposed methods differ in the initializa-

tion of the tracker, the model update, the region shape

and the observation of the tracking performance.

The outline of this article is as follows. In Section 2 we

briefly describe particle filtering and in Section 3 we

indicate how color distributions are used as object models.

The integration of the color information into the particle

filter is explained in Section 4 and Section 5 describes the

model update. As tracked objects may disappear and

reappear an initialization based on an appearance condition

is introduced in Section 6. Section 7 compares the mean

shift [5] and the Kalman/mean shift tracker [6] with our

proposed tracking framework. In Section 8 we present some

experimental results and finally, in Section 9, we summarize

our conclusions.

2. Particle filtering

Particle filtering [12,14] was originally developed to

track objects in clutter. The state of a tracked object is

described by the vector Xt while the vector Zt denotes all the

observations {z1;…; zt} up to time t. Particle filters are often

used when the posterior density pðXtlZtÞ and the observation

density pðztlXtÞ are non-Gaussian.

The key idea of particle filtering is to approximate the

probability distribution by a weighted sample set

S ¼ {ðsðnÞ;pðnÞÞln ¼ 1…N}: Each sample s represents one

hypothetical state of the object, with a corresponding discrete

sampling probability p, where
PN

n¼1 p
ðnÞ ¼ 1:

The evolution of the sample set is described by

propagating each sample according to a system model.

Each element of the set is then weighted in terms of the

observations and N samples are drawn with replacement, by

choosing a particular sample with probability

pðnÞ ¼ pðztlXt ¼ sðnÞt Þ. The mean state of an object is

estimated at each time step by

E½S� ¼
XN
n¼1

pðnÞsðnÞ: ð1Þ

Particle filtering provides a robust tracking framework, as it

models uncertainty. It can keep its options open and

consider multiple state hypotheses simultaneously. Since

less likely object states have a chance to temporarily remain

in the tracking process, particle filters can deal with short-

lived occlusions.

3. Color distribution model

We want to apply a particle filter in a color-based

context. Color distributions are used as target models as they

achieve robustness against non-rigidity, rotation and partial

occlusion. Suppose that the distributions are discretized

into m-bins. The histograms are produced with the function

hðxiÞ; that assigns the color at location xi to the correspond-

ing bin. In our experiments, the histograms are typically

calculated in the RGB space using 8 £ 8 £ 8 bins. To make

the algorithm less sensitive to lighting conditions, the HSV

color space could be used instead with less sensitivity to V

(e.g. 8 £ 8 £ 4 bins).

We determine the color distribution inside an upright

elliptic region with half axes Hx and Hy. To increase the

reliability of the color distribution when boundary pixels

belong to the background or get occluded, smaller weights

are assigned to the pixels that are further away from the

region center by employing a weighting function

kðrÞ ¼
1 2 r2 r , 1

0 otherwise

(
ð2Þ

where r is the distance from the region center. Thus, we

increase the reliability of the color distribution when these

boundary pixels belong to the background or get occluded.

It is also possible to use a different weighting function, for

example the Epanechnikov kernel [5]. The color distribution

py ¼ {pðuÞ
y }u¼1…m at location y is calculated as

pðuÞ
y ¼ f

XI

i¼1

k
ky 2 xik

a

� �
d½hðxiÞ2 u� ð3Þ

where I is the number of pixels in the region, d is the

Kronecker delta function, the parameter a ¼
ffiffiffiffiffiffiffiffiffiffiffi
H2

x þ H2
y

q
is

used to adapt the size of the region, and the normalization

Fig. 1. A color-based target model and the different hypotheses (black

ellipses) calculated with the particle filter. The white ellipse on the left

represents the expected object location.
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factor

f ¼
1XI

i¼1

k
ky 2 xik

a

� � ð4Þ

ensures that
Pm

u¼1 pðuÞ
y ¼ 1:

In a tracking approach, the estimated state is updated at

each time step by incorporating the new observations.

Therefore, we need a similarity measure, which is based on

color distributions. A popular measure between two

distributions pðuÞ and qðuÞ is the Bhattacharyya coefficient

[1,17]

r½p; q� ¼
ð ffiffiffiffiffiffiffiffiffiffi

pðuÞqðuÞ
p

du: ð5Þ

Considering discrete densities such as our color histograms

p ¼ {pðuÞ}u¼1…m and q ¼ {qðuÞ}u¼1…m the coefficient is

defined as

r½p; q� ¼
Xm
u¼1

ffiffiffiffiffiffiffiffiffi
pðuÞqðuÞ

q
: ð6Þ

The larger r is, the more similar the distributions are. For

two identical normalized histograms we obtain r ¼ 1;

indicating a perfect match. As distance between two

distributions we define the measure

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 2 r½p; q�

p
ð7Þ

which is called the Bhattacharyya distance.

4. Color-based particle filtering

The proposed tracker employs the Bhattacharyya dis-

tance to update the a priori distribution calculated by the

particle filter. Each sample of the distribution represents an

ellipse and is given as

s ¼ {x; y; _x; _y;Hx;Hy; _a} ð8Þ

where x, y specify the location of the ellipse, _x; _y the motion,

Hx; Hy the length of the half axes and _a the corresponding

scale change. As we consider a whole sample set the tracker

handles multiple hypotheses simultaneously.

The sample set is propagated through the application of a

dynamic model

st ¼ Ast21 þ wt21 ð9Þ

where A defines the deterministic component of the model

and wt21 is a multivariate Gaussian random variable. In our

application we currently use a first order model for A

describing a region moving with constant velocity _x; _y and

scale change _a: Expanding this model to second order is

straightforward.

To weight the sample set, the Bhattacharyya coeffi-

cient has to be computed between the target histogram

and the histogram of the hypotheses. Each hypothetical

region is specified by its state vector sðnÞ: Both the target

histogram q and the candidate histogram psðnÞ are

calculated from Eq. (3) where the target is centered at

the origin of the elliptic region.

As we want to favor samples whose color distributions are

similar to the target model, small Bhattacharyya distances

correspond to large weights:

p
ðnÞ ¼

1ffiffiffiffi
2p

p
s

e
2

d2

2s2 ¼
1ffiffiffiffi

2p
p

s
e
2

ð12r½p
sðnÞ

;q�Þ

2s2 ð10Þ

that are specified by a Gaussian with variance s. During

filtering, samples with a high weight may be chosen several

times, leading to identical copies, while others with relatively

low weights may not be chosen at all. The programming

details for one iteration step are given in Fig. 2. The proposed

color-based particle filter was introduced in [23,24].

To illustrate the distribution of the sample set, Fig. 3

shows the Bhattacharyya coefficient for a rectangular

region of the soccer player shown in Fig. 1. The samples

are located around the maximum of the Bhattacharyya

coefficient, which represents the best match to the target

model. As can be seen, the calculated mean state of the

sample distribution corresponds well to the maximum

and consequently the localization of the face is accurate.

5. Target model update

Illumination conditions, the visual angle, as well as the

camera parameters can influence the quality of the color-

based particle filter. To overcome the resulting appearance

Fig. 2. An iteration step of the color-based particle filter.
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changes we update the target model during slowly changing

image observations. By discarding image outliers–where

the object is occluded or too noisy–it can be ensured that the

model is not updated when the tracker has lost the object.

So, we use the update condition

pE½S� . pT ð11Þ

where pE½S� is the observation probability of the mean state

E½S� and pT is a threshold.

The update of the target model is implemented by the

equation

qðuÞ
t ¼ ð1 2 aÞqðuÞ

t21 þ apðuÞ
E½St�

ð12Þ

for each bin u where a weights the contribution of the mean

state histogram pE½St�
: Thus, we evoke a forgetting process in

the sense that the contribution of a specific frame decreases

exponentially the further it lies in the past. A similar

approach is often used for model updates in figure-

background segmentation algorithms [7,10].

To summarize, one single target model is used,

respectively adapted, for the whole sample set of the

particle filter. We have also considered to use different

target models for each sample but the computational cost

increases while the results are not significantly better.

Furthermore, some samples could adapt themselves to a

wrong target.

6. Initialization

For the initialization of the particle filter, we have to find

the initial starting values x, y, Hx and Hy: There are three

possibilities depending on the prior knowledge of the target

object: manual initialization, automatic initialization using a

known histogram as target model or an object detection

algorithm that finds interesting targets. Whatever the choice,

the object must be fully visible, so that a good color

distribution can be calculated.

If the target histogram q ¼ {qðuÞ}u¼1…m is known, we can

place samples strategically at positions where the target is

expected to appear (Fig. 4). The tracker should detect the

object when it enters the field of view of the camera. In this

case, the Bhattacharyya coefficient in the vicinity of the

object position should be significantly higher than the

average coefficient of the background. Therefore, we first

calculate the mean value m and the standard deviation s of

the Bhattacharyya coefficient for elliptic regions over all the

positions of the background:

m ¼
1

I

XI

i¼1

r ½pxi
; q� ð13Þ

s 2 ¼
1

I

XI

i¼1

ðr½pxi
; q�2 mÞ2 ð14Þ

and then define an appearance condition as

r½psðnÞt
; q� . mþ 2s: ð15Þ

This indicates a 95% confidence that a sample does not

belong to the background. If more than b·N of the samples

fulfill the appearance condition during initialization, we

consider the object to be found and start tracking. The

parameter b is called the ‘kick-off fraction’.

Likewise, the same condition is used to determine if an

object is lost during the tracking. If the number of positive

appearances is smaller than b·N for a couple of frames, the

tracker returns into the ‘initialization’ mode. In our

experiments a value of b ¼ 0.1 has been proven sufficient.

In several of the experiments, the goal was to track faces,

and we used an automatic object detection algorithm based

on Support Vector Machines [4] for the initialization.

7. Comparisons

The mean shift algorithm has been introduced recently

for tracking and segmentation applications [5,28]. It is a

simple and fast adaptive tracking procedure that finds the

maximum of the Bhattacharyya coefficient given a target

model and a starting region. Based on the mean shift vector,

which is an estimation of the gradient of the Bhattacharyya

Fig. 3. Surface plot of the Bhattacharyya coefficient of a small area around

the face of the soccer player shown in Fig. 1. The black points illustrate the

centers of the ellipses of the sample set while the white point represents the

mean location. It is positioned close to the maximum of the plot.

Fig. 4. Example from the surveillance experiment (see Section 8). The

samples are initially placed at positions where the known human head is

most likely to appear, like doors and image borders.
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function, the new object location is calculated. This step is

repeated until the location no longer changes significantly.

A target scaling is taken into account by calculating the

Bhattacharyya coefficient for three different sizes (same

scale, ^5% change) and choosing the size which gives the

highest similarity to the target model.

To reduce the number of iterations for the best object

location the basic mean shift tracker was enhanced by a state

prediction using Kalman filtering [6]. If a Kalman filter is

used to estimate the new location, the search regions of

subsequent frames no longer need to overlap and the tracker

is more likely to converge to the correct maxima in case of

rapid movements.

To illustrate the differences between the mean shift, the

Kalman/mean shift tracker and our proposal we discuss a

basketball and a snowboarder sequences. The experiments

have been processed with a Pentium3 800 MHz PC under

Linux, using the RGB color space with 8 £ 8 £ 8 bins.

In the basketball sequence (Fig. 5) the ball is thrown into

the basket, afterwards bouncing from the floor again. The

results of the three trackers (see bottom row) are illustrated

by the paths of the elliptic regions. The image size is

360 £ 288 pixels and the initial elliptic search region

contains 20 £ 20 pixels. As can be seen from the left

image, the mean shift tracker can trace the ball during the

whole sequence but does not always detect the correct scale.

The mean shift iteration itself has no integrated scale

adaptation. As mentioned before, scale is handled by

calculating the Bhattacharyya distance with different fixed

scales in order to detect possible size changes during the

sequence. In this example the mean shift tracker chooses a

large enough region so that the search regions still overlap

despite of the fast movement of the basketball. Conse-

quently, the search region increases although the target size

stays constant. If no scaling is employed or the maximum

scale change is too small, the mean shift tracker loses the

ball.

In contrast, the Kalman/mean shift tracker (see middle

image) can handle the scaling better due to the prediction of

the search region. However, the state estimation proves false

during the bounce and consequently the tracker loses the

ball.

Finally, for the color-based particle filter (see right

image) we processed N ¼ 75 samples. In comparison to the

mean shift tracker the scaling results look better but are less

smooth as for the Kalman/mean shift tracker. An improve-

ment can be achieved by increasing the number of samples

but this affects the computational performance. The color-

based particle filter predicts the search region similarly to

the Kalman/mean shift tracker but it can still track the ball

after bouncing from the floor due to its multiple hypotheses.

To increase the flexibility of the color-based particle filter, it

can be further enhanced by switching between multiple

motion models [13].

In the snowboarder sequence (Fig. 6) the goal is to

follow the boarder during his jump. The image size is

352 £ 240 pixels and the dimensions of the initial elliptic

search region is 14 £ 22 pixels. One of the biggest problems

in motion-based tracking is to follow an object through

clutter. Such a situation is shown in frame 50 where for

example the mean shift tracker (see second row) converges

to a local maximum, which corresponds to a region in

Fig. 5. Top row: The sequence of the ball thrown into the basket; Bottom row: The results of the mean shift tracker, the Kalman/mean shift tracker and the

color-based particle filter.
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the background that has a similar color distribution as the

target model. In this situation the tracker has no chance to

recover and must be re-initialized. If a Kalman filter is used

to estimate the new location for the mean shift iterations

(see third row), the situation looks similar as the state

prediction does not correspond well to the observation. The

tracker still has problems to follow the object through clutter

as a single hypothesis is used for the tracking. In contrast,

the color-based particle filter (see last row) tracks multiple

hypotheses and is therefore more reliable.

In summary, first, the mean shift iteration itself has no

scale adaptation while in the color-based particle filtering

the scale is directly estimated and propagated using the

system model. Consequently, the scale changes freely,

adapts better to the actual size of the object and is more

accurate.

Secondly, a state prediction can improve the tracking

results of the mean shift approach in case of rapid

movements, but the system dynamics must represent

the object’s movement well enough. However, a single

hypothesis still limits the flexibility of the tracker in case of

clutter.

Thirdly, the mean shift and the Kalman/mean shift

tracker have the advantage that a more precise localization

Fig. 6. The top row shows the sequence of a snowboarder jumping. The second row displays the results of the mean shift tracker, the third row shows the output

of the combination of the mean shift tracker with the Kalman filter and in the last row the results of the color-based particle filter are shown.
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is calculated, which corresponds to a maximum of

the similarity measure. In particle filtering, the object

location has to be estimated by calculating the mean value

of the sample distribution. Accordingly, the accuracy of the

tracker is dependent on the size of the sample set. By

increasing the number of samples the discretization error

can be decreased.

The running time to process one frame depends mainly on

the region size for all approaches as many color distributions

have to be calculated. When using the mean shift or the

Kalman/mean shift tracker the number of these calculations

depend on the number of iterations, and with particle filtering

on the number of samples. If the system model represents the

object movement well enough, the Kalman state prediction

can reduce the number of mean shift iterations. The

computing times of all trackers are shown in Fig. 7 for the

snowboarder sequence. On the average, the mean shift

tracker and the Kalman/mean shift tracker are faster but they

need more computation time in frames where they lose the

object. However, all trackers have real time capabilities.

8. More results

We consider a mock surveillance sequence of 450 frames

to demonstrate the efficiency of the color-based particle

filter. The system uses two fixed cameras to track a person

who is moving inside two connected rooms. The ground

plan is shown in Fig. 8. The cameras are kept static without

any zoom, pan or tilt and their relative exterior orientation is

known. Camera 1 in room A is pointed to a door, which

leads to a room B that is observed by camera 2. Currently,

the trackers in both cameras are working independently, i.e.Fig. 8. Camera setup and the person’s path in the surveillance example.

Fig. 7. Running times between two successive frames of the snowboarder

sequence.

Fig. 9. Frame selection from the surveillance sequence of camera 1.
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each of them uses a separate particle filter and do not

exchange information.

In this experiment we used the initialization method

based on a known histogram. Both trackers are put into

the ‘initialization’ mode and start tracking as soon as a

person enters their field of view. When the person later

leaves the room, the corresponding tracker will return to the

‘initialization’ mode. In Figs. 9 and 10 the results of

camera 1 and camera 2 are shown. The trackers handle the

initialization successfully, even when the person is appear-

ing from different sides. Also scale changes and out-of-

plane rotations are managed properly. In particular, the

rotations are very large as the face is seen from the front as

well as from the side.

The method could be further improved by letting the

trackers exchange information. For example when a person

leaves room B, the exact position, velocity and region size

could be handed over to the tracker in room A which can

then initialize a sample distribution using this knowledge.

Switching between the ‘initialization’ and ‘tracking’

modes is done by applying the appearance condition of Eq.

(15). Fig. 11 shows the number of positive appearances for

both cameras. In this experiment we used N ¼ 100 samples

and the ‘kick-off’ fraction b ¼ 0.1.

To demonstrate the robustness of our color-based particle

filter against occlusion and rapid movements, we show

results for a soccer sequence, where the tracker follows a

single player over 438 frames. The results are displayed in

Fig. 12. In this sequence the camera is moving. The player is

completely occluded by the referee in frame 156, but despite

of other good object candidates in the neighborhood, the

particle filter performs perfectly. Small gaps during tracking

can occur when the occlusion continues for a longer period.

In these cases, the mean state is not located very accurately

for a short time, but due to multiple hypotheses the tracker

can recover the player. Fig. 13 shows the evolution of

the size and position of the object region during the soccer

sequence. As can be seen, the scale changes quite smoothly.

In Fig. 14 we consider a moving stairs sequence in a train

station. A static surveillance camera is installed to track the

faces of passing passengers. In this experiment the

robustness of color-based particle filtering against occlusion

and large scale changes is demonstrated. During the whole

sequence the tracker has to cope with a large scale change as

the person is approaching the surveillance camera. In frame

19, the object is temporarily lost as it is completely

occluded, but can be recovered using the appearance

condition given in Eq. (15). The new initial location is

poor at the beginning but improves quickly after a few

frames due to the use of multiple hypotheses.

Fig. 10. Frame selection from the surveillance sequence of camera 2.

Fig. 11. The number of samples in each frame that fulfill the appearance

condition for the surveillance sequence.
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To corroborate the importance of the model update we

consider the traffic sequence of 234 frames recorded by

a highway monitoring system. There is an evident scale

change during this sequence as the camera was placed

towards the traffic flow. Furthermore, different viewing

angles of the car and partial occlusions make the experiment

more difficult. In the top row of Fig. 15 no model update is

performed and the resulting region gets stuck on the left

front side of the car. In contrast, the bottom row shows the

effectiveness of the model update as now also the scale is

getting adapted correctly.

Fig. 16 shows the face sequence of 600 frames, taken

under strong lightning changes by the sun. At the

beginning of the sequence the face is in the shadow of

the trees and at the end it is directly in the sun. The tracked

face is affected by changing illumination conditions and

facial expressions as well as a full turn of the person and

large scale changes. In frame 400, the tracked position is

not very exact as the model does not match the back of the

head very well. Nevertheless, the person can still be

tracked and the position improves rapidly once the person

has turned around.

The target model of our tracker is only updated

according to Eq. (11) as outliers must be discarded, i.e.

the update is only made when the object is tracked

stably. A related update condition is given by the

maximization of the log-likelihood [16] over the last T

frames: L ¼
PT

t¼1 logpðtÞ
E½S�: In Fig. 17 both update

possibilities are plotted for the face sequence. The two

update approaches behave similarly in the sense that a

model update is only performed under slowly varying

image conditions. As the history of samples through

the log-likelihood does not significantly improve the

results, we use our simpler and therefore more efficient

method.

9. Conclusions

The proposed tracking method adds an adaptive appear-

ance model based on color distributions to particle filtering.

The color-based tracker can efficiently and successfully

handle non-rigid and fast moving objects under different

Fig. 12. This soccer sequence shows the successful tracking of a player in cases of occlusion and rapid movement.

Fig. 13. The size and horizontal position of the elliptic object region during

the soccer sequence is shown for every fifth frame. The scaling changes

relatively smoothly. The line indicates the horizontal displacement which is

relatively small as the player stays more or less in the center of the field of

view, as a movable camera has been used.

IMAVIS 1925—22/12/2002—15:30—UMASHANKAR—57450— MODEL 5

K. Nummiaro et al. / Image and Vision Computing xx (2002) 1–12 9

ARTICLE IN PRESS



appearance changes. Moreover, as multiple hypotheses are

processed, objects can be tracked well in cases of occlusions

or clutter. The proposed algorithm runs comfortably in real

time with 10–30 frames per second without any special

optimization on a normal 800 MHz PC.

The object model is represented by a weighted

histogram which takes into account both the color and

the shape of the target. The number of bins in

the histogram should be optimized with respect to the

noise of the camera, as too many bins can otherwise

pose a problem. In these cases, a different similarity

measure could be considered that also takes into account

neighboring bins. In addition, further improvements can

be achieved by using a different weighting function for

Fig. 14. The moving stairs sequence shows the robustness of the color-based particle filter against occlusion and strong scale changes. Furthermore, in frame 26

the effect of the initialization is illustrated.

Fig. 15. The traffic sequence illustrates the importance of an adaptive target model in cases of occlusions and large scale changes. The white ellipses represent

the mean states of the underlying sample distribution of N=100 elements. In the top row tracking without a model update is seen to result in a failure of scale

adaptations, while in the bottom row a model update is applied and the scale remains correct.
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the histograms to put more emphasis on the shape of the

object, i.e. to utilize some prior knowledge of the

expected object silhouette to calculate the weighted

histogram.

A straightforward kinematic system model is currently

used to propagate the sample set. By incorporating more a

priori knowledge, for example by employing a learned

motion model, the quality of the tracking could be further

improved. The application of an adaptive model always

implies a trade-off between an increasing sensitivity to

extended occlusions and a more reliable tracking under

appearance changes.

Our research interests now focus on multiple camera

systems that can exchange information about the state of the

objects that they track.
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