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Functional neuroimaging
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It’s the study of the brain activity through
functional imaging devices
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Optical Imaging
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Brain anatomy
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Relation between location and function?
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Relation between location and function?
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From the eye to the cortex
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Left (resp. right) visual 
field is projected to the 
right (resp. left) 
hemisphere in the 
primary visual 
cortex (V1)

(Adapted from http://homepage.psy.utexas.edu/homepage/Class/Psy308/ Salinas/Vision/Vision.html).

Source: adapted from http://
homepage.psy.utexas.edu/homepage/Class/
Psy308/ Salinas/Vision/Vision.html).

V1 stands in the occipital 
region around the 
calcarine fissure
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Relation between location and function?
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Primary Motor Cortex (M1)Primary Somatosensory Cortex (S1)

Homonculus
[Penfield 50]



Electrophysiology:
Origin of the signals



     Alexandre Gramfort                  Functional Brain Imaging with MEG/EEG/sEEG

Brain anatomy
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Source: dartmouth.edu

White matter

Gray matter

Axial slice

Neurons
in the gray matter
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APs (action potentials) & PSPs (post-synaptic potentials)
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APs (action potentials) & PSPs (post-synaptic potentials)
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APs (action potentials) & PSPs (post-synaptic potentials)
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Action potentials:
fields diminish too rapidly to sum

Pre-synaptic Post-synaptic

Postsynaptic currents:
fields diminish gradually
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Neurons as current generators

12

Cu
rr
en

t

Large cortical pyramidal cells organized in 
macro-assemblies with their dendrites 

normally oriented to the local 
cortical surface

White matter

Gray matter



     Alexandre Gramfort                  Functional Brain Imaging with MEG/EEG/sEEG

Neurons as current generators
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macro-assemblies with their dendrites 

normally oriented to the local 
cortical surface

White matter

Gray matter

Q = I × d
(10 to 100 nAm) with 
the equivalent current 
dipole (ECD) model
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EEG & MEG systems
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First EEG 
recordings

in 1929
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MEG sensors
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Magnetometer
- General magnetic fields
- Very sensitive overall, noisy

Planar Gradiometer
- Focal magnetic fields
- Most sensitive to fields directly underneath

Axial Gradiometer
-Focal magnetic fields
- Most sensitive to fields directly underneath it
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Magnetic shielding
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Hence the importance of shielding...
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Magnetic shielding
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3-ply µ-metal room

Magnetically Shielded Room (MSR)
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A machine (Neromag vectorview)
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No Magnet
Quiet
Machine makes no noise

Participant can sit or lay down
Can record 128 EEG 
simultaneously
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sEEG systems
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Intracranial electrodes;
5 to 15 contacts per electrode
Around 10 electrodes are implanted Stereotaxic Implantation
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sEEG systems
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sEEG Measurements
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[Schwartz et al Epilepsy Res 2011]

Interictal discharges involving 
multiple regions (a network)

Seizure onset
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M/EEG Measurements
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EEG :
• ≈ 100 sensors 

MEG :
• ≈ 150 to 300 sensors

Sampling between 250 
and1000 Hz

Sample EEG measurements

High temporal 
resolution but what 

about spatial 
resolution?
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M/EEG Measurements
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At each time instant EEG sensors measure a potential field 

Remark: Such a smooth potential field confirms the presence of 
current generators within the head
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M/EEG Measurements
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MEG topography

MEG topography exhibits also a dipolar field but MEG
has a better spatial resolution
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M/EEG Measurements

24
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M/EEG Measurements: Notation
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MRI image (this type of anatomic data was used to estimate the triangulated interfaces for
the BEM in section 2.4.3). This step is rather complex but well handled by software such
as BrainVisa [36] or FreeSurfer [50], which provide almost fully automatic pipelines to run
the segmentations. Such pipelines are generally not integrated in commercial M/EEG source
imaging software that therefore only provide volumic source spaces with 3D grids.

The current generators that produce the electromagnetic fields are known to be located in
the gray matter forming the cortex. This implies that the estimated sources should at least
be constrained to be located within the gray matter. This is achieved with surfacic source
models. To argue even more in favor for such models, we would like to mention that the fMRI
community also tends to map the 3D data acquired onto cortical surfaces [64]. Another reason
for this is that anatomical landmarks are more easily defined on cortical segmentation than
on volumic data.

From now until the end of this chapter, we will focus on surface based distributed models.

Orientation vs. no orientation constraint
With distributed dipolar source models, the orientation of the dipoles can either be defined

a priori using the normal to the cortical mesh (cf. figure 3.1(c)), or left unconstrained. When
the dipoles orientations are left unconstrained, 3 orthogonal dipoles are positioned at each
location. With MEG, since sensors are blind to the radial component of the field, only 2 can
be used. Considering our knowledge on the structure of the neural assemblies formed by the
pyramidal neurons (cf. chapter 1), constraining the orientation is a reasonable assumption.
One can also argue that the more a priori are used to compute neural estimates, the better
it is. However, practice shows that the orientation is a critical parameter for a dipole since it
affects its forward field on the M/EEG sensors a lot more that its 3D position. This suggests
that if orientation constraints are used, the normals to the cortical mesh should be very
accurately estimated. Depending on the brain location of the sources this can be more or less
challenging.

In this chapter, many illustrations are presented on the somatosensory cortex lying on the
post-central gyrus. The central sulcus and central gyrus of the cortex are major structures
of the human cortex and are very well segmented with anatomical pipelines. For this reason
the orientation constraint is generally well justified in this brain region.

3.2 MINIMUM NORM SOLUTIONS AND ITS VARIANTS

When orientations are fixed and only the amplitudes of the dipolar current generators
need to be estimated, the forward problem results in the following linear problem:

M = GX + E (3.3)

where G stands the forward operator, M corresponds to the measurements (Electric potential
or/and magnetic field), X contains the unknown amplitudes of the sources and E is the noise.

We denote the number of sources by dx, the number of sensors by dm and the number of
time instants by dt. With these notations, we have, M � Rdm�dt , G � Rdm�dx , X � Rdx�dt and
E � Rdm�dt .

In practice, dm is in the range of 10, for low resolution EEG, and 400, for high resolution
MEG and EEG combined studies. The parameter dt is commonly between 1 and a few thou-
sand. With the digital amplifiers used in M/EEG, the sampling rate can be over 1000 Hz
which leads to high values of dt when recording several seconds of signal. The number of
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What can you do with M/EEG?

26

1. Cognitive studies
• Which areas are activated during a given 

cognitive task? When are they active? What 
is common in a population of subjects?

2. Therapy (Epilepsy)
• Where is the location of the origin of 

epileptic seizures?
• Will my patient be able to talk if I 

remove this area of the cortex?
3. Brain computer interfaces (BCI)

• How to extract in real time the signal of 
interest from EEG measurements in order to 
control a computer?

Source: nih.gov

Source: life.com

?
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Data acquisition examples

27
Source: nih.gov

Earphones

Electrical Stimulator

Presentation Screen 
(moved to front!)

Also:
Button Pads

Button Gloves
Manual Tapper

Stimulus delivered 
by E-Prime, 

PsychToolBox, etc.
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Data acquisition examples
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Source: nih.gov
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What are the challenges?
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?
Forward problem:

Maxwell Equations, Numerical solvers, Finite  
and Boundary Element Method (BEM & FEM), 

Image Segmentation and meshing for head 
modeling.

Signal Extraction:
Signal processing, Denoising,  Artifact 

rejection, Single trial analysis.

Inverse problem:
Deconvolution problem, Ill-posed problem, 

Requires efficient solvers to use different priors.



Preprocessing
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Artifacts
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Time frame: 10 seconds

cardiac

drift

eye blink

Buzz = 
Line 
noise
60Hz
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Raw continuous data
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Time frame: 10 seconds
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Filtered 1-40Hz
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Time frame: 10 seconds
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Artifact correction

34

• SSP - PCA correction

• Signal space projections

• Empty room correction

• Independent component analysis (ICA)

• ...
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To get clean data...
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Time frame: 10 seconds



Source localisation 
with M/EEG:

The forward and 
inverse problems
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Forward problem: Objective
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?Predict what is the Electric 
Potential or the Magnetic Field 

produced by a current 
generator outside of the head

How to do it?

• Find from Maxwell equations the equations adapted to the problem.

• Define a model for the current generators (e.g., sources modeled 

by equivalent current dipoles).

• Solve numerically the differential equations obtained for a real 

anatomy obtained by MRI.
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Maxwell

38

What is MEG? From Maxwell to the gain matrix
Retinotopy with MEG

Origin of the MEG signal
Forward Problem
Inverse Problem

Maxwell Equations

with quasi-static
approximation :

�
⌅⌅⌅⌅⌅⌅⇤

⌅⌅⌅⌅⌅⌅⇥

⇤⇥ ⌅E = 0

⇤ · ⌅B = 0

⇤⇥ ⌅B = µ0
⌅J

⇤ · ⌅E =
⇥

�0

with ⌅J : all currents

⇤ : tissue conductivities
V : electric potential

Conduction currents ( Extracellular )

⌅J can be decomposed : ⌅J = ⌅Jp + ⌅Jc
⌅Jp : source currents (ie. primary currents)
⌅Jc : conduction currents

⌅Jc = �⇤⇤V

Alexandre Gramfort 7 / 30

Maxwell Equations
with quasi-static 

approximation

Remark: quasi-static implies 
no temporal derivatives and 

no propagation delay
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Maxwell
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Primary 
currents

Conduction
currents
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Ohm’s law:

Total currents:

Tissue conductivity
Electric potential

Remark: quasi-static implies 
no temporal derivatives and 

no propagation delay
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Maxwell
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What is MEG? From Maxwell to the gain matrix
Retinotopy with MEG

Origin of the MEG signal
Forward Problem
Inverse Problem

1st MEG : 1969
Scale : 10�13 T (Tesla)
Time sampling : > 1000

Hz (1 value / ms)

MEG : magnetic field measurement

⇧ ·⇧⇥ ⇤B = 0⇤ ⇧ · (⇤Js + ⇤Jc) = 0
⇤ ⇧ · ⇤Jp = ⇧ · (⇥⇧V )
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where

Biot and Savart’s law

Poisson Equation

Observations:
•B is obtained after V
•B decreases in 1/R2

•B is due both to 
primary currents and 
volume currents

Remark: Relation with Kirchoff ’s law
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Head models
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Sphere models

Requires to model the properties of the 
different tissues: skin, skull, brain etc.

Hypothesis: The conductivities are piecewise constant

Realistic models

EEG : [Berg et al. 94, De Munck 93, Zhang 95]
MEG : [Sarvas 87]

[Geselowitz 67, De Munck 92, Kybic et al. 2005]
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Head models

40

Sphere models

Requires to model the properties of the 
different tissues: skin, skull, brain etc.

Hypothesis: The conductivities are piecewise constant

Realistic models

EEG : [Berg et al. 94, De Munck 93, Zhang 95]
MEG : [Sarvas 87]

[Geselowitz 67, De Munck 92, Kybic et al. 2005]

Analytical solutions fast to 
compute but very coarse 
head model (esp. for EEG)

Boundary element method (BEM),
i.e., numerical solver with 

approximate solution.



The M/EEG
inverse problem
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Inverse problem: Objective
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Find the current 
generators that 

produced the M/EEG 
measurements
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Inverse problem approaches

• Dipole fitting

• Scanning methods

• Distributed models
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Dipole fitting
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The equivalent of triangulation
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Dipole fitting: procedure
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1)  Pick subset of sensors w/ peak 2)  Pick Time Point; Observe Mag Field

4)  Map to MRI3)  Measures of Quality

Goodness of Fit
% of activity explained by forward 
solution based on single dipole

Confidence Volume
volume within which you can be 
95% confident that the dipole exists

Equivalent 
Current Dipole 

Technique



22ms 52ms 83ms

7 sensors

42 sensors

92 sensors

99.7% 99.2% 98.2%

84.6% 97.6% 85.8% 

84.6% 97.6% 85.8%

Median Nerve 
Dipole Fitting 

Results

circle = size of 
confidence volume



20 ms 44 ms 57 ms 88 ms 120 ms

Time course of SEF 

R L

L
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[Dale and Sereno 93]

Dipoles sampled over the 
cortical surface extracted by 

MRI segmentation

G =

one column = Forward field of one dipole

is the lead field matrix 
obtained by concatenation 

of the forward fields

Current generator 
modeled as a 

current dipole 
(location, orientation 

and amplitude)

EEG 
forward 

field on the 
electrodes

MEG 
forward field 
on sensors
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102 CHAPTER 3. THE INVERSE PROBLEM WITH DISTRIBUTED SOURCE MODELS

inverse matrices cannot be explicitly computed. We need for each pair (�, µ) to run an itera-
tive solver, which can make the GCV and L-Curve methods particularly time consuming.

3.3 LEARNING BASED METHODS

In previous sections, the ⇥2 priors used in the penalization of the inverse problem are de-
fined a priori. Following the explanations in section 3.2.2.2, this means that the proposed
methods assume a predefined covariance matrix for the sources. In the following paragraphs,
we will present inverse solvers that aim at designing a prior based on the data. The source
covariance matrix, i.e., the weights in the ⇥2 penalization term, is “learned”. We will also say
that the model is learned from the data [193].

For simplicity, we will present the following method in the context of instant-by-instant
inverse computation.

The methods presented in this section use the Bayesian formulation of the inverse prob-
lem. We recall the Bayesian framework from section 3.2.2.2:

p(X|M) =
p(M|X)p(X)

p(M)
. (3.25)

where we assume Gaussian variables:

E ⇥ N (0,�E) (3.26)
X ⇥ N (0,�X) (3.27)

and an additive model:
M = GX + E . (3.28)

If �E and �X are known, X is obtained by maximizing the likelihood which leads to:

X⇥ = arg min
X

⇤M�GX⇤�E + ⇤X⇤�X , (3.29)

which leads to:
X⇥ = �XGT (G�XGT + �E)�1M .

In this framework the prior is an ⇥2 norm and learning the prior means learning �X, i.e., the
source covariance matrix. One may also want to learn the noise covariance matrix �E. Note
that in the WMN framework, learning �X consists in learning the weights.

In the case where �X and �E are not fixed a priori, these parameters define the model
commonly denoted M. Bayes’ rule can be rewritten:

p(X|M,M) =
p(M|X,M)p(X|M)

p(M|M)
. (3.30)

p(X|M,M) is called the posterior.
p(M|X,M) is called the likelihood.
p(X|M) is called the prior.
p(M|M) is called the model evidence.

: M/EEG Measurements

: Source amplitudes (Unknowns)

: Leadfield (or Gain) matrix

: additive noise
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MRI image (this type of anatomic data was used to estimate the triangulated interfaces for
the BEM in section 2.4.3). This step is rather complex but well handled by software such
as BrainVisa [36] or FreeSurfer [50], which provide almost fully automatic pipelines to run
the segmentations. Such pipelines are generally not integrated in commercial M/EEG source
imaging software that therefore only provide volumic source spaces with 3D grids.

The current generators that produce the electromagnetic fields are known to be located in
the gray matter forming the cortex. This implies that the estimated sources should at least
be constrained to be located within the gray matter. This is achieved with surfacic source
models. To argue even more in favor for such models, we would like to mention that the fMRI
community also tends to map the 3D data acquired onto cortical surfaces [64]. Another reason
for this is that anatomical landmarks are more easily defined on cortical segmentation than
on volumic data.

From now until the end of this chapter, we will focus on surface based distributed models.

Orientation vs. no orientation constraint
With distributed dipolar source models, the orientation of the dipoles can either be defined

a priori using the normal to the cortical mesh (cf. figure 3.1(c)), or left unconstrained. When
the dipoles orientations are left unconstrained, 3 orthogonal dipoles are positioned at each
location. With MEG, since sensors are blind to the radial component of the field, only 2 can
be used. Considering our knowledge on the structure of the neural assemblies formed by the
pyramidal neurons (cf. chapter 1), constraining the orientation is a reasonable assumption.
One can also argue that the more a priori are used to compute neural estimates, the better
it is. However, practice shows that the orientation is a critical parameter for a dipole since it
affects its forward field on the M/EEG sensors a lot more that its 3D position. This suggests
that if orientation constraints are used, the normals to the cortical mesh should be very
accurately estimated. Depending on the brain location of the sources this can be more or less
challenging.

In this chapter, many illustrations are presented on the somatosensory cortex lying on the
post-central gyrus. The central sulcus and central gyrus of the cortex are major structures
of the human cortex and are very well segmented with anatomical pipelines. For this reason
the orientation constraint is generally well justified in this brain region.

3.2 MINIMUM NORM SOLUTIONS AND ITS VARIANTS

When orientations are fixed and only the amplitudes of the dipolar current generators
need to be estimated, the forward problem results in the following linear problem:

M = GX + E (3.3)

where G stands the forward operator, M corresponds to the measurements (Electric potential
or/and magnetic field), X contains the unknown amplitudes of the sources and E is the noise.

We denote the number of sources by dx, the number of sensors by dm and the number of
time instants by dt. With these notations, we have, M � Rdm�dt , G � Rdm�dx , X � Rdx�dt and
E � Rdm�dt .

In practice, dm is in the range of 10, for low resolution EEG, and 400, for high resolution
MEG and EEG combined studies. The parameter dt is commonly between 1 and a few thou-
sand. With the digital amplifiers used in M/EEG, the sampling rate can be over 1000 Hz
which leads to high values of dt when recording several seconds of signal. The number of
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Linear forward model, i.e.,
M is the sum of the 

contributions of all the sources 
(Superposition principle)
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inverse matrices cannot be explicitly computed. We need for each pair (�, µ) to run an itera-
tive solver, which can make the GCV and L-Curve methods particularly time consuming.

3.3 LEARNING BASED METHODS

In previous sections, the ⇥2 priors used in the penalization of the inverse problem are de-
fined a priori. Following the explanations in section 3.2.2.2, this means that the proposed
methods assume a predefined covariance matrix for the sources. In the following paragraphs,
we will present inverse solvers that aim at designing a prior based on the data. The source
covariance matrix, i.e., the weights in the ⇥2 penalization term, is “learned”. We will also say
that the model is learned from the data [193].

For simplicity, we will present the following method in the context of instant-by-instant
inverse computation.

The methods presented in this section use the Bayesian formulation of the inverse prob-
lem. We recall the Bayesian framework from section 3.2.2.2:

p(X|M) =
p(M|X)p(X)

p(M)
. (3.25)

where we assume Gaussian variables:

E ⇥ N (0,�E) (3.26)
X ⇥ N (0,�X) (3.27)

and an additive model:
M = GX + E . (3.28)

If �E and �X are known, X is obtained by maximizing the likelihood which leads to:

X⇥ = arg min
X

⇤M�GX⇤�E + ⇤X⇤�X , (3.29)

which leads to:
X⇥ = �XGT (G�XGT + �E)�1M .

In this framework the prior is an ⇥2 norm and learning the prior means learning �X, i.e., the
source covariance matrix. One may also want to learn the noise covariance matrix �E. Note
that in the WMN framework, learning �X consists in learning the weights.

In the case where �X and �E are not fixed a priori, these parameters define the model
commonly denoted M. Bayes’ rule can be rewritten:

p(X|M,M) =
p(M|X,M)p(X|M)

p(M|M)
. (3.30)

p(X|M,M) is called the posterior.
p(M|X,M) is called the likelihood.
p(X|M) is called the prior.
p(M|M) is called the model evidence.

Scanning : One source at a time i.e. one column of G at a time

Idea: Find how well it can explain the data while trying to cancel 
what can come from other sources

Common methods: beamformers (LCMV) and MUSIC

But does not recover X...
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In this framework the prior is an ⇥2 norm and learning the prior means learning �X, i.e., the
source covariance matrix. One may also want to learn the noise covariance matrix �E. Note
that in the WMN framework, learning �X consists in learning the weights.

In the case where �X and �E are not fixed a priori, these parameters define the model
commonly denoted M. Bayes’ rule can be rewritten:

p(X|M,M) =
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p(X|M,M) is called the posterior.
p(M|X,M) is called the likelihood.
p(X|M) is called the prior.
p(M|M) is called the model evidence.
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M = GX+E :  An ill-posed problem
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dx � 10000 d
m
�

100

Linear problem with more unknowns than the 
number of equations: it’s ill-posed => Use prior 
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Inverse problem framework
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Measures the complexity of X, it’s the prior.

1

X� = arg min
X

⇤M�GX⇤F , subject to ⇤(X) ⇥ �

X� = arg min
X

⇤M�GX⇤2F + ⇥⇤(X), ⇥ > 0

⇤(X)

1

X� = arg min
X

⇤M�GX⇤F , subject to ⇤(X) ⇥ �

X� = arg min
X

⇤M�GX⇤2F + ⇥⇤(X), ⇥ > 0

⇤(X)

⌅1, ⌅2, entropy . . .

⇤A⇤F = tr(AT A)

⌅1

⌅2

⌅w,1

⌅w,2

⇥

where

Examples for         : 

1

X� = arg min
X

⇤M�GX⇤F , subject to ⇤(X) ⇥ �

X� = arg min
X

⇤M�GX⇤2F + ⇥⇤(X), ⇥ > 0

⇤(X)

1

X⇥ = arg min
X

⇧M�GX⇧F , subject to ⇤(X) ⇥ �

X⇥ = arg min
X

⇧M�GX⇧2F + ⇥⇤(X), ⇥ > 0

⇤(X)

⌅1, ⌅2, ⌅p with p ⇤ 1, entropy . . .

⇤(X) = ⇧X⇧w,2 = ⇧WX⇧2 =
⇤

i,j

wix
2
ij

⇤(X) = ⇧X⇧1 =
⇤

i,j

|xij |

⇤(X) = ⇧X⇧1 =
⇤

i

|xi|

wi = x⇥i

⌅p, p ⇤ 1

⇤(X) = ⇧X⇧21 =
⇤

i

⌅⇤

j

x2
i,j

⇤(x) = ⇧x⇧1 =
⇤

i

|xi|

• Initialize: Choose x(0) ⌅ Rdx (for example 0).

• Iterate:
x(k+1) = proxµ�⇥

�
x(k) + µGT (m�Gx(k))

⇥

where 0 < µ < 2|||GT G|||�1.

• Initialize: Choose x(0) ⌅ Rdx (for example 0).

• Set auxiliary variables: a = 0, g = 0, µ = |||GT G|||�1.

• Iterate:

– t = 2µ and b = t+
⇤

t2+4ta
2

– v = proxa�⇥(x(0) � g) and u = ax(k)+bv
a+b

– x(k+1) = prox�µ⇥(u + µGT (m�Gx(k)))

– g = g � bGT (m�Gx(k+1))

– a = a + b

1

X� = arg min
X

⇤M�GX⇤F , subject to ⇤(X) ⇥ �

X� = arg min
X

⇤M�GX⇤2F + ⇥⇤(X), ⇥ > 0

⇤(X)

⌅1, ⌅2, entropy . . .

⌅1

⌅2

⌅w,1

⌅w,2

⇥
Data fit

1

X� = arg min
X

⇤M�GX⇤F , subject to ⇤(X) ⇥ �

X� = arg min
X

⇤M�GX⇤2F + ⇥⇤(X), ⇥ > 0

⇤(X)

⌅1, ⌅2, entropy . . .

⌅1

⌅2

⌅w,1

⌅w,2

:  Trade-off between the data fit and the prior
Prior (penalization)

Remark: If         is strictly convex we have a unique minimizer
(sufficient but not a necessary condition)

1

X� = arg min
X

⇤M�GX⇤F , subject to ⇤(X) ⇥ �

X� = arg min
X

⇤M�GX⇤2F + ⇥⇤(X), ⇥ > 0

⇤(X)

An optimization problem:
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Definition: Convex function
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Definition

f : Rn → R is convex if dom f is a convex set and

f(θx + (1 − θ)y) ≤ θf(x) + (1 − θ)f(y)

for all x, y ∈ dom f , 0 ≤ θ ≤ 1

(x, f(x))

(y, f(y))

• f is concave if −f is convex

• f is strictly convex if dom f is convex and

f(θx + (1 − θ)y) < θf(x) + (1 − θ)f(y)

for x, y ∈ dom f , x %= y, 0 < θ < 1

Convex functions 3–2

Definition

f : Rn → R is convex if dom f is a convex set and

f(θx + (1 − θ)y) ≤ θf(x) + (1 − θ)f(y)

for all x, y ∈ dom f , 0 ≤ θ ≤ 1

(x, f(x))

(y, f(y))

• f is concave if −f is convex

• f is strictly convex if dom f is convex and

f(θx + (1 − θ)y) < θf(x) + (1 − θ)f(y)

for x, y ∈ dom f , x %= y, 0 < θ < 1

Convex functions 3–2

Definition

f : Rn → R is convex if dom f is a convex set and

f(θx + (1 − θ)y) ≤ θf(x) + (1 − θ)f(y)

for all x, y ∈ dom f , 0 ≤ θ ≤ 1

(x, f(x))

(y, f(y))

• f is concave if −f is convex

• f is strictly convex if dom f is convex and

f(θx + (1 − θ)y) < θf(x) + (1 − θ)f(y)

for x, y ∈ dom f , x %= y, 0 < θ < 1

Convex functions 3–2

f : Rn � R

is convex iff

is strictly convex iff

for all
Remark: The presentation is restricted to functions defined on Rn

Definition

f : Rn → R is convex if dom f is a convex set and

f(θx + (1 − θ)y) ≤ θf(x) + (1 − θ)f(y)

for all x, y ∈ dom f , 0 ≤ θ ≤ 1

(x, f(x))

(y, f(y))

• f is concave if −f is convex

• f is strictly convex if dom f is convex and

f(θx + (1 − θ)y) < θf(x) + (1 − θ)f(y)

for x, y ∈ dom f , x %= y, 0 < θ < 1

Convex functions 3–2

for all

0 < ✓ < 1
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Inverse problem
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Data fit

1

X� = arg min
X

⇤M�GX⇤F , subject to ⇤(X) ⇥ �

X� = arg min
X

⇤M�GX⇤2F + ⇥⇤(X), ⇥ > 0

⇤(X)

⌅1, ⌅2, entropy . . .

⌅1

⌅2

⌅w,1

⌅w,2

• Data fit is quadratic hence convex

• If            is convex, then it’s a convex 

optimization problem

1

X� = arg min
X

⇤M�GX⇤F , subject to ⇤(X) ⇥ �

X� = arg min
X

⇤M�GX⇤2F + ⇥⇤(X), ⇥ > 0

⇤(X)

Optimization problem:

convex       +    convex
   =

   convex
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Smooth or non-smooth
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• Smooth: 

• L2 (regularized Least-
squares, Tikhonov)

• Entropy based methods

• etc.

• Non-smooth:

• L1

• Total-Variation

• etc.

1

X⇥ = arg min
X

⇧M�GX⇧F , subject to ⇤(X) ⇥ �

X⇥ = arg min
X

⇧M�GX⇧2F + ⇥⇤(X), ⇥ > 0

⇤(X)

⌅1, ⌅2, ⌅p with p ⇤ 1, entropy . . .

• Initialization: W(0) = I

• Compute: x(k+1) = (W(k))�1GT (G(W(k))�1GT + ⇥I)�1m

• Update the weights: w(k+1)
i = 1/|xi|

• Stop if ⇧x(k+1) � x(k)⇧ is smaller than a fixed tolerance value.

⇤(X) = ⇧X⇧w,2 = ⇧WX⇧2 =
�

i,j

wix
2
ij

⇧X⇥⇧1 =
�

i

|x⇥i | =
�

i

wi(x⇥i )
2 = ⇧X⇥⇧w,2

wi = 1/|x⇥i |

⇤(X) = ⇧X⇧22 =
�

i,j

x2
ij

⇤(X) = ⇧X⇧1 =
�

i,j

|xij |

⇤(X) = ⇧X⇧1 =
�

i

|xi|

wi = 1/|x⇥i |

⌅p, p ⇤ 1

⇤(X) = ⇧X⇧21 =
�

i

⇥�

j

x2
i,j

⇤(x) = ⇧x⇧1 =
�

i

|xi|

• Initialize: Choose x(0) ⌅ Rdx (for example 0).

• Set auxiliary variables: a = 0, g = 0, µ = |||GT G|||�1.

• Iterate:

1

X⇥ = arg min
X

⇧M�GX⇧F , subject to ⇤(X) ⇥ �

X⇥ = arg min
X

⇧M�GX⇧2F + ⇥⇤(X), ⇥ > 0

⇤(X)

⌅1, ⌅2, ⌅p with p ⇤ 1, entropy . . .

• Initialization: W(0) = I

• Compute: x(k+1) = (W(k))�1GT (G(W(k))�1GT + ⇥I)�1m

• Update the weights: w(k+1)
i = 1/|xi|

• Stop if ⇧x(k+1) � x(k)⇧ is smaller than a fixed tolerance value.

⇤(X) = ⇧X⇧w,2 = ⇧WX⇧2 =
�

i,j

wix
2
ij

⇧X⇥⇧1 =
�

i

|x⇥i | =
�

i

wi(x⇥i )
2 = ⇧X⇥⇧w,2

wi = 1/|x⇥i |

⇤(X) = ⇧X⇧22 =
�

i,j

x2
ij

⇤(X) = ⇧X⇧1 =
�

i,j

|xij |

⇤(X) = ⇧X⇧1 =
�

i

|xi|

wi = 1/|x⇥i |

⌅p, p ⇤ 1

⇤(X) = ⇧X⇧21 =
�

i

⇥�

j

x2
i,j

⇤(x) = ⇧x⇧1 =
�

i

|xi|

• Initialize: Choose x(0) ⌅ Rdx (for example 0).

• Set auxiliary variables: a = 0, g = 0, µ = |||GT G|||�1.

• Iterate:

1

X⇥ = arg min
X

⌅M�GX⌅F , subject to ⇤(X) ⇥ �

X⇥ = arg min
X

⌅M�GX⌅2F + ⇥⇤(X), ⇥ > 0

⇤(X)

⌅1, ⌅2, entropy . . .

⇤(X) = ⌅X⌅w,2 = ⌅WX⌅2 =
�

i,j

wix
2
ij

⇤(X) = ⌅X⌅1 =
�

i,j

|xij |

⇤(X) = ⌅X⌅1 =
�

i

|xi|

wi = x⇥i

⌅p, p ⇤ 1

⇤(X) = TV (X) = ⌅⇧surfX⌅1

⌅X⌅w,2 = ⌅X⌅1

⌅A⌅F = tr(AT A)

X⇥ = W�1GT (GW�1GT + ⇥Id)�1M

⌅1

⌅2

⌅w,1

⌅w,2

⇥
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L1 vs L2 norms on combined M/EEG data
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Activation in left-auditory cortex

L2 result
L1 result
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       with M/EEG data: L2
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97

is a “minimum-norm” problem. However, in the M/EEG community, the Minimum-Norm
solution usually only refers to a minimization of an ⌃2 norm [101, 220].

Regularization of inverse problems with the ⌃2 norm was introduced by Tikhonov [203]
and is known in statistics as ridge regression.

3.2.1.1 Minimum-norm equations

The standard Minimum-Norm solution is obtained by solving:

X⇤ = arg min
X

E(X) = arg min
X

⇧M�GX⇧2F + �⇧X⇧2F , � > 0 (3.7)

The solution of this unconstrained and differentiable problem is obtained by setting the
derivative with respect to X to 0:

dE

dX
= 0

⇤ �GT (M�GX) + �X = 0

⇤ (GT G + �I)X = GT M

⇤ X = (GT G + �I)�1GT M

(3.8)

The solution X⇤ is given by a simple matrix multiplication:

X⇤ = (GT G + �I)�1GT M . (3.9)

The fact that the inverse solution is given by a simple matrix multiplication is a general
property of ⌃2 based methods. This property makes them really attractive, although it can
happen that computing the inverse operator is intractable in practice.

To understand this, one can observe that equation (3.9) involves computing the matrix
GT G ⌅ Rdx⇥dx , where dx is the dimensionality of the source space, and inverting a matrix of
this size. When considering realistic cortical models this computation becomes impossible.

To give an order of magnitude, a matrix in double precision with 10 000 lines and columns
contains 108 elements. A double precision number takes 8 bytes in memory which means that
the matrix requires 8 · 108 = 0.8 GB of RAM just for storage. On a standard computer, even
nowadays, inverting such a matrix can become a computational burden.

To circumvent these limitations, the following trick is used:

Lemma 3.1. Matrix Inversion (Woodbury matrix identity)

(A + UCV)�1 = A�1 �A�1U(C�1 + VA�1U)�1VA1 (3.10)

or with A = I and C = I

(I + UV)�1 = I�U(I + VU)�1V . (3.11)

Applying equation (3.11) to equation (3.9), with � = 1 for simplicity, leads to

(GT G + I)�1GT

= (I�GT (I + GGT )�1G)GT

= GT (I + GGT )�1(I + GGT �GGT )

= GT (I + GGT )�1

(3.12)

The solution X⇤ is now given by:

X⇤ = GT (GGT + �I)�1M , (3.13)

�(X)
Simple L2 (Tikhonov):
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Quiz: Complexity and Computing times
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• Complexity of matrix multiplication

GX G 2 Rd
m

⇥d
x X 2 Rd

x

⇥d
twith and

(GT G + �I)�1

• Complexity of matrix inversion

• Resolution of a linear system: Ax = b

(when A is sparse or dense)

Axi = bi, i = 1, ..., dn

• Resolution of many linear system:
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L2 a.k.a. Minimum Norm Estimates (MNE)
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Leads to a closed form solution (matrix multiplication):

[Tikhonov et al. 77, Wang et al. 92, Hämäläinen et al.  94]

�(X) = kWXk2F =
X

i,j

w

2
i x

2
ij = kXk2⌃,2

W2 = ⌃ source covariance

X⇤ = ⌃�1GT (G⌃�1GT + �Id)�1M
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L2 a.k.a. Minimum Norm Estimates (MNE)
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Leads to a closed form solution (matrix multiplication):

[Tikhonov et al. 77, Wang et al. 92, Hämäläinen et al.  94]
Remarks:

• MNE is known as Ridge regression in statistics.

• Really fast to compute (SVD of G), hence very much used in the field.

• In practice, it’s much more complicated (whitening data, correcting 

artifacts, channels with different SNRs, setting     based on SNR, loose 

orientation, ...)
�

THM: A lot of domain knowledge to make it work

�(X) = kWXk2F =
X

i,j

w

2
i x

2
ij = kXk2⌃,2

W2 = ⌃ source covariance

X⇤ = ⌃�1GT (G⌃�1GT + �Id)�1M



How do I set the 
regularization parameter?
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The L-curve
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10−10

100

102

residual norm || M − GX ||
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[Hansen 92]

(Log-Log plot)

�
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A naïve but efficient approach
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98 CHAPTER 3. THE INVERSE PROBLEM WITH DISTRIBUTED SOURCE MODELS

which involves the inversion of a small matrix in Rdm⇥dm .
By comparing the MN solution in (3.9) and the LCMV beamformer in (3.1), similarities

can be observed. This justifies the limited discussion on beamforming techniques and we
refer the reader to [152] where the authors detail how to relate linear beamformers such as
LCMV to the Minimum-Norm solutions.

3.2.1.2 Choosing the regularization parameter

The naive but quite efficient approach
The � is related to the level of noise present in the measurements. Schematically, the larger
the noise amplitude, the larger the reconstruction error and the larger � should be. If �
increases, ⇧X⇤⇧ decreases and the reconstruction error increases. In theory, this parameter
has to be estimated on each dataset since it depends on the data. However, a strategy exists
to get a reasonable estimate of �. This strategy is used by the Brainstorm toolbox [10].

In order to understand this method, it is necessary to introduce the singular value decom-
position (SVD) of G:

G = USVT ,

where the matrices U and V are square unitary matrices, i.e., UT U = I and VT V = I, and
the matrix S is diagonal.

The diagonal entries of S are the singular values (si)i of G. The (si)i are ordered such that
|s1| > |s2| > · · · > |sdx |. By replacing G by its SVD in equation (3.13) we get:

X⇤ =GT (US2UT + �I)�1M

=GT (U(S2 + �I)UT )�1M

=GT U(S2 + �I)�1UT M

=VS(S2 + �I)�1UT M

(3.14)

The matrix (S2 + �I)�1 is also diagonal and its diagonal coefficients are (s2
i + �)i. The

� should therefore take a value comparable to the (s2
i )i. The heuristic choice of � proposed

by the first strategy consists in setting � = 0.01s2
1. This rule of thumb works quite well in

practice.
Brainstorm’s implementation also removes singular values for which s2

i < dm10�7s2
1.

The L-curve
The L-curve approach was originally proposed by Hansen in [103]. The idea is to compute for
multiple values of � the value of the norm ⇧X⇤⇧ and the reconstruction error. By plotting the
norm of ⇧X⇤⇧ as a function of the residual ⇧M �GX⇤⇧ in loglog one gets a curve similar to
the curve presented in the illustration figure 3.2. This curves describes an “L” and the best
� is obtained at the corner of the curve. It is estimated in practice by looking for the point
with the highest curvature. Hansen argues that when � is smaller than this optimal value,
the inverse solver reconstructs part of the noise. In [103], Hansen lists a set of conditions to
guarantee that the resulting curve describes an L. One of the conditions is that the signal
measured in not too buried in noise. It is observed that when increasing the amplitude of the
additive noise, the corner of the curve, used to estimate the �, becomes harder to see.

When increasing the � from 0 to ⇤, the 2D point (⇧M�GX⇤⇧, ⇧X⇤⇧) goes from the upper
left extremity of the curve to the lower right extremity. Thus, for a larger � the reconstruction
error increases.

The generalized cross-validation (GCV)
The generalized cross-validation (GCV) is an alternative to the L-curve from Hansen. It

Compute the SVD (Singular Value Decomposition) of G:

with 

98 CHAPTER 3. THE INVERSE PROBLEM WITH DISTRIBUTED SOURCE MODELS

which involves the inversion of a small matrix in Rdm⇥dm .
By comparing the MN solution in (3.9) and the LCMV beamformer in (3.1), similarities

can be observed. This justifies the limited discussion on beamforming techniques and we
refer the reader to [152] where the authors detail how to relate linear beamformers such as
LCMV to the Minimum-Norm solutions.

3.2.1.2 Choosing the regularization parameter

The naive but quite efficient approach
The � is related to the level of noise present in the measurements. Schematically, the larger
the noise amplitude, the larger the reconstruction error and the larger � should be. If �
increases, ⇧X⇤⇧ decreases and the reconstruction error increases. In theory, this parameter
has to be estimated on each dataset since it depends on the data. However, a strategy exists
to get a reasonable estimate of �. This strategy is used by the Brainstorm toolbox [10].

In order to understand this method, it is necessary to introduce the singular value decom-
position (SVD) of G:

G = USVT ,

where the matrices U and V are square unitary matrices, i.e., UT U = I and VT V = I, and
the matrix S is diagonal.

The diagonal entries of S are the singular values (si)i of G. The (si)i are ordered such that
|s1| > |s2| > · · · > |sdx |. By replacing G by its SVD in equation (3.13) we get:

X⇤ =GT (US2UT + �I)�1M

=GT (U(S2 + �I)UT )�1M

=GT U(S2 + �I)�1UT M

=VS(S2 + �I)�1UT M

(3.14)

The matrix (S2 + �I)�1 is also diagonal and its diagonal coefficients are (s2
i + �)i. The

� should therefore take a value comparable to the (s2
i )i. The heuristic choice of � proposed

by the first strategy consists in setting � = 0.01s2
1. This rule of thumb works quite well in

practice.
Brainstorm’s implementation also removes singular values for which s2

i < dm10�7s2
1.

The L-curve
The L-curve approach was originally proposed by Hansen in [103]. The idea is to compute for
multiple values of � the value of the norm ⇧X⇤⇧ and the reconstruction error. By plotting the
norm of ⇧X⇤⇧ as a function of the residual ⇧M �GX⇤⇧ in loglog one gets a curve similar to
the curve presented in the illustration figure 3.2. This curves describes an “L” and the best
� is obtained at the corner of the curve. It is estimated in practice by looking for the point
with the highest curvature. Hansen argues that when � is smaller than this optimal value,
the inverse solver reconstructs part of the noise. In [103], Hansen lists a set of conditions to
guarantee that the resulting curve describes an L. One of the conditions is that the signal
measured in not too buried in noise. It is observed that when increasing the amplitude of the
additive noise, the corner of the curve, used to estimate the �, becomes harder to see.

When increasing the � from 0 to ⇤, the 2D point (⇧M�GX⇤⇧, ⇧X⇤⇧) goes from the upper
left extremity of the curve to the lower right extremity. Thus, for a larger � the reconstruction
error increases.

The generalized cross-validation (GCV)
The generalized cross-validation (GCV) is an alternative to the L-curve from Hansen. It

diagonal
+ zeros

UUT = UTU = I VVT = VTV = I
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98 CHAPTER 3. THE INVERSE PROBLEM WITH DISTRIBUTED SOURCE MODELS

which involves the inversion of a small matrix in Rdm⇥dm .
By comparing the MN solution in (3.9) and the LCMV beamformer in (3.1), similarities

can be observed. This justifies the limited discussion on beamforming techniques and we
refer the reader to [152] where the authors detail how to relate linear beamformers such as
LCMV to the Minimum-Norm solutions.

3.2.1.2 Choosing the regularization parameter

The naive but quite efficient approach
The � is related to the level of noise present in the measurements. Schematically, the larger
the noise amplitude, the larger the reconstruction error and the larger � should be. If �
increases, ⇧X⇤⇧ decreases and the reconstruction error increases. In theory, this parameter
has to be estimated on each dataset since it depends on the data. However, a strategy exists
to get a reasonable estimate of �. This strategy is used by the Brainstorm toolbox [10].

In order to understand this method, it is necessary to introduce the singular value decom-
position (SVD) of G:

G = USVT ,

where the matrices U and V are square unitary matrices, i.e., UT U = I and VT V = I, and
the matrix S is diagonal.

The diagonal entries of S are the singular values (si)i of G. The (si)i are ordered such that
|s1| > |s2| > · · · > |sdx |. By replacing G by its SVD in equation (3.13) we get:

X⇤ =GT (US2UT + �I)�1M

=GT (U(S2 + �I)UT )�1M

=GT U(S2 + �I)�1UT M
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i + �)i. The

� should therefore take a value comparable to the (s2
i )i. The heuristic choice of � proposed

by the first strategy consists in setting � = 0.01s2
1. This rule of thumb works quite well in

practice.
Brainstorm’s implementation also removes singular values for which s2

i < dm10�7s2
1.

The L-curve
The L-curve approach was originally proposed by Hansen in [103]. The idea is to compute for
multiple values of � the value of the norm ⇧X⇤⇧ and the reconstruction error. By plotting the
norm of ⇧X⇤⇧ as a function of the residual ⇧M �GX⇤⇧ in loglog one gets a curve similar to
the curve presented in the illustration figure 3.2. This curves describes an “L” and the best
� is obtained at the corner of the curve. It is estimated in practice by looking for the point
with the highest curvature. Hansen argues that when � is smaller than this optimal value,
the inverse solver reconstructs part of the noise. In [103], Hansen lists a set of conditions to
guarantee that the resulting curve describes an L. One of the conditions is that the signal
measured in not too buried in noise. It is observed that when increasing the amplitude of the
additive noise, the corner of the curve, used to estimate the �, becomes harder to see.

When increasing the � from 0 to ⇤, the 2D point (⇧M�GX⇤⇧, ⇧X⇤⇧) goes from the upper
left extremity of the curve to the lower right extremity. Thus, for a larger � the reconstruction
error increases.

The generalized cross-validation (GCV)
The generalized cross-validation (GCV) is an alternative to the L-curve from Hansen. It
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is a “minimum-norm” problem. However, in the M/EEG community, the Minimum-Norm
solution usually only refers to a minimization of an ⌃2 norm [101, 220].

Regularization of inverse problems with the ⌃2 norm was introduced by Tikhonov [203]
and is known in statistics as ridge regression.

3.2.1.1 Minimum-norm equations

The standard Minimum-Norm solution is obtained by solving:

X⇤ = arg min
X

E(X) = arg min
X

⇧M�GX⇧2F + �⇧X⇧2F , � > 0 (3.7)

The solution of this unconstrained and differentiable problem is obtained by setting the
derivative with respect to X to 0:

dE

dX
= 0

⇤ �GT (M�GX) + �X = 0

⇤ (GT G + �I)X = GT M

⇤ X = (GT G + �I)�1GT M

(3.8)

The solution X⇤ is given by a simple matrix multiplication:

X⇤ = (GT G + �I)�1GT M . (3.9)

The fact that the inverse solution is given by a simple matrix multiplication is a general
property of ⌃2 based methods. This property makes them really attractive, although it can
happen that computing the inverse operator is intractable in practice.

To understand this, one can observe that equation (3.9) involves computing the matrix
GT G ⌅ Rdx⇥dx , where dx is the dimensionality of the source space, and inverting a matrix of
this size. When considering realistic cortical models this computation becomes impossible.

To give an order of magnitude, a matrix in double precision with 10 000 lines and columns
contains 108 elements. A double precision number takes 8 bytes in memory which means that
the matrix requires 8 · 108 = 0.8 GB of RAM just for storage. On a standard computer, even
nowadays, inverting such a matrix can become a computational burden.

To circumvent these limitations, the following trick is used:

Lemma 3.1. Matrix Inversion (Woodbury matrix identity)

(A + UCV)�1 = A�1 �A�1U(C�1 + VA�1U)�1VA1 (3.10)

or with A = I and C = I

(I + UV)�1 = I�U(I + VU)�1V . (3.11)

Applying equation (3.11) to equation (3.9), with � = 1 for simplicity, leads to

(GT G + I)�1GT

= (I�GT (I + GGT )�1G)GT

= GT (I + GGT )�1(I + GGT �GGT )

= GT (I + GGT )�1

(3.12)

The solution X⇤ is now given by:

X⇤ = GT (GGT + �I)�1M , (3.13)Replace the SVD in: 

compares to the squared singular values of G
Take     as a percentage of the max singular value
�

�

UUT = UTU = I VVT = VTV = I
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http://youtu.be/Uxr5Pz7JPrs

http://youtu.be/Uxr5Pz7JPrs
http://youtu.be/Uxr5Pz7JPrs


Beyond L2 priors
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Remarks:
• It’s the LASSO problem in the Machine Learning community [Tibshirani 96]

• It’s the Basis Pursuit problem in Signal Processing [Chen Donoho 
Saunders 99]

• Matsuura uses linear programming but other algorithms exist, e.g., LARS 
[Efron 2004], Homotopy [Osborne 2000], coordinate descent, IRLS, 
proximal iterations etc.

L1 priors a.k.a. Minimum current estimate (MCE) :

1

X� = arg min
X

⇤M�GX⇤F , subject to ⇤(X) ⇥ �

X� = arg min
X

⇤M�GX⇤2F + ⇥⇤(X), ⇥ > 0

⇤(X)           is convex, non differentiable and has no 
closed form solution.

[Matsuura et al. 95]

dt = 1with

1

X⇥ = arg min
X

⇧M�GX⇧F , subject to ⇤(X) ⇥ �

X⇥ = arg min
X

⇧M�GX⇧2F + ⇥⇤(X), ⇥ > 0

⇤(X)

⌅1, ⌅2, entropy . . .

⇤(X) = ⇧X⇧w,2 = ⇧WX⇧2 =
⇤

i,j

wix
2
ij

⇤(X) = ⇧X⇧1 =
⇤

i,j

|xij |

⇤(X) = ⇧X⇧1 =
⇤

i

|xi|

wi = x⇥i

⌅p, p ⇤ 1

⇤(X) = ⇧X⇧21 =
⇤

i

⌅⇤

j

x2
i,j

⇤(x) = ⇧x⇧1 =
⇤

i

|xi|

• Initialize: Choose x(0) ⌅ Rdx (for example 0).

• Iterate:
x(k+1) = proxµ�⇥

�
x(k) + µGT (m�Gx(k))

⇥

where 0 < µ < 2|||GT G|||�1.

• Initialize: Choose x(0) ⌅ Rdx (for example 0).

• Set auxiliary variables: a = 0, g = 0, µ = |||GT G|||�1.

• Iterate:

– t = 2µ and b = t+
⇤

t2+4ta
2

– v = proxa�⇥(x(0) � g) and u = ax(k)+bv
a+b

– x(k+1) = prox�µ⇥(u + µGT (m�Gx(k)))

– g = g � bGT (m�Gx(k+1))

– a = a + b

�(X)
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• Compute: xk+1 = (Wk)�1GT (G(Wk)�1GT + �Id)�1m

• Update the weights: wk+1
i = 1/|xi|

• Stop if ⇧xk+1 � xk⇧ is smaller than a fixed tolerance value.

Proposition 2. Algorithm 1 converges to a minimizer of (4.3).

Proof. Let a ⇤ R+. One can prove that:

⌅w ⇤ R+, a ⇥ fa(w) =
1
2

�
a2

w
+ w

⇥

and that fa(a) = a. The function fa is strictly convex on R+.
This gives:

min
x

1
2�
⇧m�Gx⇧22 + ⇧x⇧1

= min
x

1
2�
⇧m�Gx⇧22 +

⇤

i

|xi|

= min
x,w

1
2�
⇧m�Gx⇧22 +

1
2

⇤

i

�
(xi)2

wi
+ wi

⇥
(4.4)

The minimization is performed alternatively over w and x. For fixed x, the w at optimum is
given by: wi = |xi|. For fixed w, the problem corresponds to a weighted minimum norm.

In practice, the update rule for x is:

xk+1 = �kGT (G�kGT + �Id)�1m ,

where �k is the diagonal matrix whose diagonal elements are the (|xk
i |)i. This prevents divi-

sion by zero when coefficients vanish as the solution becomes more and more sparse during
the iterations. More details on IRLS methods using sparse priors can be found in [55, 134].

As we have seen, the IRLS solver for the LASSO problem (4.3) is extremely simple to
implement. However, it may suffer from numerical instabilities due the limited precision of
the matrix inversion.

Note that a similar IRLS approach can also be used for a mixed norm involving grouped
variables as we will see in the section 4.4.2.

IRLS with the ⇥0 norm: FOCUSS (FOCal Underdetermined System Solver)

The FOCUSS algorithm as proposed in [87, 88], is an IRLS method used to compute,
instant by instant the inverse problem with an ⇥0 penalization. More generally, it works for
⇥p norms with p ⇥ 1 [179].

The strategy is very similar to the IRLS solver used to compute the ⇥1 solution. With the
same notations it is given by:

Algorithm 2 (IRLS ⇥0 solver: FOCUSS).

• Initialization: W0 = Id

• Compute: xk+1 = (Wk)�1GT (G(Wk)�1GT + �Id)�1m

• Update the weights: wk+1
i = 1/|xi|2

• Stop if ⇧xk+1 � xk⇧ is smaller than a fixed tolerance value.

Pr
oo

f Quadratic 
upper bound

Iterative Least Squares (IRLS)

67

Idea: whenkX⇤k1 =
X

i

|x⇤
i | =

X

i

(x⇤
i )

2

wi
= kX⇤kw,2 wi = |x⇤

i |
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Pr
oo

f Quadratic 
upper bound

1

X⇥ = arg min
X

⇧M�GX⇧F , subject to ⇤(X) ⇥ �

X⇥ = arg min
X

⇧M�GX⇧2F + ⇥⇤(X), ⇥ > 0

⇤(X)

⌅1, ⌅2, ⌅p with p ⇤ 1, entropy . . .

• Initialization: W(0) = Id

• Compute: x(k+1) = (W(k))�1GT (G(W(k))�1GT + ⇥Id)�1m

• Update the weights: w(k+1)
i = 1/|xi|

• Stop if ⇧x(k+1) � x(k)⇧ is smaller than a fixed tolerance value.
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• Initialize: Choose x(0) ⌅ Rdx (for example 0).

• Iterate:
x(k+1) = proxµ�⇥

�
x(k) + µGT (m�Gx(k))

⇥

where 0 < µ < 2|||GT G|||�1.

• Initialize: Choose x(0) ⌅ Rdx (for example 0).

• Set auxiliary variables: a = 0, g = 0, µ = |||GT G|||�1.

• Iterate:

– t = 2µ and b = t+
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Least square

Iterative Least Squares (IRLS)
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Idea: whenkX⇤k1 =
X

i

|x⇤
i | =

X

i

(x⇤
i )

2

wi
= kX⇤kw,2 wi = |x⇤

i |

w

(k+1)
i = |x(k+1)

i |
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[Ou et al. Neuroimage 2009]

• It introduces temporal structure in the prior
• It guarantees that the active sources are the same over time

X =
...

L2

L
1

�(X)

2-level mixed-norm

Remark : It is known as Group Lasso in Machine Learning & «joint feature selection»

[Yuan et al. 2006, Obozinski 2009 ...] 

�(X) = kXk21 =
X

i

sX

t

|xi,t|2
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X = ...

L2

L
2
1

L21 with loose orientation

custom but still a 2-level 
mixed-norm

�(X) = kXk21 =
X

i

sX

t

|xnormal

i,t

|2 + ⇢|xtang1
i,t

|2 + ⇢|xtang2
i,t

|2

with for example ⇢ =
1

0.2

THM: you need custom sparse
solvers adapted to M/EEG

normal

tangential
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But… the brain is not stationary

71

L21 like any other sparse solver available today
it imposes the sources to be the same 

over the entire time interval

Challenge:

How do you promote sparse solutions 
with non-stationary sources?
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inverse matrices cannot be explicitly computed. We need for each pair (�, µ) to run an itera-
tive solver, which can make the GCV and L-Curve methods particularly time consuming.

3.3 LEARNING BASED METHODS

In previous sections, the ⇥2 priors used in the penalization of the inverse problem are de-
fined a priori. Following the explanations in section 3.2.2.2, this means that the proposed
methods assume a predefined covariance matrix for the sources. In the following paragraphs,
we will present inverse solvers that aim at designing a prior based on the data. The source
covariance matrix, i.e., the weights in the ⇥2 penalization term, is “learned”. We will also say
that the model is learned from the data [193].

For simplicity, we will present the following method in the context of instant-by-instant
inverse computation.

The methods presented in this section use the Bayesian formulation of the inverse prob-
lem. We recall the Bayesian framework from section 3.2.2.2:

p(X|M) =
p(M|X)p(X)

p(M)
. (3.25)

where we assume Gaussian variables:

E ⇥ N (0,�E) (3.26)
X ⇥ N (0,�X) (3.27)

and an additive model:
M = GX + E . (3.28)

If �E and �X are known, X is obtained by maximizing the likelihood which leads to:

X⇥ = arg min
X

⇤M�GX⇤�E + ⇤X⇤�X , (3.29)

which leads to:
X⇥ = �XGT (G�XGT + �E)�1M .

In this framework the prior is an ⇥2 norm and learning the prior means learning �X, i.e., the
source covariance matrix. One may also want to learn the noise covariance matrix �E. Note
that in the WMN framework, learning �X consists in learning the weights.

In the case where �X and �E are not fixed a priori, these parameters define the model
commonly denoted M. Bayes’ rule can be rewritten:

p(X|M,M) =
p(M|X,M)p(X|M)

p(M|M)
. (3.30)

p(X|M,M) is called the posterior.
p(M|X,M) is called the likelihood.
p(X|M) is called the prior.
p(M|M) is called the model evidence.

GM 

X 
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we will present inverse solvers that aim at designing a prior based on the data. The source
covariance matrix, i.e., the weights in the ⇥2 penalization term, is “learned”. We will also say
that the model is learned from the data [193].

For simplicity, we will present the following method in the context of instant-by-instant
inverse computation.

The methods presented in this section use the Bayesian formulation of the inverse prob-
lem. We recall the Bayesian framework from section 3.2.2.2:

p(X|M) =
p(M|X)p(X)

p(M)
. (3.25)

where we assume Gaussian variables:

E ⇥ N (0,�E) (3.26)
X ⇥ N (0,�X) (3.27)

and an additive model:
M = GX + E . (3.28)

If �E and �X are known, X is obtained by maximizing the likelihood which leads to:

X⇥ = arg min
X

⇤M�GX⇤�E + ⇤X⇤�X , (3.29)

which leads to:
X⇥ = �XGT (G�XGT + �E)�1M .

In this framework the prior is an ⇥2 norm and learning the prior means learning �X, i.e., the
source covariance matrix. One may also want to learn the noise covariance matrix �E. Note
that in the WMN framework, learning �X consists in learning the weights.

In the case where �X and �E are not fixed a priori, these parameters define the model
commonly denoted M. Bayes’ rule can be rewritten:

p(X|M,M) =
p(M|X,M)p(X|M)

p(M|M)
. (3.30)

p(X|M,M) is called the posterior.
p(M|X,M) is called the likelihood.
p(X|M) is called the prior.
p(M|M) is called the model evidence.

back to M = G X + E
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+ E

≈20 000 dipoles ≈
100 sensors noise
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M = GZΦ + E

73

G
forward operatordata 

Objective:  estimate Z given M

+ E
noise

TF coefficients 

Z Z
TF dictionary

Φ

Fr
eq

ue
nc

y 



     Alexandre Gramfort                  Functional Brain Imaging with MEG/EEG/sEEG

Time-frequency (TF) prior
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data fit

The classical approach [MNE, dSPM, sLORETA]:

prior
we propose:

Ẑ = arg min
Z

kM�GZ�Hk2
F + ��(Z), then X̂ = Ẑ�H

X̂ = arg min
X

kM�GXk2
F + ��(X), � > 0

•     : is a TF dictionary of Gabor atoms

•     : coefficients of the TF transform of the sources

�
Z

Advantage:
localization in 

space, time and frequency
in one step
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Why does it make sense?
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and why a sparse prior shall work ?

50 STFT coef.

[«Denoising by soft-thresholding» Donoho 95]

Original STFT
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Time frequency dictionaries
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complex Gabor transform =

• It is invertible

• It is translation invariant

  (not like classical dyadic wavelets)

• It can capture non-stationary signals (not like FFT)

   (It is classically used in M/EEG on sensor measurements)

• It is relatively fast to compute

discrete version of the
short time fourier transform

(STFT)



     Alexandre Gramfort                  Functional Brain Imaging with MEG/EEG/sEEG

Time frequency dictionaries

76

complex Gabor transform =

• It is invertible

• It is translation invariant

  (not like classical dyadic wavelets)

• It can capture non-stationary signals (not like FFT)

   (It is classically used in M/EEG on sensor measurements)

• It is relatively fast to compute

What is a good prior on Z?

discrete version of the
short time fourier transform

(STFT)
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(a) MEG data (Gradiometers only) (b) GX?

TF-MxNE

(explained data)

(c) X?

MxNE

(d) X?

TF-MxNE

(e) Source locations in bilateral auditory
cortices

Fig. 6. Results obtained with
TF-MxNE and MxNE for an auditory
stimulation (left hear stimulation)
with unfiltered combined MEG/EEG
data. Estimation was performed with
a loose orientation (parameter 0.2),
with a depth compensation of 0.9
on a set of 7498 cortical locations
(G 2 R364⇥22494). Estimation with
�
space

= 50% of �max

space

leads to 2
active brain locations in both auditory
cortices. TF-MxNE leads to smooth
time courses and zeros during baseline.

5.2.2 Visual data

The model parameters (loose orientation, depth bias, scalar weighting, �
time

and Gabor dictionary) used were the same as for the auditory condition. The
spatial regularization was however changed to �

space

= 30% of �max

space

. Results
are presented in Figure 7.

Figure 7-a presents the raw evoked response, restricted to the gradiometers.
Sources reconstructions lead to three dipoles. According the automatic par-
cellation of the cortex provided by FreeSurfer, two sources are localized in the
early visual cortex V1, while a third one is positioned on the dorsal part of

19

MEG Auditory data

77

A1i
A1c

Protocol: 50 epochs of auditory tones in left ear
(305 MEG, 59 EEG channels)

zeros
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MEG Visual data
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Protocol: 50 epochs of visual 
flash in left hemi-field

(305 MEG, 59 EEG channels)

V2d
V1

zeros
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To sum up
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• MEG and EEG measure the electrical activity of local 

assemblies of neurons (post-synaptic potentials)

• Can be used for: clinical applications (epilepsy, sleep), cognitive 

studies or BCI

• Acquisitions: physics

• Forward problem: image (segmentation), maths (PDE, numerical 

solvers)

• Inverse problem: statistics, optimization, signal processing


