Traitement des Images Médicales

Détection, estimation et analyse du mouvement Dominique.Bereziat@lip6.fr LIP6 - UPMC

5 novembre 2007

Plan du cours

Table des matières

1	Introduction et définitions 2					
	1.1	Problématique	2			
	1.2	Exemples d'applications	3			
	1.3	Définitions	4			
2	Méthodes globales 5					
	2.1	Méthodes de type Fourier	5			
	2.2	Détection par Hough	6			
	2.3	Détection par différences d'images	7			
	2.4	Méthodes de type <i>Block-Matching</i>	9			
	2.5	Détection par seuillage statistique	12			
3 Méthodes différentielles		thodes différentielles	15			
	3.1	Flot optique	15			
	3.2	Le problème de l'ouverture	17			
	3.3	Formulation variationnelle	19			
	3.4	Block-Matching et flot optique	27			
	3.5	Modèles paramétriques	28			
4	Grands déplacements 31					
	4.1	Résolution dans le cadre variationnel	31			
	4.2	Approches multirésolutions/incrémentales	32			
	4.3	Calcul des gradients et approches multi-échelles	34			
5	Estimation du mouvement fluide 35					
	5.1	Quelques notions de mécanique des fluides	35			
	5.2	Régularisation adaptée	37			
	5.3	Contrainte de mouvement adaptée	38			

6	Visualisation
---	---------------

7	′ Méthodes markoviennes		
	7.1	Estimation du flot optique discontinu	44
	7.2	Segmentation d'objets solides en mouvement	47

39

1 Introduction et définitions

1.1 Problématique

Introduction

- Problématique : à partir d'une séquence d'image, on cherche à :
- détecter le mouvement : quels sont les objets/structures en mouvement ?
- quantifier ce mouvement : une mesure de la vitesse des objets.
- reconstruire le mouvement véritable de ces objets.

Introduction

Un problème difficile

- Définir ce qu'est le mouvement (distinguo entre l'image et scène).
- Définir les méthodologies (comment la vision humaine fonctionne-t-elle ?).
- Des aspects bas-niveau (extraction d'information), des aspects haut-niveau (analyse, reconnaissance de forme, de modélisation).

Quelques exemples en images

- Problème de luminosité.
- Objets déformable/rigide.
- Mouvement simple/complexe.
- Occlusions.
- Effet de perspective.

Problématiques

- Un vieux problème (premiers travaux dans les années 1970).
- Des liens forts avec le type de données.
- Actuellement, une des principales thématiques de recherche en traitement de l'image.
- Le mouvement est partout : extension temporelle de l'image.

Problématiques (suite)

- Beaucoup d'applications industrielles, de gros enjeux économiques en :
 - médicale,
 - militaire,
 - télédétection,
 - toutes activités nécessitant l'analyse de flux de données images.

1.2 Exemples d'applications

Quelques exemples d'applications

- Poursuite d'objets (militaire, vidéo surveillance, robotique),
- Analyse de comportement complexe par le mouvement : modélisation (biologie, météorologie),
- Codage vidéo pour la télévision (ou Internet) : compression des données,
- Reconstruction tridimensionnelle du mouvement : évolution autonome de robots. Des contraintes *temps réel* très fortes.

Quelques exemples d'applications (suite)

- En médicale : analyse des contractions cardiaques (détection des infarctus ?), modélisation des mouvements du corps humain.
- Infographie : donner du réalisme au mouvement et déformation d'objets complexes.

Quelques problématiques

FIG. 1 – Les problématiques autour de l'estimation du mouvement.

Revue méthodologique

Premier groupe	Détection du mouvement
	Différence d'image
	Modélisation statistique
Second groupe	Estimation du mouvement
	Contraintes de mouvement
	Flot Optique
Troisième groupe	Analyse des formes
	Mise en correspondance

FIG. 2 – Structure standard d'une séquence d'images.

- Revue non exhaustive,
- Reconstruction du mouvement,
- Validation des méthodes.

Définitions 1.3

Séquence d'image

- Une séquence d'image : une collection d'images prise à des instants successifs : une séquence d'image (de même codage et de même taille),
- Un tableau à trois dimensions dont les *pixels* représentent une couleur ou une luminescence.
- Un aspect d'échantillonage temporel à prendre en compte.

Séquence d'image (suite)

```
I[z][y][x] = I[x+y*dimx+z*dimx*dimy]
```

Définition du mouvement

- Deux aspects très différents :
 - 1. le mouvement d'un objet dans une scène et l'impact dans les images,
 - 2. l'image et son évolution temporelle,
- Soit $M = (x, y, z) \in \mathbb{R}^3$, on a : $\vec{\mathbf{v}} = (u, v, w) = (\frac{\partial x}{\partial t}, \frac{\partial x}{\partial t}, \frac{\partial y}{\partial t})$ I(i, j, t) = f(x, y, z). Impact à t' (I(i, j, t')) connaissant $\vec{\mathbf{v}}$?

Définition du mouvement (suite)

- Dans l'image, la définition du mouvement reste très subjective :
 - mouvement \leftrightarrow changement de brillance.

FIG. 3 – Flot optique et mouvement 3D.

- évolution temporelle de caractéristiques visuelles. Trouver une fonction de transition (une trajectoire) pour un point (une structure donnée).

$$\xi(M_0, t) = M_t$$

- le déplacement d'un point induit un gradient spatio-temporel.

Définition du mouvement (suite)

FIG. 4 – Le mouvement induit un gradient spatio-temporel.

2 Méthodes globales

2.1 Méthodes de type Fourier

Mouvement dans l'espace Fourier

- Analyse en fréquence des images (au lieu du spatial).Permet l'analyse de mouvement global affine.
- Permet l'analyse de mouvement global affine - $\hat{I}(u, v, t) = \int \int_{\Omega} I(x, y, t) e^{-2i\pi(xu+yv)} dxdy$

- On suppose qu'au temps $t + \Delta t$, l'image subit un mouvement uniforme de translation $\tau = (\Delta x, \Delta y)$.
- Dans l'espace cartésien : $I(x, y, t) = I(x + \Delta x, y + \Delta y, t + \Delta t).$

Mouvement dans l'espace Fourier

- Dans l'espace fréquentiel :

$$\begin{split} \hat{I}(u,v,t) &= \int \int_{\Omega} I(x + \Delta x, y + \Delta y, t + \Delta t) e^{-2i\pi(xu+yv)} dx dy \\ &- \text{ On pose } X = x + \Delta x, Y = y + \Delta y : \boxed{\hat{I}(u,v,t) = \hat{I}(u,v,t + \Delta t) e^{2i\pi(xu+yv)}} \\ &- \text{ Comment extraire le terme exponentiel ?} \end{split}$$

- Par corrélation! Posons $\hat{J}(u,v) = \hat{I}(u,v,t+\Delta t)$: corr $(\hat{I},\hat{J}) = \frac{\hat{I}\hat{J}}{|\hat{I}||\hat{J}|} =$ $\exp(2i\pi(u\triangle x + v\triangle y))$

Mouvement dans l'espace Fourier

- Méthodologie :
 - 1. Calcul de la T.F. des images aux temps t et $t + \Delta t$
 - 2. Calcul de la corrélation des deux T.F.
 - 3. Transformée de Fourrier inverse sur la corrélation. En théorie, on a :

$$\int_{\Omega} e^{(2i\pi(u\Delta x + v\Delta y))} e^{2i\pi(xu + yv)} dudv$$

= $\delta_{\Delta x}(x)\delta_{\Delta y}(y)$

4. L'image doit comporter une droite verticale et une droite horizontale dont la distance par rapport au centre donne la mesure de la translation.

2.2Détection par Hough

Accumulateur de Hough

- Principe : comptabiliser tout les déplacements de point possibles (admissibles) dans un espace d'accumulation puis faire une analyse.
- On utilise la conservation de la brillance comme critère de déplacement admissible.
- Construction de l'accumulateur : comptabilisation de tous les déplacements possibles.

Accumulateur de Hough (suite)

– Algorithme :

- 1. Considérons deux plans successifs I_t et $I_{t+\Delta t}$,
- 2. $H_t(a,b)$ est l'accumulateur : $\forall (a,b), H_t(a,b) = 0$
- 3. Pour tout couple $(x, y) \in \Omega_I$ faire :
 - Pour tout couple $(a, b) \in \Omega_H$ faire : Si $I_t(x, y) = I_{t+\Delta t}(x+a, y+b)$ alors :

$$H_t(a,b) = H_t(a,b) + 1$$

FIG. 5 – Exemple de déplacements et leur impact dans l'espace de Hough.

Accumulateur de Hough

Accumulateur de Hough

- Avantage de la méthode
 - Aucune information a priori sur le mouvement n'est nécessaire,
 - Analyse simultanée de différents objets possible,
- Inconvénient
 - Fort coût algorithmique,
 - L'espace de Hough obtenu est très bruité : l'interprétation difficile (localisation des points d'accumulation).

2.3 Détection par différences d'images

Méthodes par différence d'images

- Historiquement : les premières méthodes.
- But : analyser les différences temporelles pixel à pixel entre deux plans.
- Hypothèse basique : les zones actives dans le temps correspondent à un mouvement : elles induisent une variation temporelle des niveaux de gris.

Méthodes par différence d'images Méthodes par différence d'images

FIG. 6 – Différence d'images.

– Définition de l'image de différence entre un plan j et un plan k :

$$DP_{jk}(x,y) = \begin{cases} 1 \iff |I(x,y,j) - I(x,y,k)| > \tau \\ 0 \end{cases}$$

Méthodes par différence d'images

- D'autre choix sont possibles :
 - ajout d'une clause de connexité ou de voisinage,
 - seuillage plus souple : évaluer la quantité :

$$\gamma(x,y) = \frac{\frac{\sigma_j^2 + \sigma_k^2}{2} + \left(\frac{\mu_j - \mu_k}{2}\right)^2}{\sigma_j \sigma_k}$$

- (μ_j, σ_j) moyenne et variance sur le voisinage du pixel dans le plan j.
- (μ_k, σ_k) moyenne et variance sur le voisinage du pixel dans le plan k (test de Student)

Différences cumulées

- Cette méthode ne peut que détecter les zones de mouvements !
- Amélioration de la méthode pour estimer qualitativement le mouvement en utilisant plusieurs plans comparé à un plan de référence.
- Définition de l'image de différence cumulée du $k\mbox{-ième}$ plan par rapport au plan de référence r :

$$\begin{cases} ADP_0(x, y) = 0\\ ADP_k(x, y) = ADP_{k-1} + DP_{rk}(x, y) \end{cases}$$

- L'image ADP_k contient la trace d'un objet en mouvement.

Différences cumulées

FIG. 7 – Différence d'images cumulées.

Différences cumulées

- déplacement doit être inférieur au diamètre de l'objet (entre deux plans),
- zones à 0 : pas de mouvement,
- zones non nulles : suites monotones par morceaux :
 - début croissant,
 - milieu constant,
 - fin décroissante.
- taux de croissance : vitesse (si mouvement constant),
- direction de la zone constante : trajectoire du mouvement (si rectiligne)

Bilan

- Détection et estimation du mouvement : intensité et direction,
- Peu coûteux, relativement efficace : bon pour le temps réel,
- Fortes hypothèses : mouvement rectiligne & constant, point à point,
- Implémenté sur le suivi balistique (bonnes hypothèses),
- Illumination globale constante !

2.4 Méthodes de type Block-Matching

Méthodes de type Block-Matching

- Comment estimer le mouvement d'objet plus gros/de groupe de points ?
- Définition du mouvement : en recherchant des zones homologues dans le temps.

- Une voiture à l'instant t, comment retrouver cette forme à l'instant t + 1 (i.e. sur le plan suivant).
- Une mesure de similarité : mesurer la ressemblance de deux portions d'image.
- Un problème de reconnaissance de forme !
- Première approche historique : la corrélation.

Mesure de similarité

FIG. 8 – Un problème de mise en correspondance.

Définition de la corrélation

- $-\mathbf{x} = (x, y)$ les coordonnées d'un point
- $-\delta = (\triangle x, \triangle y)$ le vecteur de déplacement.
- $I(\mathbf{x},t)$ la fonction spatio-temporelle des valeurs de niveaux de gris d'une séquence.
- Corrélation au point ${\bf x}$ pour un déplacement δ

$$\begin{aligned} C(\mathbf{x}, \delta) &= \sum_{m} W(m) [F(I(\mathbf{x} + m, t) \Diamond F(I(\mathbf{x} + m + \delta, t + \Delta t))] \end{aligned}$$

- F: opérateur quelconque,
- \diamond : opérateur de comparaison,
- $-\ W$: une fenêtre de calcul.

Méthodologie

- La corrélation permet donc de déterminer si deux zones sont similaires.
- Algorithme :

Pour chaque point \mathbf{x} de I au temps t, Chercher δ tel que $C(x, \delta)$ soit minimal.

– En pratique, il faut restreindre l'espace de recherche de δ : proche voisinage du point **x**.

Quelle corrélation ?

– Directe :

$$C_D(\mathbf{x}, \delta) = \sum W(m)I(\mathbf{x} + m, t) \times I(\mathbf{x} + m + \delta, t + \Delta t)$$

- Normalisée par rapport aux moyennes :

$$C_M(\mathbf{x},\delta) = \sum W(m)(I(\mathbf{x}+m,t)-\overline{I}(\mathbf{x},t)) \times (I(\mathbf{x}+m+\delta,t+\Delta t)-\overline{I}(\mathbf{x}+\delta,t+\Delta t))$$

 \overline{I} : moyenne de I sur la fenêtre.

Quelle corrélation ? (suite)

- Variance normalisée :

$$C_V(\mathbf{x}, \delta) = \frac{C_M(\mathbf{x}, \delta)}{\overline{Var}(I(\mathbf{x}, t)) \times \overline{Var}(I(\mathbf{x} + \delta, t + \Delta t))}$$

C'est la corrélation statistique usuelle.

- Corrélation binaire :

$$C_B(\mathbf{x}, \delta) = \sum W(m) B_{I_t}(\mathbf{x} + m) \times B_{I_{t+\Delta t}}(\mathbf{x} + m + \delta)$$

avec B_I image binaire issue de I (image des contours, seuillage, ...).

Quelle corrélation ? (suite)

- Corrélation sur filtre laplacien :

$$C_L(\mathbf{x},\delta) = \sum W(m) L_{I_t}(\mathbf{x}+m) \times L_{I_{t+\Delta t}}(\mathbf{x}+m+\delta)$$

avec $L_I = \triangle I = \frac{\partial^2 I}{\partial x^2} + \frac{\partial^2 I}{\partial y^2}$ - Erreurs moyennes (statistique d'ordre 1) :

$$C_E(\mathbf{x},\delta) = \sum W(m)(I(\mathbf{x}+m,t) - I(\mathbf{x}+m+\delta,t+\Delta t))^2$$

- etc.
- Grande variabilité de corrélation : dépend de la situation, des propriétés des objets à reconnaître.

Avantages/Inconvénients

- Peut travailler à différentes échelles (pixel, voisinage, gros objet),
- Facile à implémenter,
- Inadapté à fournir un champ dense de vitesse sur une image,
- Par contre : très efficace sur la poursuite d'objet rigide ou peu déformable : pas toujours le cas en médical.

Avantages/Inconvénients

- Les calculs sont lourds ! Formellement $O(n^4p^2)$ (n = nombre de pixels,p =taille de la fenêtre).
- Réduire le coût en diminuant :
 - l'espace de recherche sur δ : fenêtre de calcul bien choisie,
 - privilégier des directions de mouvement (par analyse rétrograde).
 - la taille des objets (taille du filtre de corrélation)

FIG. 9 – Poursuite de missile.

Poursuite d'objets

Résultat sur séquence vidéo

FIG. 10 – Séquence Taxi1

Résultat sur séquence vidéo

2.5 Détection par seuillage statistique

Détection par test statistique

FIG. 11 – Séquence Taxi 2

- Application des techniques de test du rapport de vraissemblance,
- But : être capable de décider un changement significatif entre deux images,
- changement significatif? la répartition des niveaux de gris est différentes entre les deux images : \rightarrow test de non égalité des lois sur les images.

Modèle

- Il faut choisir la loi qui modélise la répartition de la luminescence dans nos images : I(x, y) = f(x, y) + B(x, y) avec :
 - -I: image observée,
 - -f: fonction déterministe qui décrit le vrai contenu de l'image,
 - -B: un bruit d'acquisition/d'observation.
- Choix pour f:
 - cas dégénéré : f = Cste;
 - cas affine : fx, y = $\beta_1 + \beta_2 x + \beta_3 y$;
 - cas polynômiale : $fx, y) = \beta_1 + \beta_2 x + \beta_3 y + \beta_4 x y + \beta_5 x^2 + \beta_6 y^2$

Ce qu'il faut faire ...

- calculer les estimateurs du maximum de vraissemblances des paramètres β_i et σ ,
- calculer la loi du test statistique :
 - H_0 : Les deux images $(I^1 \text{ et } I^2)$ ont la même distribution i.e. $(\beta_i^j = \beta_i^0), i = \{1, 2, 3\}, j = \{1, 2\})$ et σ_0 : 4 paramètres.
 - H_1 : les deux images n'ont pas la même distribution i.e. 7 paramètres à estimer : $(\beta_i^j, i = \{1, 2, 3\}, j = \{1, 2\})$ et σ_1
- (voir transparents sur rappels de proba/stats)

Vraissemblance

– La vraissemblance sous H_1 :

$$L_{H_1} = \frac{1}{(2\sigma_1^2 \pi)^{2n}} \exp[-\frac{1}{2\sigma_1^2} \sum_{k=1}^n (I_k^1 - \beta_1^1 - \beta_2^1 x_k - \beta_3^1 y_k)^2 - \frac{1}{2\sigma_1^2} \sum_{k=1}^n (I_k^2 - \beta_1^2 - \beta_2^2 x_k - \beta_3^2 y_k)^2]$$

– La vraissemblance sous H_0 :

$$L_{H_0} = \frac{1}{(2\sigma_1^2\pi)^{2n}} \exp[-\frac{1}{2\sigma_1^2} \sum_{k=1}^n (I_k^1 - \beta_1^0 - \beta_2^0 x_k - \beta_3^0 y_k)^2 - \frac{1}{2\sigma_1^2} \sum_{k=1}^n (I_k^2 - \beta_1^0 - \beta_2^0 x_k - \beta_3^0 y_k)^2]$$

Estimateurs

– Les estimateurs sont les zéros des vraissemblances, pour H_1 :

$$\left\{ \begin{array}{rl} \hat{\beta}_{1}^{j} = & \frac{1}{n} \sum_{k=1}^{n} I_{k}^{j}, \hat{\beta}_{2}^{j} = \frac{\sum_{k=1}^{n} x_{k} I_{k}^{j}}{\sum_{k=1}^{n} x_{k}^{2}}, \hat{\beta}_{3}^{j} = \frac{\sum_{k=1}^{n} y_{k} I_{k}^{j}}{\sum_{k=1}^{n} y_{k}^{2}} \\ \hat{\sigma}_{1} = & \frac{1}{2n} \sum_{i=1}^{n} (I_{k}^{1} - \hat{\beta}_{1}^{1} - \hat{\beta}_{2}^{1} x_{k} - \hat{\beta}_{3}^{1} y_{k})^{2} \\ & + \frac{1}{2n} \sum_{i=1}^{n} (I_{k}^{2} - \hat{\beta}_{1}^{2} - \hat{\beta}_{2}^{2} x_{k} - \hat{\beta}_{3}^{2} y_{k})^{2} \end{array} \right.$$

– Pour H_0 (calculs très pénibles) :

$$\begin{cases} \hat{\beta}_1^0 = \frac{1}{2}(\hat{\beta}_1^1 + \hat{\beta}_1^2), \hat{\beta}_2^0 = \frac{1}{2}(\hat{\beta}_2^1 + \hat{\beta}_2^2), \hat{\beta}_3^0 = \frac{1}{2}(\hat{\beta}_3^1 + \hat{\beta}_3^2) \\ \hat{\sigma}_0 = \hat{\sigma}_1 + \frac{1}{4n} \sum_{i=1}^n (\hat{\beta}_1^1 - \hat{\beta}_1^2 - (\hat{\beta}_2^1 - \hat{\beta}_2^2)x_k - (\hat{\beta}_3^1 - \hat{\beta}_3^2)y_k)^2 \end{cases}$$

Loi du test

- Le test est la statistique suivante : $T = \frac{L_{H_0}}{L_{H_1}}$
- On montre que (admis) :

$$T \stackrel{loi}{=} 1 + \frac{3}{2n-6} F^n$$

où F suit une loi de Fisher de degré de liberté (3, 2n - 6). – Loi de Fisher de degré (n, p) :

$$\left\{ \begin{array}{l} F=\frac{X}{Y}, X\sim \chi^2(n), Y\sim \chi^2(p), \\ X, Y \ \ {\rm indépendantes} \end{array} \right.$$

Pratique du test

- Les calculs théoriques sont complexes, mais les calculs numériques pour T sont immédiats.
- On fixe un coefficient de sécurité : $1 \alpha = 0.95$
- La table de Fisher donne le seuil correspondant t_{α}
- On calcule numériquement T sur la paire d'image à tester. Si $T < t_{\alpha}$ alors on accepte H_0 avec probabilité 1α .
- Améliorations :
 - Découpage des images en petites zones (important)
 - Passage à l'ordre 2 : les calculs sont horribles.
- Les discontinuités sont mal modélisées.

3 Méthodes différentielles

3.1 Flot optique

Flot optique

- Définition du flot optique : le flot optique est la distribution de la vitesse, par rapport à l'observateur, en chaque point de l'image.
- Définition équivalente : mouvement apparent dans les images : transport de la luminosité dans les images,
- Modélisation : la luminosité est distribuée dans le temps et dans l'espace selon une contrainte :
 - contrainte de mouvement,
 - équation de transport (paramètre du temps).

Équation du flot optique

- Il faut définir une telle contrainte !
 - des considérations humaines,
 - des considérations physiques.
- Hypothèse du flot optique : les séquences d'image sont (localement) invariantes en luminosité.
- autre définition : chaque point dans un flux d'image garde la même luminosité (ou couleur).
- une telle hypothèse implique une contrainte (forte) de mouvement.

Équation du flot optique

FIG. 12 – Transport de la luminosité.

Modélisation

$$I(x, y, t) = I(x + \delta x, y + \delta y, t + \delta t), \forall (x, y) \in \Omega$$
(1)

 $- \Omega$: domaine de l'image (région bornée de \mathbb{R}^2)

 $-w = (\delta x, \delta y)$: déplacement du point (x,y) au temps t. Développement de Taylor au point (x,y) à l'ordre 1 :

$$\begin{split} I(x + \delta x, y + \delta y, t + \delta t) &= & I(x, y, t) \\ &+ \delta x \frac{\partial I}{\partial x}(x, y, t) \\ &+ \delta y \frac{\partial I}{\partial y}(x, y, t) \\ &+ \delta t \frac{\partial I}{\partial t}(x, y, t) \end{split}$$

Modélisation (suite)

et donc $\,:\,$

$$\frac{\frac{I(x+u\delta t, y+v\delta t, t+\delta t)-I(x, y, t)}{\delta t}}{I_x \frac{\delta x}{\delta t} + I_y \frac{\delta y}{\delta t} + I_t}$$

Passage à la limite $\,:\,\delta t\to 0\,:\,$

$$I_x \frac{\partial x}{\partial t} + I_y \frac{\partial y}{\partial t} + I_t = 0$$

Modélisation (suite)

- Finalement, l'équation de mouvement peut s'écrire :

$$w.\nabla I + I_t = 0 \tag{2}$$

avec $w = (\frac{\partial x}{\partial t}, \frac{\partial y}{\partial t})$ et $\nabla I = (\frac{\partial I}{\partial x}, \frac{\partial I}{\partial y})^*$. - Remarque :

$$\begin{array}{l} \frac{dI}{dt} = 0 \quad (invariance \ de \ la \ luminosité) \\ \Leftrightarrow \frac{dI}{dt}(x(t), y(t), t) = 0 \\ \Leftrightarrow \frac{\partial I}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial I}{\partial y} \frac{\partial y}{\partial t} + \frac{\partial I}{\partial t} = 0 \end{array}$$

Modélisation (suite)

– Finalement :

$$w.\nabla I + I_t = 0 \tag{3}$$

 L'équation (57) s'appelle la contrainte du flot optique (Optical Flow Constraint Equation).

Cela nous suffit-il ?

- Une équation, un vecteur de \mathbb{R}^2 : système sous-dimensionné.
- Un problème mal-conditionné (mal-posé).
- Il est possible de résoudre partiellement l'équation du flot optique.
- Calculons la projection de w dans la direction du gradient de I ...

Cela nous suffit-il ?

– Direction du gradient de $I : \frac{\nabla I}{\|\nabla I\|}$

$$w_{\nabla I} = < \frac{\nabla I}{\|\nabla I\|}, w > \frac{\nabla I}{\|\nabla I\|} \\ = \frac{I_x u + I_y v}{\|\nabla I\|} \frac{\nabla I}{\|\nabla I\|} \\ = \frac{-I_t}{\|\nabla I\|} \frac{\nabla I}{\|\nabla I\|}$$

- L'équation du flot optique est sous-dimensionnée : il existe une infinité de solution.
- Une solution particulière : la composante orthogonale du flot optique \rightarrow *Indice de mouvement.*

3.2 Le problème de l'ouverture

Le problème de l'ouverture

- Le problème de sous-conditionnement de la contrainte du flot optique s'appelle le problème de l'ouverture.
- Intuitivement : on manque d'information pour calculer le flot optique.

Le problème de l'ouverture (suite)

FIG. 13 – Illustration du problème de l'ouverture.

FIG. 14 – Problème de l'ouverture : la part de l'a priori.

Le problème de l'ouverture (suite)

Quelles contraintes supplémentaires?

- La théorie : il manque une contrainte sur w telle que le système sur w soit résolvable (pas de dépendances linéaires).
- En pratique : gros problème, pas de réponse universelle, quelle contrainte justifiée prendre ?
- Première solution : équations multiple de flot optique :

$$\nabla I^{i}w + I^{i}_{t} = 0, i \in \{1, 2, \cdots\}$$
(4)

Les I^i sont différentes acquisitions d'une même scène $\,:\,$

- images multi-spectrales,

- images à différent point de vues (stéréovision), imagerie en stéréovision,
- peuvent dériver d'une image par filtrage (ex : laplacien).

Contraintes supplémentaires

- Quand on ne possède qu'une seule séquence?
- Utiliser des filtres pour créer de nouvelles images (exemple : laplacien)
- Cas i = 1, 2. Trouver une condition nécessaire et suffisante pour que le flot optique soit bien posé.

CNS pour inversion de l'OFC

- Le système (4) :

$$\left\{ \begin{array}{l} uI_x^1+vI_y^1+I_t^1=0\\ uI_x^2+vI_y^2+I_t^2=0 \end{array} \Leftrightarrow Aw=F \right.$$

avec

$$A = \begin{pmatrix} I_x^1 & I_y^1 \\ I_x^2 & I_y^2 \end{pmatrix} \quad \text{et} \quad F = \begin{pmatrix} -I_t^1 \\ -I_t^2 \end{pmatrix}$$

est inversible si det $(A) \neq 0$ donc si $I_x^1 I_y^2 \neq I_x^2 I_y^1$

– Pas de dépendance linéaire entre ∇I^1 et ∇I^2

Décomposition sur bases d'Ondelettes

- Les ondelettes permettent une décomposition des structures des images selon des échelles et une localisation spatiale.
- Fourrier : analyse fréquentielle pure ; pas de localisation spatiale.
- Les ondelettes sont un compromis entre représentation spatiale et représentation fréquentielle (voir U.E. AMO).
- Décomposition de l'image sur une base orthogonale s'écrivant :

$$\begin{cases} \psi_{j\mathbf{k}}^{s}(\mathbf{x}) = 2^{j}\psi^{s}(2^{j}\mathbf{x} - \mathbf{k})\\ (\psi^{s})_{s=1...S} : \text{ensemble d'ondelettes mères.} \end{cases}$$

Décomposition sur bases d'Ondelettes (suite)

- Base orthogonale : indépendance entre les projections.
- Le système :

$$<\nabla I, \psi_{j\mathbf{k}}^{s} > .w + < \frac{\partial I}{\partial t}, \psi_{j\mathbf{k}}^{s} >= 0, \forall s = 1...S$$

est donc libre.

- $< f,g> = \int_\Omega f(x)g(x)d\mu(x)$: produit scalaire dans l'espace des fonctions intégrables.
- Voir thèse de Christophe Bernard [Bernard, 1999].

Autres contraintes

- Imposer un modèle de mouvement : paramétrer la fonction w,
- $-\,$ par exemple, un modèle de mouvement affine sur w.
- Rechercher des zones localement homogènes.
- Parfois possible : ajouter d'autre contraintes justifiable physiquement.

Les implémentations :

- variationnelles, paramétriques, probabilistes
- discrètes (programmation dynamique), ...

3.3 Formulation variationnelle

Modèle de Horn et Schunck

- Premier modèle différentiel [Horn and Schunck, 1981].
- Méthodologie : problème d'optimisation numérique, résolu par une *formulation variationnelle*.
- Le modèle :
 - Invariance de la luminosité (Contrainte du flot optique)
 - Régularité du champs de vitesse : une contrainte sur la variation du champs des vitesse suffit à lever l'indétermination.
 - Formulation sous forme une énergie à minimiser : très courant en imagerie (méthode très intuitive malgré le contexte mathématique).

Le modèle

Soit la fonctionnelle suivante :

$$E(w) = \int_{\Omega} (w \cdot \nabla I + I_t)^2 dx dy + \alpha^2 \int_{\Omega} \|\nabla w\|^2 dx dy$$
(5)

- Premier terme : contrainte du flot optique
- Second terme : contrainte de régularité sur w
- E est une fonctionnelle (car dépendant d'une fonction w) :

$$E: L^2(\Omega) \to [0, +\infty[$$

Le modèle (suite)

- $\ E$ est appelé énergie par analogie à la physique : on recherche les fonctions w qui minimisent cette énergie.
- $\Omega\,$: domaine bornée de l'image.
- Les fonctions régulières (continues, dérivables, *etc*) sont des éléments d'espace vectoriel de dimension infinie. Ce ne sont pas des vecteurs de \mathbb{R}^n .

Le modèle (suite)

- On voit intuitivement que E sera d'autant plus petit que :
 - (1) la contrainte du flot optique est proche de zéro,
 - (2) le champ des vitesses w est régulier.

$$- \|\nabla w\|^{2} = \|\nabla u\|^{2} + \|\nabla v\|^{2}, \text{ avec } w = (u, v)$$
$$- \|\nabla w\|^{2} = \left(\frac{\partial u}{\partial x}\right)^{2} + \left(\frac{\partial u}{\partial y}\right)^{2} + \left(\frac{\partial v}{\partial x}\right)^{2} + \left(\frac{\partial v}{\partial y}\right)^{2}$$

Le modèle (suite)

– Action de la régularisation : le gradient de w est faible : les champs des vitesses sont lisses et orientés dans la même direction :

– Le paramètre α pondère les effets de la régularisation.

Résolution numérique

- Les grands principes : équations d'Euler-Lagrange associées au problème de minimisation.
- Une solution de l'équation :

$$DE(w) = 0$$

est le minimum de l'énergie (E doit être convexe).

 $- D : \text{différentielle. Par définition,} < DE(w), f >= \lim_{h \to 0} \frac{E(w + hf) - E(w)}{h}$ - w : ℝ² → ℝ² : on peut différentier dans deux directions canoniques.

Résolution numérique (suite)

- Un exemple : différentielle de
$$E_2(u, v) = \int_{\Omega} (\nabla u^2 + \nabla v^2) dx dy$$

$$G(f, h, u, v) = E(u + hf, v) - E(u, v)$$

$$= \int_{\Omega} (\nabla u + h\nabla f)^2 - \nabla u^2 dx dy$$

$$= \int_{\Omega} 2h\nabla u\nabla f + h^2 \nabla f^2 dx dy$$

$$\lim_{h \to 0} \frac{G(f, h, u, v)}{h} = 2 \int_{\Omega} \nabla u \nabla f dx dy$$

- Résolution numérique (suite) Théorème de Green : $\int_{\Omega} \nabla u \nabla f dx dy = -\int_{\Omega} (\nabla^2 u) f dx dy$ $-\operatorname{donc} : \langle DE_2(v), f \rangle = -\int_{\Omega} (\Delta u) f dx dy$ - Finalement : $DE_2(u, v) = \Delta u$

 - En calculant la différentielle de E en u et en v, on obtient le système suivant :

$$DE(w) = 0 \iff \begin{cases} I_x^2 u + I_x I_y v + I_x I_t - \alpha \triangle u = 0\\ I_x I_y u + I_y^2 v + I_y I_t - \alpha \triangle v = 0 \end{cases}$$
(6)

Résolution numérique (suite)

- Étape suivante : discrétiser ce système pour se ramener à un système linéaire à résoudre.
- Discrétisation de l'espace : x connu sur $(x_i)_{i \in \{1,...,n\}}$, idem pour y connu sur $(y_i)_{i \in \{1,...p\}}$
- Discrétisation des fonctions : $u(x_i, y_i) \sim u_{i,j}$

Résolution numérique (suite)

- Discrétisation des opérateurs différentiels :

$$\begin{cases} \Delta u = \overline{u} - u\\ \Delta v = \overline{v} - v \end{cases}$$

où \overline{f} est défini par :

$$\overline{f}_{i,j} = \frac{1}{6} \{ f_{i-1,j} + f_{i,j+1} + f_{i+1,j} + f_{i,j-1} \}$$
$$+ \frac{1}{12} \{ f_{i-1,j-1} + f_{i-1,j+1} + f_{i+1,j+1} + f_{i+1,j-1} \}$$

Résolution numérique (suite)

- Le système (6) devient :

$$\begin{cases} (\alpha + I_x^2)u + I_x I_y v = \alpha \overline{u} - I_x I_t \\ I_x I_y u + (\alpha + I_y^2)v = \alpha \overline{v} - I_y I_t \end{cases}$$

– On diagonalise à gauche :

$$\left\{ \begin{array}{l} (\alpha+I_x^2+I_y^2)u=(\alpha+I_x^2)\overline{u}-I_xI_y\overline{v}-I_xI_t\\ (\alpha+I_x^2+I_y^2)v=-I_xI_y\overline{u}+(\alpha+I_x^2)\overline{v}-I_yI_t \end{array} \right.$$

Résolution

- Problème : des termes qui dépendent de u et v à droite et à gauche : pas d'inversion directe du système.
- On réécrit le système sous cette forme :

$$\begin{cases} (\alpha + I_x^2 + I_y^2)(u - \overline{u}) = -I_x(I_x\overline{u} + I_y\overline{v} - I_t) \\ (\alpha + I_x^2 + I_y^2)(v - \overline{v}) = -I_y(I_x\overline{u} + I_y\overline{v} - I_t) \end{cases}$$
(7)

- Formellement : $\overline{u} = Au$ avec A = (...)
- Donc le schéma s'écrit : a(I A)w = BAw + C
- Pour résoudre : il faut inverser A : matrice de très grande taille !

Méthode du point fixe

- Soit la suite : $a(w^{k+1} \overline{w}^k) = B\overline{w}^k + C$
- Théorème du point fixe : si la suite converge, elle admet comme limite le point fixe de l'equation a(w Aw) = BAw + C
- Dernier résultat : soit le schéma itératif

$$X^{n+1} = AX^n + B,$$

alors la suite converge vers le point fixe de X = AX + B si la matrice A est à diagonale strictement dominante.

Résolution

- Application au schéma de Horn & Schunck :
 - on ajoute un paramètrage fictif à $(u, v) : (u^k, u^k)$.
 - On obtient le schéma itératif suivant :

$$\begin{cases}
 u^{k+1} = \overline{u}^k + \frac{-I_x(I_x\overline{u}^k + I_y\overline{v}^k + I_t)}{\alpha + I_x^2 + I_y^2} \\
 v^{k+1} = \overline{v}^k + \frac{-I_{y}(I_x\overline{u}^k + I_y\overline{v}^k + I_t)}{\alpha + I_x^2 + I_y^2}
\end{cases}$$
(8)

 La condition précédente dépend de A (approximation du laplacien) et mais aussi des gradients de l'image : en pratique cela fonctionne.

Algorithme

- 1. Calculer les gradients spatio-temporel de $I(I_x, I_y, I_t)$.
- 2. Initialiser le champs de vecteur vitesse $(\boldsymbol{u}^0, \boldsymbol{v}^0)$ à zéro,
- $3. \ It{\acute{e}rer} :$
 - calculer (u^{k+1}, v^{k+1}) à partir de (u^k, v^k) et I_x, I_y, I_t . - vérifier que l'énergie décroît.
 - vermer que i energie (

Application

- L'énergie n'est pas nécessairement convexe, mais localement convexe (pas de solution unique (minimum local, ou alors pas de minimum global),
- Il faut fixer un grand nombre d'itérations : pas de critère fiable d'arrêt : on peut surveiller la stabilisation en norme de w.
- Le paramètre α est fixé empiriquement : pas de méthode pour l'estimer efficacement : Horn et Schunk ont utilisé la valeur de 100.

Des résultats

FIG. 15 – Séquence taxi : 100 itérations, $\alpha^2 = 30$

Des résultats

Des résultats

Commentaires

- Champs dense de vecteur,
- Rapide (corrélation),
- Robuste,
- Respect de l'hypothèse du flot optique, sinon il faut envisager d'autres contraintes de mouvement

FIG. 16 – Séquence météo : 100 itérations,
 $\alpha^2=30$

FIG. 17 – Séquence écho : 200 itérations,
 $\alpha=20$

- Illumination globale ?
- Contrainte de régularité :
 - très contraignante,
 - problème des occlusions ?

Contrainte de lissage orientée (Nagel)

- Préserver les discontinuités du champ des vitesses (occlusion),
- Papier de [Nagel, 1987],
- Le terme de régularisation peut s'écrire :

$$\iint_{\Omega} \alpha^2 \operatorname{tr} \left((\nabla w)^T \nabla w \right) dx dy$$

– Modification de la norme :

$$\iint_{\Omega} \alpha^2 \operatorname{tr} \left((\nabla w)^T V \nabla w \right) dx dy$$

où W est une matrice 2×2 telle que :

$$V = \frac{1}{\|\nabla I\|_2^2 + 2\delta} W \quad W = \begin{pmatrix} I_y^2 + \delta & -I_x I_y \\ -I_x I_y & I_x^2 + \delta \end{pmatrix}$$

Lissage orienté (suite)

- Le paramètre δ permet de rendre inversible W ($\delta = 0 \Rightarrow \det(W) = 0$).
- Le numérateur de V normalise la matrice V.
- Grâce à δ , le numérateur est toujours défini.
- Posons momentanément $\delta = 0$, on a :

$$-W = \begin{pmatrix} -I_y \\ I_x \end{pmatrix} \begin{pmatrix} -I_y & I_x \end{pmatrix}$$

– Le terme de régularisation est de la forme :

$$\iint_{\Omega} \operatorname{tr} \left((U\nabla w)^T (U\nabla w) \right)$$

avec $U = \begin{pmatrix} -I_y & I_x \end{pmatrix}$

Lissage orienté

- Lorsque ∇w est orthogonal au gradient de l'image ∇I , le produit scalaire est proche de zéro : la contrainte de lissage n'intervient pas.
- Autre écriture de la contrainte (en développant) :

$$E_{2}'(w) = \int_{\Omega} \frac{\alpha^{2}}{\|\nabla I\|_{2}^{2} + 2\delta} \\ [(u_{x}I_{x} + u_{y}I_{y})^{2} + (v_{x}I_{y} - v_{y}I_{x})^{2} \\ + \delta(\nabla u^{2} + \nabla v^{2})]dxdy$$
(9)

Équations d'évolution associées

$$\begin{cases} u^{k+1} = \eta(u^k) - I_x \frac{I_x \eta(u^k) + I_y \eta(v^k) + I_t}{\alpha^2 + I_x^2 + I_y^2} \\ v^{k+1} = \eta(v^k) - I_y \frac{I_x \eta(u^k) + I_y \eta(v^k) + I_t}{\alpha^2 + I_x^2 + I_y^2} \end{cases}$$

avec :

$$\begin{split} \eta(f) &= \bar{f} - 2I_x I_y f_{xy} - q^T (\nabla f) \\ q &= \frac{1}{I_x^2 + I_y^2 + 2\delta} \nabla I^T \left[\begin{pmatrix} I_{yy} & -I_{xy} \\ -I_{xy} & I_{xx} \end{pmatrix} + 2 \begin{pmatrix} I_{xx} & I_{xy} \\ I_{xy} & I_{yy} \end{pmatrix} V \right] \end{split}$$

Résultats

FIG. 18 – Séquence Taxi 1,
 $\delta=10, \alpha=5$

Résultats

Pour conclure sur les approches variationnelles

- Il existe d'autres méthodes pour résoudre les équations d'Euler-Lagrange (6) notamment les descentes de gradient (AMO).
- Régularisation non linéaire :

$$\int \left((\nabla I.w + I_t)^2 + \alpha \Phi(\|\nabla w\|) \right) dxdy$$

- $\Phi(x) = x$: correspond à une norme L^1 ([Cohen, 1993]).
- Permet d'obtenir des résultats moins lissés.
- Le terme $\int \|\nabla w\| dx dy$ est aussi appelé "Variation totale". La formulation variationnelle (optimisation fonctionnnelle) est équivalente à [Rudin et al., 1992] :

$$\mathop{\rm argmin}_{(\nabla I.w+I_t)^2=\sigma}\int \|\nabla w\|dxdy$$

FIG. 19 – Séquence Taxi 1,
 $\delta=10, \alpha=1$

– D'autres fonctions Φ convexes, appelées "Estimateurs robustes" [Mémin et al., 1996] permettent de préserver les discontinuités.

3.4 Block-Matching et flot optique

Liens entre Block-Matching et flot optique : approche de [Lucas and Kanade, 1981]

- Vue comme une implémentation directe de la contrainte de flot optique, sans formulation variationnelle (mais les papiers sont sortis indépendemment la même année).
- Initialement développée dans une application de recalage (non rigide) : mettre en correspondance une paire d'image.
- La problématique est donc :

trouver w tel que
$$I_2(\mathbf{x} + w_{\mathbf{x}}) = I_1(\mathbf{x}) \forall \mathbf{x}$$

– On minimise donc :

$$E(w) = \sum_{\mathbf{x}} \left(I_2(\mathbf{x} + w_{\mathbf{x}}) - I_1(\mathbf{x}) \right)^2 \tag{10}$$

 $-\ w$ est un vecteur de très grande taille : une minimisation combinatoire est trop coûteuse.

Méthode Lucas-Kanade

– Restriction à une fenêtre d'observation pour un pixel donné :

$$E(w_{\mathbf{x}}) = \sum_{\mathbf{y} \in W_{\mathbf{x}}} \left(I_2(\mathbf{x} + w_{\mathbf{x}}) - I_1(\mathbf{x}) \right)^2 \tag{11}$$

où $W_{\mathbf{x}}$ est une fenêtre centrée autour du pixel \mathbf{x} .

- Linéarisation du coût quadratique (développement Taylor à l'ordre 1) :

$$I_2(\mathbf{y} + w_{\mathbf{x}}) \sim I_2(\mathbf{y}) + \langle \nabla I_2(\mathbf{y}), w_{\mathbf{x}} \rangle$$

- L'équation (11) devient :

$$E(w_{\mathbf{x}}) = \sum_{\mathbf{y} \in W_{\mathbf{x}}} \left(I_2(\mathbf{y}) - I_1(\mathbf{y}) + \langle \nabla I_2, w_{\mathbf{x}} \rangle \right)^2$$
(12)

Méthode Lucas-Kanade

- On pose $I_{21}(\mathbf{y}) = I_2(\mathbf{y}) I_1(\mathbf{y})$. C'est une donnée d'entrée (la dérivée temporelle).
- Le terme $I_{21}(\mathbf{y}) + \langle \nabla I_2(\mathbf{y}), w_{\mathbf{x}} \rangle$ est linéaire en $w_{\mathbf{x}}$ (vecteur à deux composantes).
- On note $\langle \nabla I_2(\mathbf{y}), w_{\mathbf{x}} \rangle = \nabla I_2(\mathbf{y})^T w_{\mathbf{x}}.$
- On note I_2 le vecteur <u>colonne</u> constituée des composantes $(I_2(\mathbf{y}), \mathbf{y} \in W_{\mathbf{x}}),$ idem pour I_{21} .
- Important à voir : si on a n composantes dans $W_{\mathbf{x}}$ alors ∇I_2 est une matrice $n \times 2$:

$$\nabla I_2 = \begin{pmatrix} \frac{\partial I}{\partial x}(\mathbf{y}_1) & \frac{\partial I}{\partial y}(\mathbf{y}_1) \\ \dots & \\ \frac{\partial I}{\partial x}(\mathbf{y}_n) & \frac{\partial I}{\partial y}(\mathbf{y}_n) \end{pmatrix}$$

Méthode Lucas-Kanade

- Résultat : la valeur de $w_{\mathbf{x}}$ qui minimise l'énergie (12) est donnée directement par la formule des moindres carrés :

$$w_{\mathbf{x}} = -\left(\nabla I_2 \nabla I_2^T\right)^{-1} \nabla I_2 I_{21}$$

- Preuve : posons A = ∇I₂^T, B = I₂₁, X = (u, v)^t.
 Pour minimiser ∑_{y∈W}(AX + B)², il faut résoudre AX = −B, (mais A n'est pas carré, donc non inversible).
 - Il est équivalent d'écrire $A^T A X = -A^T B$. Mais $A^t A$ est maintenant une matrice carré et donc peut être inversible (si non singulière).
 - Et donc $X = -(A^T A)^{-1} \overline{A^T} B$ à condition que $\overline{A^T} A$ soit inversible.
 - $-A^T A$ est symétrique : on peut utiliser une décomposition LU.
 - Remarque : si $A^T A$ n'est pas inversible, on peut faire une décomposition en valeurs singulières de cette matrice (pseudo-inverse : voir Numerical Recipes).

LK : résultats

3.5Modèles paramétriques

Modèle de mouvement

- Troisième façon de lever le problème de l'ouverture.

FIG. 20 – Plan 5, $t_b = 0.9$, $t_h = 5$. Bleu : W = 5, Rouge : W = 10, Noir : W = 15.

 On donne un modèle simple de mouvement : par exemple , on cherche les mouvements de type affine. C'est-à-dire que :

$$w(x,y) = \begin{cases} a+bx+cy\\ d+ex+fy \end{cases}$$

- Hypothèse un peu restrictive, en pratique, on va supposer le mouvement affine par morceaux : les images sont découpées en petites zones avec pour chacune d'entre elle un modèle affine propre.
- On peut complexifier le modèle : polynome d'ordre deux, voire approximation par splines (complexe).

Modèle de mouvement

– Écriture matricielle :

$$w(x, y) = B(x, y)A$$

avec :

$$B(x,y) = \begin{cases} 1 & x & y & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & x & y \end{cases}$$

$$A = (a, b, c, d, e, f)^T$$

- Question : lien entre Lucas/Kanade et ce modèle ?

Modèle affine de mouvement

- Du point de vue des mathématiques : contexte simple. On ne cherche plus une fonction (donc un vecteur d'un espace vectoriel de dimension infinie) mais un vecteur de \mathbb{R}^6 (l'espace des paramètres).
- Une autre contrainte de mouvement : comment régler le problème du changement de l'illumination ?

– Contrainte de variation constante de niveau de gris :

$$\begin{cases} \frac{dI}{dt} = \nabla I^T w + I_t = -\xi \\ \xi \ge 0 \end{cases}$$

Modèle affine de mouvement

- Cela fait un paramètre supplémentaire à estimer soit 7 : sur coût négligeable :

$$\nabla I^T B(x, y) A + I_t + \xi = 0$$

On pose $\Theta^T = (A^T, \xi)$, les 7 paramètres du modèle.

– Considérons l'énergie \mathcal{E} suivante :

$$\mathcal{E}(\Theta) = \sum_{i=1}^{n} (\nabla I^T(x_i, y_i) B(x_i, y_i) A + I_t(x_i, y_i) + \xi)^2$$

– Là encore, il nous faut minimiser \mathcal{E} en Θ .

Résolution numérique

- Posons :

$$\begin{cases} \mathcal{X}_i = (\nabla I(x_i, y_i) B(x_i, y_i), 1) \\ \mathcal{Y}_i = -I_t(x_i, y_i) \end{cases}$$

– Alors :

$$\mathcal{E}(\Theta) = \sum_{i=1}^{n} \left(\mathcal{X}_i \Theta - \mathcal{Y}_i \right)^2$$

Résolution numérique

– La solution du problème $\min_{\Theta} \mathcal{E}(\Theta)$ (minimisation aux moindres carrés) est bien connue et est donnée directement par la méthode des moindres carrés :

$$\widehat{\Theta} = \left(\sum_{i} \mathcal{X}_{i}^{T} \mathcal{X}_{i}\right)^{-1} \sum_{i} \mathcal{X}_{i}^{T} \mathcal{Y}_{i}$$

Résultats

4 Grands déplacements

Problématique

- La contrainte de flot optique (équation (2)) est une approximation de l'équation de transport de la luminosité (équation (1)).
- Elle n'est donc valable que pour les petits déplacements!
- En pratique, on ne peut régler l'échantillonnage temporel.
- Comment gérer ces grands déplacements?

FIG. 21 – Modele affine sur des blocs 32×32 pixels

- Résolution de l'équation (1) : on connaît déjà block matching ou les algorithmes de recalage. Peut-on la résoudre dans un cadre variationnelle?
- Méthodes incrémentales et/ou multi-résolution.
- Approche duale de la linéarisation de l'équation de transport : portée du gradient. Méthodes multi-échelles (abordées dans le cours AMO).

4.1 Résolution dans le cadre variationnel

Méthode variationnelle [Brox et al., 2004]

- Idée : ne pas linéariser l'équation du flot optique (évidemment).
- Donc : calculer directement la différentielle !
- Différientielle par rapport à u, calculer :

$$\lim_{\alpha \to 0} \frac{E(u + \alpha f, v) - E(u, v)}{\alpha}$$

- L'expression contient des termes en αf qui tende vers 0 (à cause de la limite) : on peut donc utiliser un D.L. (ce n'est plus une approximation)!
- Cette remarque permet le calcul effectif de la différentielle :

$$\frac{\partial E}{\partial w}(\mathbf{x}) = 2\nabla I(\mathbf{x} + w, t + \delta t)[I(\mathbf{x} + w, t + \delta t) - I(\mathbf{x}, t)]$$

- Exercice : le vérifier.

Méthode variationnelle [Brox et al., 2004]

- De plus, Brox propose d'ajouter une seconde contrainte : une équation de transport du gradient.
- L'intérêt n'est pas de lever le problème de l'ouverture MAIS de gérer le problèmes des changements constants d'illumination.
- En effet : $I(\mathbf{x} + w, t + \delta t) I(\mathbf{x}, t) = a \rightarrow \nabla I(\mathbf{x} + w, t + \delta t) \nabla I(\mathbf{x}, t) = 0$
- Deux contraintes MAIS le problème reste mal posé, il faut régulariser.

- Finalement, on minimise :

$$E(w) = \int \|I(\mathbf{x} + w, t + \delta t) - I(\mathbf{x}, t)\|^2 d\mathbf{x}$$

+ $\int \gamma \|\nabla I(\mathbf{x} + w, t + \delta t) - \nabla I(\mathbf{x}, t)\|^2 d\mathbf{x}$
+ $\int \alpha \|\nabla w\|^2 d\mathbf{x}$

4.2 Approches multirésolutions/incrémentales

Modèle incrémental multi-résolution [Odobez and Bouthemy, 1995]

- Principe du multi-résolution : faire le calcul à une résolution grossière puis améliorer ce résultat en passant à une résolution plus fine.
- But : améliorer la précision du calcul du flot optique et gérer les grands déplacements.
- Ceci est rendu possible grâce à un calcul *incrémentale* entre chaque résolution.
- Le passage
- Mise en œuvre sur le modèle affine.

Construction des résolutions

- I(x, y, t) image originale (échelle 0, la plus fine) : $I^0(x, y, t)$.
- Passage de la résolution k à la résolution k+1 :

$$I^{k+1}(x, y, t) = I^k_{ech} \star G_{\sigma}(x', y', t)$$

- $-\ I_{ech}$ image I deux fois sur
enchantillonnée.
- Noyau gaussien de lissage d'écart-type $\sigma.$

Construction des résolutions (suite)

– Ω^k l'espace de chaque fonction I^k . Les espaces d'échelle vérifient :

$$\Omega^N \subset \cdots \Omega^{k+1} \subset \Omega^k \subset \cdots \subset \Omega^0$$

– N l'échelle maximale : une image réduite à 2×2 pixels. On a $N = \log_2 |\Omega| - 1.$

Pyramide des résolutions

FIG. 22 – Pyramide sur deux niveaux de résolution.

Passage d'une résolution à l'autre : méthode incrémentale

- Notation : $\mathbf{x} = (x, y), w^k$ vitesse à la résolution k. dw^k : vitesse incrémentale définie telle que $w^{k+1} + dw^k = w^k$
- Contrainte du flot optique à l'échelle k :

$$D^{k}(\mathbf{x}, t) = I^{k}(\mathbf{x} + w^{k}dt, t + dt) - I^{k}(\mathbf{x}, t)$$
$$= I^{k}(\mathbf{x} + (w^{k+1} + dw^{k})dt, t + dt) - I^{k}(\mathbf{x}, t)$$
$$= 0$$

Passage d'une résolution à une autre

- Développement de Taylor de I^k au point $\mathbf{x} + w^k dt$:

$$\begin{split} I^k(\mathbf{x} + (w^{k+1} + dw^k)dt, t + dt) \sim \\ I^k(\mathbf{x} + w^{k+1}dt, t + dt) + \nabla I(\mathbf{x} + w^{k+1}, t + dt)dw^kdt \end{split}$$

– Remplaçons dans D^k :

$$D^{k}(\mathbf{x},t) = I^{k}(\mathbf{x} + w^{k+1}dt, t + dt) - I^{k}(\mathbf{x},t)$$
$$+ \nabla I^{k}(\mathbf{x} + w^{k+1}dt, t + dt)$$
$$= 0$$

Passage d'une résolution à une autre

- Posons la différence déplacée entre deux résolutions successives :

$$I_{dep}^{k}(\mathbf{x}, w^{k+1}, t) = I^{k}(\mathbf{x} + w^{k+1}dt, t + dt) - I^{k}(\mathbf{x}, t)$$

– Nous pouvons ré-écrire $D^k = 0$ sous la forme :

$$I_{den}^{k}(\mathbf{x}, w^{k+1}, t) + \nabla I^{k}(\mathbf{x} + w^{k+1}dt, t + dt)dw^{k} = 0$$

- Cette équation est une contrainte de flot optique.

Passage d'une résolution à une autre

- Algorithme :
 - 1. Contruction des résolutions I^k
 - 2. Échelle $N: w^N = 0$, on calcule dw^N
 - 3. Échelle k : on déduction de wk à partir de la résolution k + 1 :

$$I_{dep}^k(\mathbf{x}, w^{k+1}, t) + \nabla I_{dep}^k(\mathbf{x}, w^{k+1}, t) dw^k = 0$$
$$w^k = w^{k+1} + dw^k$$

4. Réitérer le point 3. jusqu'à l'échelle 0.

4.3 Calcul des gradients et approches multi-échelles

Le problème de la portée des gradients

- (Presque) toutes les méthodes reposent sur l'hypothèse fondamentale du transport de la luminosité.
- La linéarisation mène à la contrainte de flot optique (OFC) : basée uniquement sur les gradients (spatio-temporels) de l'image.
- Que se passe-t-il lorsque :
 - − le mouvement à détecter est trop grand? L'opérateur gradient échoue dans sa détection! En effet : Gradient spatial → filtre type Sobel (voisinnage 3×3). Si le mouvement dépasse le voisinnage du filtre de dérivation : on perd l'information.
 - le mouvement à détecter est trop petit ? la même chose en définitive si le mouvement est trop petit par rapport à la taille du filtre.
- Approche duale des méthodes de grands déplacements.

Approches multi-échelles

- Nécessité de calculer le gradient à différentes échelles.
- Théorie des espaces d'échelles : on sort du cadre de ce cours (AMO).
- Un élément de réponse : comment sont calculés les gradients?
- Approximation par différences finies :

$$f'(x) \simeq \frac{f(x+\delta) - f(x-\delta)}{2\delta}$$

On peut régler la portée de la dérivée selon la valeur de δ mais si δ est trop grand, on perd l'information dans l'intervalle $]x - \delta, x + \delta[$. Si δ trop petit : on ne capture pas le gradient induit par un fort mouvement.

Approches multi-échelles

- Convolution par un noyau gaussien.
 - Propriété : $(f \star g)' = f \star g'$
 - -f = image, g = noyau gaussien, on le dérive explicitement.

 - $g_s(x) = \frac{1}{s\sqrt{2\pi}}e^{\frac{-x^2}{2s^2}}$. s est un paramètre d'échelle. On dérive une version lissée de l'image : les détails inférieurs à l'échelle s sont intégrées (voir définition de la convolution) dans le calcul de la dérivée.
 - Avec des échelles s grandes : on augmente la portée de la dérivée (tous en intégrant les détails) :
 - -s = 0.7, masque de convolution 7×7
 - -s = 1, masque de convolution 9×9
 - -s = 1.3, masque de convolution 11×11

au-delà, les coefficients de la gaussienne sont quasi-nuls.

5 Estimation du mouvement fluide

Problématiques liées à l'estimation du mouvement fluide

- En imagerie médicale :
 - Vitesse d'écoulement du sang,
 - Organes souples à grandes déformations (cœur, poumons).
- En télédection :
 - Météo, qualité de l'air : mouvement des nuages,
 - Océanographie (courants de surface).

Quelques notions de mécanique des fluides 5.1

Divergence

– Définition dans \mathbb{R}^3 : $\mathbf{V} = (u, v, w)^T$

$$\nabla \mathbf{V} = \operatorname{div}(\mathbf{V}) = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = \operatorname{trace}(\nabla \mathbf{V})$$

– Définition dans \mathbb{R}^2 : $\mathbf{V} = (u, v)^T$

$$\nabla \mathbf{V} = \operatorname{div}(\mathbf{V}) = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}$$

- Que mesure la divergence? Soit V la vitesse d'un élément de volume δA , on a :

$$\operatorname{div}(\mathbf{V}) = \frac{1}{\delta A} \frac{d\delta A}{dt}$$

FIG. 23 – Divergence sur un élément de volume

Rotationel

– Définition dans \mathbb{R}^3 : $\mathbf{V} = (u, v, w)^T$

$$\nabla \wedge \mathbf{V} = \operatorname{curl}(\mathbf{V}) = \begin{pmatrix} \frac{\partial w}{\partial y} - \frac{\partial v}{\partial z} \\ \frac{\partial u}{\partial z} - \frac{\partial w}{\partial x} \\ \frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \end{pmatrix}$$

– Définition dans \mathbb{R}^2 : $\mathbf{V} = (u, v)^T$

$$\operatorname{curl}(\mathbf{V}) = \frac{\partial v}{\partial x} - \frac{\partial u}{\partial y}$$

On peut alors considérer que le rotationel est un vecteur orthogonal au plan (0xy).

- Les points telques $\operatorname{curl}(\mathbf{V}) = 0$ sont appelé *irrotationnels* de V.

Quelques propriétés à savoir

L'opérateur $\nabla = \left(\frac{\partial}{\partial x} \quad \frac{\partial}{\partial y} \quad \frac{\partial}{\partial z}\right)^T$ est très pratique! Il sert à définir le gradient (ou jacobien), la divergence et le rotationnel.

- Notation : f est un champ scalaire et F un champ de vecteur (différentiable).
- Prop 1 : $\nabla \wedge (\nabla f) = 0$
- Prop 2 : $\nabla . (\nabla \wedge F) = 0$
- Laplacien : $\triangle f = \nabla . \nabla f = \nabla^2 f$
- pour $F : \triangle F = (\triangle F_1 \quad \triangle F_2 \quad \triangle F_3)$
- Beaucoup de relations entres ces opérateurs (exemples non exhaustif) : $-\nabla .(fF) = f\nabla .F + \nabla f .F$
 - $-\nabla \wedge (fF) = f\nabla \wedge F + \nabla f \wedge F$
 - $-\nabla . (F \wedge G) = \nabla \wedge . G F \nabla \wedge G$

 - ...

Caratérisation d'un champ de vecteur

- Rotationnel et divergence caractérisent un champ de vecteur :
- Exercice : soit un champ 2D affine. Donnez une CNS pour que le champ soit :
 - purement divergent,
 - purement rotationel.

FIG. 24 – Exemple de champs (affines) divergent ou rotationnel.

Conservation de la masse

- Principe de conservation de l'énergie : s'applique bien évidemment à la masse!
- Soit un élément de volume δA de géométrie fixe traversée par un fluide de masse volumique ρ et de mouvement V.
- Le bilan des masses entrantes et sortantes est constant (Loi de Flick) :

$$\begin{aligned} \frac{\partial \rho}{\partial t} &= -\operatorname{div}(\rho \mathbf{V}) \\ \frac{d\rho}{dt} + \rho \operatorname{div}(\mathbf{V}) &= 0 \\ \frac{\partial \rho}{\partial t} + \nabla \rho \cdot \mathbf{V} + \rho \operatorname{div}(\mathbf{V}) &= 0 \end{aligned}$$

Cas des fluides incompressibles

- On a vu que la divergence sert à mesurer l'expansion d'un fluide.
- Définition (intuitive) : un fluide est incompressible si $\operatorname{div}(\mathbf{V}) = 0$.
- Conservation de la masse d'un fluide incompressible :

$$\frac{\partial \rho}{\partial t} + \nabla \rho \cdot \mathbf{V} + \rho \operatorname{div}(\mathbf{V}) = 0$$
$$\frac{\partial \rho}{\partial t} + \nabla \rho \cdot \mathbf{V} = 0$$

Autres phénomènes physiques pouvant être pris en compte

- Phénomène de diffusion (si on s'intéresse à des espèces chimiques).
- Action de la pesanteur : les particules fluides ont une masse.
- Echanges thermique.
- Viscosité.
- Turbulence (phénomènes que l'on modélise très difficilement).

5.2 Régularisation adaptée

Régularisation adaptée

 Idée : utiliser les opérateurs div / curl pour contraindre le champs de vitesse.

$$\int_{\Omega} \left((\nabla I \cdot \mathbf{V} + I_t)^2 + \alpha \operatorname{div}(\mathbf{V})^2 + \beta \|\operatorname{curl}(\mathbf{V})\|^2 \right) d\mathbf{x}$$

- \Rightarrow Régularisation Div-Curl d'ordre 1.
- Selon le choix de α et β on peut favoriser/défavoriser les champs divergents/rotationnels.
- Cas des fluides incompressibles : prendre $\beta=0$
- Cas particulier : $\alpha = \beta$. C'est Horn & Schunck!

$$div(\mathbf{V})^{2} + curl(\mathbf{V})^{2} = (u_{x} - v_{y})^{2} + (v_{x} - u_{y})^{2}$$

$$= u_{x}^{2} + u_{u}^{2} + v_{x}^{2} + v_{y}^{2} + 2(u_{x}v_{y} - v_{x}u_{y})$$

$$\int \left(div(\mathbf{V})^{2} + curl(\mathbf{V})^{2} \right) d\mathbf{x} = \int \left(\|\mathbf{V}\|^{2} + 2(-uv_{xy} + v_{xy}u) \right) d\mathbf{x}$$

$$+ termes de bord$$

Régularisation adaptée

- Cette propriété est également vraie dans \mathbb{R}^3 (flot optique 3D).
- Résolution variationnelle : équation d'Euler-Lagrange.

$$\begin{aligned} -\alpha u_{xx} + (\beta - \alpha)v_{xy} - \beta u_{yy} + I_x(\nabla I^T \mathbf{V} + I_t) &= 0\\ -\alpha v_{xx} + (\beta - \alpha)u_{xy} - \beta v_{yy} + I_y(\nabla I^T \mathbf{V} + I_t) &= 0 \end{aligned}$$

- Si $\alpha = \beta$, on retrouve bien le HS classique.
- [Suter, 1994] la résoud pour des fonctions Splines.
- Modèle paramétrique, mais formulation difficile.

Régularisation adaptée

- On peut également utiliser une régularisation d'ordre 2 i.e. :

$$\int_{\Omega} \left((\nabla I \cdot \mathbf{V} + I_t)^2 + \alpha \|\nabla \operatorname{div}(\mathbf{V})\|^2 + \beta \|\nabla \operatorname{curl}(\mathbf{V})\|^2 \right) d\mathbf{x}$$

- Les équations d'Euler Lagrange sont alors beaucoup plus complexes et font intervenir des termes dérivées d'ordre 4 et croisées.
- La discrétisation de ce type d'équation n'est pas stable (à cause des termes croisés et de l'ordre).
- L'implémentation splines (également faite par Suter) s'impose!

5.3 Contrainte de mouvement adaptée

Conservation de la masse

 Plusieurs auteurs ont utilisé l'équation de conversation de la masse, c'està-dire minimiser :

$$\int \left((\operatorname{div}(I\mathbf{V}) + I_t)^2 + \alpha \|\nabla\mathbf{V}\|^2 \right) d\mathbf{x}$$

 $-\operatorname{div}(I\mathbf{V}) = \nabla I^T \mathbf{V} + I\operatorname{div}(\mathbf{V})$

- [Wildes and Amabile, 1997] l'utilise dans le contexte d'écoulement du sang : les données utilisées mesure la pression artérielle.
- Elle peut être utilisée dans le contexte météorologique pour l'estimation de la vitesse des nuages sur le canal infrarouge [Béréziat et al., 1999] et sur le canal densité de vapeur d'eau.
- [Schunck, 1986] et [Nagel, 1989] l'utilisent dans un cadre standard. Nagel montre qu'elle permet de reconstruire le mouvement véritable sous certaines conditions (restrictives).

6 Visualisation

Visualisation : champ de vecteurs

FIG. 25 – Fonction quiver() de Matlab/Octave.

Lignes de courant

- Calculer la trajectoire d'un point $\mathbf{x}_0 \in \mathbb{R}^2$ transporté par un champ de vecteurs $w(\mathbf{x})$ statique (pas de temps).
- Résoudre :

$$\frac{\partial \mathbf{x}}{\partial s}(s) = w(\mathbf{x}(s)) \quad s \in [0, 1]$$

$$\mathbf{x}(0) = \mathbf{x}_{0}$$
(13)

- On intégre :

$$\mathbf{x}(s) = \mathbf{x}_0 + \int_0^s w(\mathbf{x}(u)) du$$

– Résolution par schéma de Range-Kutta à l'ordre 4 (utilise une linéarisation de $w(\mathbf{x}(u))$.

Lignes de courant

FIG. 26 - Fonction stream2() de Matlab.

Line Integral Convolution (LIC)

- [Cabral and Leedom, 1993]
- Visualisation dense des lignes de courant.
- Calcul des lignes de courant (équation 13).
- Intégration des lignes de courant selon l'équation :

$$LIC(\mathbf{x}_0) = \int_{\mathbb{R}} k(u - u_0) T(\mathbf{x}(u)) du$$

$$\mathbf{x}_0 = \mathbf{x}(u_0)$$

- $-\ T$ est une image de texture : l'image qui a généré le champ de vecteur ou bien un bruit uniforme.
- Le noyau k de convolution permet de fixer une fenêtre sur la ligne de courant :

$$-k(u) = \frac{1}{2L} \mathbb{1}_{[-L,+L]}$$

 $- k(u) = \frac{1}{2L} \mathbb{1}_{[-L,+L]}$ - un noyau gaussien de variance L

LIC : applications

- Lisser dans la direction du gradient (similaire à une diffusion orientée).
- Trajectoires générées par $w = \nabla T$.

FIG. 27 – LIC sur gradient, transport de l'image

LIC : applications

- Visualiser un champ de vecteurs w.
- On prend $T(x, y) \sim \mathcal{U}([0, 1]).$

FIG. 28 – LIC : transport d'image de bruit.

Trajectoires temporelles

- Cette fois, le champ de vitesse dépend du temps.
- Correspond à la notion "habituelle" de trajectoire.
- Modification de l'équation (13) à résoudre :

$$\begin{array}{rcl} \frac{\partial \mathbf{x}}{\partial t} &=& w(\mathbf{x},t) \\ \mathbf{x}(0) &=& \mathbf{x}_0 \end{array}$$

– Il faut donc intégrer :

$$\mathbf{x}(t) = \mathbf{x}_0 + \int_0^t w(\mathbf{x}(u), u) du$$

– Résolution par schémas de Range-Kutta à l'ordre 4.

Trajectoires temporelles

Norme du champ de vecteurs $- \|w\|^2(\mathbf{x}) = u^2(\mathbf{x}) + v^2(\mathbf{x}) \quad \mathbf{x} \in \Omega$

FIG. 29 - Fonction stream3() de Matlab.

FIG. 30 – Image de norme (normalisé).

Ligne de niveau de la norme du champ de vecteurs – $C(a) = {\mathbf{x} \in \Omega | ||w||^2(\mathbf{x}) = a}$

FIG. 31 - Fonction contourf() de Matlab/Octave.

Ligne de niveau : cas d'un champ dérivant d'un potentiel

- Il est intéressant de visualiser les lignes de front : courbes orthogonales au champ de vecteurs.
- Le cas simple : $\nabla P = w$. Le champ de vecteurs w dérive d'un potentiel P (c'est un champ de force).
- On intègre w en l'une des ses composantes :

$$P(x,y) = \int u(x,y)dx$$
 ou
 $P(x,y) = \int v(x,y)dy$

et on calcule les lignes de niveau de P.

– On parle de lignes d'isopotentiel.

Lignes de front

- Exemple du gradient spatial $w = \nabla I$: correspond aux lignes de niveau de l'image I.
- Problème : un champ de vecteurs vitesse ne dérive pas d'un potentiel.
- On peut calculer la trajectoire d'une particule transportée par le vecteur orthogonal au champ des vitesses :

$$\begin{array}{rcl} \displaystyle \frac{\partial c}{\partial s}(s) & = & w^{\perp}(c(s)) \\ c(0) & = & c_0 \end{array}$$

avec $w^{\perp} = \frac{1}{\|w\|} (v, -u)^T$.

Lignes de front

FIG. 32 – Exemples sur champs affines

Comparaison de champs

FIG. 33 – Superposition de deux champs avec xflow

Mesure des erreurs angulaires

- Comparaison des orientations. Soit deux champs w_1, w_2 , évaluer $\langle \widehat{w_1, w_2} \rangle = \arccos\left(\frac{1}{\|w_1\| \|w_2\|} w_1^T w_2\right)$
- Comparaison dans l'espace-temps [Fleet and Jepson, 1990] : $n = \frac{\nabla I}{\|\nabla I\|}$. Composante $w_n = w^T n$ Donc $w^T n w_n = \begin{pmatrix} w^T & 1 \end{pmatrix} \begin{pmatrix} n \\ -w_n \end{pmatrix} = 0$

 - $-\binom{w}{1}$ est le vecteur vitesse dans l'espace-temps.

- Dans l'espace-temps, le vecteur vitesse est orthogonal au plan (gradient, $-w_n$).
- Si on compare un champ de vecteur estimé w_e à un champs correct w_c , il doit idéalement être orthogonal au plan $(n_e^T, 1)$.

- On calcul :
$$\operatorname{arcsin}\left(\frac{(w_c, 1)^T(n_e, -w_n)}{\sqrt{1+||w_e||^2}\sqrt{1+||w_c||^2}}\right)$$

- Ou encore : $\operatorname{arccos}\left(\frac{(w_c, 1)^T(w_e, 1)}{\sqrt{1+||w_e||^2}\sqrt{1+||w_c||^2}}\right)$

7 Méthodes markoviennes

7.1 Estimation du flot optique discontinu

Estimation du flot optique discontinu

- Estimer le flot en préservant les discontinuités?
- Avoir des contraintes F.O. sur des régions
- Avoir des contraintes F.O. sur des contours.
- Avec des mesure de discontinuité du F.O.
- Ref : [Heitz and Bouthemy, 1993].
- Grille pixel S et grille duale D contours.

Observation et champs

- Les champs à calculer :
 - $\vec{w} = \{\vec{w}(s), s \in S\}, \vec{w}(s) \in \mathbb{R}^2$
 - γ(d) = {γ(d), d ∈ D} est un indicateur de discontinuité du champ des vitesses. Il est définit par :
 - $-\gamma(d) = 0$ si d n'est pas un point de discontinuité;
 - $-\gamma(d) = 1$ sinon et d à appartient à la région de droite;
 - $-\gamma(d) = -1$ sinon et d à appartient à la région de gauche.
- Les données observées :
 - $\{\nabla I(s:t), I_t(s:t)\}_{s \in S}$: gradient spatio-temporel de la séquence d'images.
 - $-\omega^{\perp} = \{\omega_d^{\perp}, d \in D\}$: carte des contours mouvants (M.E.).
 - $-\xi_g = (\xi_g(s))_{s \in S}$ confiance sur le critère OFC au site s
 - $-\xi_{w^{\perp}} = \{\xi_{w^{\perp}}(d), d \in D\}$: confiance sur le M.E. au site d
 - − $\eta = \{\eta(d), d \in D\}$: détecteur de contours 2D (Canny/Deriche). Sert également au calcul des M.E.

Calcul des données d'entrée

- Contours mouvant (Moving Edges, ME, (w^{\perp})):
 - identifier des points de contours qui sont en mouvement
 - ils sont candidats pour les zones de discontinuités.
 - On calcule les contours 2D sur le plan (avec η)
 - Pour ces points, on calcule la composante du FO dans la direction du gradient $(w^{\perp} = -\frac{I_t}{\|\nabla I\|^2} \nabla I)$ i.e. l'indice de mouvement.
- Confiance sur contours mouvants $(\xi_{w^{\perp}})$:

– Simple : seuiller sur le gradient temporel

- Plus efficace : test du maximum de vraissemble sur la valeur du gradient temporel (i.e. différence d'image) : voir transparent 44.
- Critère de confiance sur l'OFC (ξ_g) : les auteurs proposent un critère de régularité du gradient spatial :

– D.L Taylor ordre 1 :

$$\begin{split} I(\mathbf{x} + \delta \mathbf{x} : t) &= I(\mathbf{x} : t) + a_t \delta \mathbf{x} + n_1 \\ I(\mathbf{x} + \delta \mathbf{x} : t + 1) &= I(\mathbf{x} : t + 1) + a_{t+1} \delta \mathbf{x} + n_2 \end{split}$$

- $-a_t = \nabla I(\mathbf{x}:t)$
- n_1 et n_2 doivent être petits : on les suppose gaussien centré de variance σ^2 et indépendant entre eux.
- On construit le test statistique :

$$H_0: \{a_t(u) = a_{t+1}(u), u \in W(s)\} \\ H_1: \operatorname{non} H_0$$

et
$$\xi_g(s) = 1$$
 si on accepte H_0

Énergie

– Proba *a posteriori* :

$$P(\vec{w}, \gamma | \nabla I, I_t, w^{\perp}, \xi_g, \xi_{w^{\perp}}, \eta) = \frac{1}{Z} \exp(-\sum_{i \in \{1, 2, 3, 4, 5\}} U_i)$$

– Energie sur 5 type de cliques.

Cliques associées

FIG. 34 -Cliques d'ordres 2 et 4

Énergie

 Terme d'attache aux données : cohérence du vecteur vitesse avec la contrainte de flot optique :

$$U_1(\nabla I, I_t, \vec{w}) = \alpha_1 \sum_{s \in S} \xi_g(s) (\nabla I(s) \cdot \vec{w}(s) + I_t(s))^2$$

- La contrainte est vérifiée sur les zones cohérentes i.e. des zones de gradient spatio-temporel lisse ($\xi_g(s) = 1$).
- Terme d'attache aux données : cohérence des contours mouvant avec l'estimation du vecteur vitesse :

$$U_{2}(w^{\perp},\xi_{w^{\perp}},\vec{w},\gamma) = \alpha_{2} \sum_{\substack{\in C_{3} \cup C_{4} \\ \|w^{\perp}(d)\|^{2}}} \xi_{w^{\perp}}(d) \left(\vec{w}(s).\frac{w^{\perp}(d)}{\|w^{\perp}(d)\|} - \frac{w^{\perp}(d)}{\|w^{\perp}(d)\|}\right)^{2} \frac{1}{2}(-|\gamma(d)| - \gamma(d) + 2) \\ + \alpha_{2} \sum_{\substack{\in C_{1} \cup C_{2} \\ \|w^{\perp}(d)\|^{2}}} \xi_{w^{\perp}}(d) \left(\vec{w}(s).\frac{w^{\perp}(d)}{\|w^{\perp}(d)\|} - \frac{w^{\perp}(d)}{\|w^{\perp}(d)\|}\right)^{2} \frac{1}{2}(-|\gamma(d)| + \gamma(d) + 2)$$

- la cohérence entre
$$\vec{w}$$
 et w^{\perp} : $\vec{w}(s) \cdot \frac{w^{\perp}(d)}{\|w^{\perp}(d)\|} = \|w^{\perp}(d)\|$
- $\gamma_d = 1(-1) \Rightarrow \frac{-|\gamma_d| - \gamma_d + 2}{2} = 0(1), \frac{-|\gamma_d| + \gamma_d + 2}{2} = 1(0)$

Énergie (suite)

- Ši $\vec{w(d)}$ est cohérent avec $w^{\perp}(d)$: l'énergie ne dépend plus de $\gamma(d)$
- Si $\vec{w}(d)$ n'est pas cohérent avec $w^{\perp}(d)$: l'énergie favorise l'orientation du contours $\gamma(d) = 1, -1$ la plus cohérente.
- L'énergie oriente les valeurs de γ entre 1 ou -1 mais PAS 0 ($\gamma(d)=0\Rightarrow\frac{-|\gamma_d|^+\gamma_d+2}{2}=1)$

Énergie (suite)

$$U_{3}(\vec{w},\gamma) = \sum_{\substack{\langle s_{1},s_{2},d\rangle \in C_{5} \bigcup C_{6} \\ U_{4}(\eta,\gamma) = \alpha_{4} \sum_{\substack{d \in D \\ d \in D}} (1-\eta(d)) |\gamma(d)| \\ U_{5}(\gamma) = \alpha_{5} \sum_{\substack{c \in C_{7} \bigcup C_{8}}} V_{c}(\gamma)$$

- U_3 est un terme de lissage qui préserve les discontinuités de $\vec{w}.$
- U_4 suppose que les points de discontinuité de la vites se sont portés par les points de contours 2D.
- U_5 terme qui défavorise certaines cliques (critère géométrique) i.e. les cliques 7 et 8.

Optimisation

- Par ICM : pour allez vite, l'énergie est complexe, lourde en calcul.
- Initialisation : $\vec{w} = \vec{0}$ et $\gamma = \eta$
- Les paramètres sont fixés de façon empiriques.

7.2 Segmentation d'objets solides en mouvement

Segmentation d'objets solides en mouvement

Objectifs :

- Segmenter les objets solides en mouvement : reconnaître des régions de même vitesse.
- Pour chaque région estimer le mouvement.
- Hypothèse : invariance de la luminosité par région

Modèle

On définit les objets suivants :

- -S =grille de site sur l'image
- $-e = (e_s, s \in S)$, ensemble <u>d'étiquettes</u> (label) $e_s = r \Leftrightarrow s \in$ région r
- $-r \in R$
- $-im_s =$ luminosité du pixel s
- $-\Theta_r =$ paramètre de vitesse de la région r
- Modèle markovien \rightarrow cadre probabiliste :
- $-I = (I_s)_S$ variable aléatoire dont *im* est une réalisation,
- $-E = (E_s)_S$ variable aléatoire dont *e* est une réalisation,

Modèle Markovien

- But : construire une loi conditionnelle sur E telle que :
- les configurations les plus probables donnent le résultat attendu (région segmenté par vitesse homogène).
- équivalence champs de Gibbs : trouver une énergie dont le minimum conduit au résultat attendu.

$$-P(E=e|I=im) = \frac{e^{-e(e,m)}}{Z}$$

Écriture de l'énergie

- Règle : énergie basse = cas favorable
- Hypothèse invariance luminosité : par région, la quantité $\epsilon_r(s) = \nabla I_s \cdot \vec{w_r} +$ \dot{I}_s aussi petit que possible. $(\dot{I} = \frac{\partial \hat{I}}{\partial t})$.
- $-\epsilon_r(s) \sim N(0, \sigma^2)$, i.i.d.
- $U(e, im) = U_1(e) + U_2(e, im).$
 - $U_1\,$: il faut une contrainte de régularité sur $e\,$ pour avoir des régions assez connexes.
 - $-U_2$: attache aux données : modélisation de la propriété d'homogénéité en vitesse par région.

Modèle (suite)

 $-U_1(e) = \alpha \sum_{\langle s,t \rangle} (1 - \mathbb{1}_{e_s = e_t})$ Modèle d'Ising : favorise les configurations où

les sites voisins ont même étiquette.

$$- U_2(e, I) = \sum_{s \in S} \sum_{r \in R} \frac{1}{2\sigma^2} (\nabla I_s . \vec{w_r} + \dot{I_s})^2 \mathbb{1}_{e_s = r}$$

- Terme U_2 : on met l'étiquette r à la région qui minimise au mieux le terme $(\nabla I_s.\vec{w_r}+\dot{I_s})^2$
- < ... > système de voisinage aux 8 plus proches voisins.
- $-\alpha$, paramètre de régularisation.

Optimisation

- Spécification locales : $P(E_s|I, E_t, t \in \mathcal{V}_s) = \frac{e^{-U_s}}{Z_s}$, U_s = énergie locale.
- \mathcal{V}_s = sites voisins de s. $U_s(e, I) = \alpha \sum_{t \in \mathcal{V}_s} (1 \mathbb{1}_{e_s = e_t}) + \frac{1}{2\sigma^2} (\nabla I_s \vec{w}_r + \dot{I}_s)^2$.
- On a $\frac{1}{2\sigma^2}(\nabla I_s \vec{w}_r + \dot{I}_s) \sim N(0,1)$. Sous l'hypothèse \vec{w}_r = vraie vitesse, $\nabla I_s \vec{w_r} + \dot{I_s} = 0.$

Calcul

- Balavage : ligne par ligne sur les sites étiquettes.
- À chaque étape : on calcul $U(r), r \in R$, on prend le mieux.
- On estime \vec{w}_r et $\hat{\sigma}^2$. On minimise $\sum (\nabla I_s.\vec{w} + \dot{I}_s)^2$ en \vec{w} .
- Système quadratique : résolution par moindres carrés.

Commentaires

- Validité de l'hypothèse $\epsilon_r(s) \sim \mathcal{N}(0, \sigma^2)$.
- Initialisation : interactive.
- Pas de problème d'ouverture comme pour le flot optique.
- Pas adapté aux objets déformables.

Références

- [Barron et al., 1994] Barron, J., Fleet, D., and Beauchemin, S. (1994). Performance of optical flow techniques. *Internation Journal of Computer Vision*, 12(1):43–77.
- [Beauchemin and Barron, 1995] Beauchemin, S. and Barron, J. (1995). The computation of optical flow. ACM Computing Surveys, 27(3):433-467.
- [Béréziat et al., 1999] Béréziat, D., Younes, L., and Herlin, I. (1999). Motion estimation using a volume conservation hypothesis. In *International conference* on Acoustic, Speech and Signal Processing (ICASSP99).
- [Bernard, 1999] Bernard, C. (1999). Ondelettes et problèmes mal posés : la mesure du flot optique et l'interpolation irrégulière. PhD thesis, École Polytechnique.
- [Brox et al., 2004] Brox, T., Bruhn, A., Papenberg, N., and Weickert, J. (2004). High accuracy optical flow estimation based on a theory for warping. In Springer-Verlag, editor, *Proc. of 8th ECCV*, volume 4, pages 25–36, Prague, Czech Republic.
- [Cabral and Leedom, 1993] Cabral, B. and Leedom, C. (1993). Imaging vector fields using line integral convolution. In SIGGRAPH, pages 263–270.
- [Cohen, 1993] Cohen, I. (1993). Nonlinear variational method for optical flow computation. In 8th Scandinavian Conference on Image Analysis, Tromso, Norway, June 1993. IAPR, pages 523–530.
- [Fleet and Jepson, 1990] Fleet, D. and Jepson, A. (1990). Computation of component image velocity from local phase information. *International Journal of Computer Vision*, 5(1):77–104.
- [Heitz and Bouthemy, 1993] Heitz, F. and Bouthemy, P. (1993). Multimodal estimation of discontinus optical flow using MFR. *Pattern Analysis and Machine Intelligence*.
- [Horn and Schunck, 1981] Horn, B. and Schunck, B. (1981). Determining optical flow. In Artificial Intelligence, volume 17, pages 144–156.
- [Lucas and Kanade, 1981] Lucas, B. and Kanade, T. (1981). A iterative image registration technique with an application to stereo vision. In *Proc. of* 7th International Join Conference on Artificial Intelligence, pages 674–679, Vancouver, Canada.
- [Mitiche and Bouthemy, 1996] Mitiche, A. and Bouthemy, P. (1996). Computation and analysis of image motion : A synopsis of current problems and methods. *Internation Journal of Computer Vision*, 19(1).
- [Mémin et al., 1996] Mémin, E., Perez, P., and Machecourt, D. (1996). Dense estimation and object-oriented segmentation of optical flow with robust techniques. Technical Report 991, IRISA.
- [Nagel, 1987] Nagel, H. (1987). On the estimation of optical flow : relations between different approaches and some new results. Articial Intelligence, 33(3) :298–324.

- [Nagel, 1989] Nagel, H. (1989). On a constraint equation for the estimation of displacement rates in image sequences. IIIE Transactions of PAMI, 11:13–30.
- [Odobez and Bouthemy, 1995] Odobez, J.-M. and Bouthemy, P. (1995). Robust multiresolution of parametric motion models. In *JVCIR*, volume 6, pages 222–238.
- [Rudin et al., 1992] Rudin, L., Osher, S., and Fatemi, E. (1992). Nonlinear total variation based noise removal algorithm. *Physica D*, 60 :259–268.
- [Schunck, 1986] Schunck, B. (1986). Image flow continuity equations for motion and density. In *Proceeding IEEE Workshop on Visual Motion*, pages 89–94, Charleston.
- [Suter, 1994] Suter, D. (1994). Vector splines in computer vision. In Australian workshop on Thinplates, Sydney, Australia.
- [Wildes and Amabile, 1997] Wildes, R. P. and Amabile, M. J. (1997). Physically based fluid flow recovery from image sequences. In CVPR97, pages 969–975.