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Abstract

A conventional FCM algorithm does not fully utilize the spatial information in the image. In this paper, we present a fuzzy c-means (FCM)

algorithm that incorporates spatial information into the membership function for clustering. The spatial function is the summation of the

membership function in the neighborhood of each pixel under consideration. The advantages of the new method are the following: (1) it

yields regions more homogeneous than those of other methods, (2) it reduces the spurious blobs, (3) it removes noisy spots, and (4) it is less

sensitive to noise than other techniques. This technique is a powerful method for noisy image segmentation and works for both single and

multiple-feature data with spatial information.

q 2005 Published by Elsevier Ltd.
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1. Introduction

Many neurological conditions alter the shape, volume,

and distribution of brain tissue; magnetic resonance imaging

(MRI) is the preferred imaging modality for examining

these conditions. Reliable measurement of these alterations

can be performed by using image segmentation. Several

investigators have developed methods to automate such

measurements by segmentation [1–4]. However, some of

these methods do not exploit the multispectral information

of the MRI signal.

Fuzzy c-means (FCM) clustering [1,5,6] is an unsuper-

vised technique that has been successfully applied to feature

analysis, clustering, and classifier designs in fields such as

astronomy, geology, medical imaging, target recognition,

and image segmentation. An image can be represented in

various feature spaces, and the FCM algorithm classifies the

image by grouping similar data points in the feature space

into clusters. This clustering is achieved by iteratively

minimizing a cost function that is dependent on the distance

of the pixels to the cluster centers in the feature domain.
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The pixels on an image are highly correlated, i.e. the

pixels in the immediate neighborhood possess nearly the

same feature data. Therefore, the spatial relationship of

neighboring pixels is an important characteristic that can be

of great aid in imaging segmentation. General boundary-

detection techniques have taken advantage of this spatial

information for image segmentation. However, the conven-

tional FCM algorithm does not fully utilize this spatial

information. Pedrycz and Waletzky [7] took advantage of

the available classified information and actively applied it as

part of their optimization procedures. Ahmed et al. [8]

modified the objective function of the standard FCM

algorithm to allow the labels in the immediate neighborhood

of a pixel to influence its labeling. The modified FCM

algorithm improved the results of conventional FCM

methods on noisy images. However, the way in which

they incorporate the neighboring information limits their

application to single-feature inputs.

The aim of this study is to introduce a new segmentation

method for FCM clustering. In a standard FCM technique, a

noisy pixel is wrongly classified because of its abnormal

feature data. Our new method incorporates spatial infor-

mation, and the membership weighting of each cluster is

altered after the cluster distribution in the neighborhood is

considered. This scheme greatly reduces the effect of noise

and biases the algorithm toward homogeneous clustering.
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2. Method
2.1. FCM clustering

The FCM algorithm assigns pixels to each category by

using fuzzy memberships. Let XZ(x1, x2,.,xN) denotes an

image with N pixels to be partitioned into c clusters, where

xi represents multispectral (features) data. The algorithm is

an iterative optimization that minimizes the cost function

defined as follows:

J Z
XN

jZ1

Xc

iZ1

um
ij kxj Kvik

2; (1)

where uij represents the membership of pixel xj in the ith

cluster, vi is the ith cluster center, k$k is a norm metric, and

m is a constant. The parameter m controls the fuzziness of

the resulting partition, and mZ2 is used in this study.

The cost function is minimized when pixels close to the

centroid of their clusters are assigned high membership

values, and low membership values are assigned to pixels

with data far from the centroid. The membership function

represents the probability that a pixel belongs to a specific

cluster. In the FCM algorithm, the probability is dependent

solely on the distance between the pixel and each individual
Fig. 1. (a) T1 and (b) T2 images used for the study. (c) T1
cluster center in the feature domain. The membership

functions and cluster centers are updated by the following:
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and
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Starting with an initial guess for each cluster center, the

FCM converges to a solution for vi representing the local

minimum or a saddle point of the cost function.

Convergence can be detected by comparing the changes in

the membership function or the cluster center at two

successive iteration steps.
2.2. Spatial FCM

One of the important characteristics of an image is that

neighboring pixels are highly correlated. In other words,

these neighboring pixels possess similar feature values, and
and (d) T2 images added with uniform random noise.
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the probability that they belong to the same cluster is great.

This spatial relationship is important in clustering, but it is

not utilized in a standard FCM algorithm. To exploit the

spatial information, a spatial function is defined as

hij Z
X

k2NBðxjÞ

uik; (4)

where NB(xj) represents a square window centered on pixel

xj in the spatial domain. A 5!5 window was used

throughout this work. Just like the membership function,

the spatial function hij represents the probability that pixel xj

belongs to ith cluster. The spatial function of a pixel for a

cluster is large if the majority of its neighborhood belongs to

the same clusters. The spatial function is incorporated into

membership function as follows:

u0
ij Z

u
p
ijh

q
ijPc

kZ1

u
p
kjh

q
kj

; (5)

where p and q are parameters to control the relative

importance of both functions. In a homogenous region, the

spatial functions simply fortify the original membership,

and the clustering result remains unchanged. However, for a

noisy pixel, this formula reduces the weighting of a noisy
Fig. 2. Segmented images of an MRI image usin
cluster by the labels of its neighboring pixels. As a result,

misclassified pixels from noisy regions or spurious blobs

can easily be corrected. The spatial FCM with parameter p

and q is denoted sFCMp,q. Note that sFCM1,0 is identical to

the conventional FCM.

The clustering is a two-pass process at each iteration. The

first pass is the same as that in standard FCM to calculate the

membership function in the spectral domain. In the second

pass, the membership information of each pixel is mapped

to the spatial domain, and the spatial function is computed

from that. The FCM iteration proceeds with the new

membership that is incorporated with the spatial function.

The iteration is stopped when the maximum difference

between two cluster centers at two successive iterations is

less than a threshold (Z0.02). After the convergence,

defuzzification is applied to assign each pixel to a specific

cluster for which the membership is maximal.
2.3. Cluster validity functions

Two types of cluster validity functions, fuzzy partition

and feature structure, are often used to evaluate the

performance of clustering in different clustering methods.

The representative functions for the fuzzy partition are

partition coefficient Vpc [9] and partition entropy Vpe [10].
g (a) FCM; (b) sFCM1,1; and (c) sFCM0,2.



Fig. 3. Segmented images of a noisy MRI image using (a) standard FCM; (b) sFCM1,1; (c) sFCM0,2.
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They are defined as follows:

Vpc Z

PN
j

Pc

i

u2
ij

N
(6)

and

Vpe Z

K
PN

j
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i

½uijlog uij�

N
(7)

The idea of these validity functions is that the partition

with less fuzziness means better performance. As a result,

the best clustering is achieved when the value Vpc is

maximal or Vpe is minimal.

Disadvantages of Vpc and Vpe are that they measure only

the fuzzy partition and lack a direct connection to the

featuring property. Other validity functions based on the

feature structure are available [11,12]. For example, Xie and

Beni [11] defined the validity function as

Vxb Z

K
PN

j

Pc

i

uijjjxjKvijj
2

N � minisk jjvk Kvijj
2

� �� � : (8)

A good clustering result generates samples that are

compacted within one cluster and samples that are separated
between different clusters. Minimizing Vxb is expected to

lead to a good clustering.

2.4. Image data

In this study, we used one T1-weighted image and one

T2-weighted MRI image from the same patient. To

demonstrate the effect of noise on the segmentation, both

images were added with a uniform random noise of

magnitude between (K50, 50). The images were divided

into six clusters: gray matter (GM), white matter (WM),

cerebrospinal fluid, fat, bone, and air. In addition, two

synthetic images with four gray levels are generated to serve

as ‘ground truth’ images for segmentation evaluation. The

images were then corrupted by using a uniform noise

between (Kn, n), where nZ3.5!(pixel value)1/2.
3. Results and discussion

Fig. 1(a) and (b) show the T1- and T2-weighted images

used for the study, respectively. Fig. 2(a) shows the

segmentation results obtained by using a standard

FCM algorithm and Fig. 2(b) and (c) show the results of

the FCM incorporated into the spatial information with

parameters (pZ1, qZ1) and (pZ0, qZ2), respectively.
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The conventional FCM successfully classifies the MRI

images into six clusters. However, spurious blobs of GM

appear inside the WM cluster. The spatial function modifies

the membership function of a pixel according to the

membership statistics of its neighborhood. Such neighbor-

ing effect biases the solution toward piecewise-homo-

geneous labeling. Both sFCM techniques reduce the

number of spurious blobs, and the segmented images are

more homogeneous. The sFCM algorithm with a higher q

parameter shows a better smoothing effect. The possible

disadvantages of using higher spatial weighting are the

blurring of some of the finer details. However, this is

difficult to judge from the results.

Fig. 1(c) and 1(d) show the T1 and T2 images added with

a uniform noise. Fig. 3 shows the segmented results of a

noisy MRI image by using the three FCM techniques. As

can be seen, the standard FCM technique misclassifies GM

and WM at numerous places because the added noise

changes the location of GM and WM pixels in the feature

space and causes the misclassification of these noisy pixels.

Because no similar cluster is present in the neighborhood,

the weight of the noisy cluster is greatly reduced with

sFCM. Furthermore, the membership of the correct cluster
Fig. 4. The calculated centroids (5) of cluster in the feature domain (where T1 an

the noisy image; (c) sFCM1,1 on the noisy image; and (d) sFCM0,2 on the noisy i
is enhanced by the cluster distribution in the neighboring

pixels. As a result, both sFCM techniques effectively correct

the misclassification caused by the noise.

Fig. 4 shows the segmentation results of MRI images in

the feature domain for all FCM techniques. The cluster

centered on the noisy image was different from that of the

original noiseless image with standard FCM clustering. The

sFCM techniques successfully corrected the misclassified

pixels and kept the cluster centers unaffected by noise.

Fig. 5(a) and (b) depict the corrupted four-level

simulated T1 and T2 images, and Fig. 5(c)–(e) show the

clustering results of the FCM techniques. As can be seen,

the clustering results of our sFCM algorithms were superior

to those obtained by using conventional FCM. The

classification error of the FCM was mostly the salt-and-

pepper type. These spots were corrected with the sFCM by

using the spatial contextual information.

Table 1 tabulates the validity functions used to evaluate

the performance of FCM clustering for six images. In most

cases, the validity functions based on the fuzzy partition

were better for the sFCM than the conventional FCM. The

sFCM1,1 technique showed the best clustering results. The

improvement was even better for noisy images. For
d T2 values are coordinates) for (a) FCM on the original image; (b) FCM on

mage.



Fig. 5. Simulated (a) T1 and (b) T2 image corrupted by additive uniform noise. The gray levels are 50 (UL), 100 (UR), 150 (LL), and 200 (LR) in the T1 image

and 50 (UL), 150 (UR), 100 (LL), and 200 (LR) in the T2 image. Clustering resulted using (c) FCM; (d) sFCM1,1; and (e) sFCM0,2.

Table 1

The clustering results of six images using various FCM techniques

Images Tech-

niques

Vpc Vpe Vxb(!10K3)

Original MRI

images

FCM 0.888 0.234 0.918

sFCM1,1 0.924 0.117 2.46

sFCM0,2 0.899 0.160 3.38

Noise added MRI

images

FCM 0.779 0.414 1.22

sFCM1,1 0.909 0.147 3.14

sFCM0,2 0.884 0.191 4.14

Synthesized image

uniform noise

(K35,35)

FCM 0.718 0.571 0.620

sFCM1,1 0.915 0.133 0.748

sFCM0,2 0.911 0.146 0.789

Synthesized image

uniform noise

(Kn, n)

FCM 0.740 0.529 0.563

sFCM1,1 0.920 0.122 0.688

sFCM0,2 0.916 0.133 0.728

Synthesized image

SNRZ5 FCM 0.685 0.615 0.793

sFCM1,1 0.840 0.271 1.032

sFCM0,2 0.832 0.301 1.182

Synthesized image

SNRZ10 FCM 0.857 0.317 0.292

sFCM1,1 0.959 0.032 0.333

sFCM0,2 0.952 0.044 0.355

The MRI images and the simulated four-level T1 and T2 images are the

same as what is shown in Figs. 1 and 5.
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example, the reduction in Vpe with the sFCM1,1, as

compared with the conventional technique, was 50% for

original images and 64.6% for noisy data.

Paired-sample t tests were performed on these data sets to

test the significance of any difference in the measures.

Table 2 lists statistical results. For Vpe (Vpc), the sFCM1,1 is

significantly greater (smaller) than conventional FCM and

sFCM0,2. However, the validity function based on feature

structure showed different results: Vxb increased for the

proposed FCM, which was understandable. Vxb measured

the compactness in the feature domain. Conventional FCM

achieves partition by minimizing the metric difference in the

feature domain, and its Vxb is minimized. The sFCM

modifies the partition on the basis of spatial distribution and

causes deterioration of the compactness in the feature

domain and subsequently the increase in Vxb.

Other variations of spatial function are available. For

example, it can be expressed as

hij Z
X

k2NBðxjÞ

gik (9)

where

gik Z
1; if uik Rulk for l Z 1; c

0; otherwise
:

(

The calculation of this membership has less fuzziness

than others and causes a loss in the details.

This technique is applied only to image data with

spatial information. The spatial function can be



Table 2

Statistical results of the paired-sample t-test on the differences in the three performance index

(X:Y) �W SW T p-value

Vpc (sFCM1,1: FCM) 0.133 0.0586 5.57 0.001!p!0.0025

(sFCM1,1: sFCM0,2) 0.0122 0.01 2.99 0.025!p!0.01

Vpe (sFCM1,1: FCM) K0.309 0.115 K6.58 p!0.001

(sFCM1,1: sFCM0,2) K0.0255 0.0156 K4.00 py0.005

Vxb (sFCM1,1: FCM) 0.666 0.836 1.95 pO0.05

(sFCM1,1: sFCM0,2) K0.362 0.466 K1.90 pO0.05�
H0: mxZmy, H1: mxOmy, WiZXiKYi, T Z �W = SW =

ffiffiffi
n

p� ��
(Note that in testing Vpe and Vxb, the alternative hypothesis H1: mx!my is used).
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incorporated with other FCM techniques without a great

deal of modifications. For example, the feature-weight

learning FCM technique [13] assigns various weights to

different features to improve the performance of

clustering. The spatial function can be estimated at

each iteration and incorporated into the membership

function. Owing to the incorporation of spatial infor-

mation, the new FCM technique is less sensitive than

other methods to noise.
4. Summary

FCM clustering is an unsupervised clustering technique

applied to segment images into clusters with similar spectral

properties. It utilizes the distance between pixels and cluster

centers in the spectral domain to compute the membership

function. The pixels on an image are highly correlated, and

this spatial information is an important characteristic that

can be used to aid their labeling. However, the spatial

relationship between pixels is seldom utilized in FCM.

In this paper, we proposed a spatial FCM that

incorporates the spatial information into the membership

function to improve the segmentation results. The

membership functions of the neighbors centered on a

pixel in the spatial domain are enumerated to obtain the

cluster distribution statistics. These statistics are trans-

formed into a weighting function and incorporated into

the membership function. This neighboring effect reduces

the number of spurious blobs and biases the solution

toward piecewise homogeneous labeling. The new

method was tested on MRI images and evaluated by

using various cluster validity functions. Preliminary

results showed that the effect of noise in segmentation

was considerably less with the new algorithm than with

the conventional FCM.
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