## **Digital Representations**

#### Isabelle Bloch

LIP6, Sorbonne Université - On leave from LTCI, Télécom Paris









isabelle.bloch@sorbonne-universite.fr

## Content

- Tessellations
- Digital topology
- Representation of geometrical entities
- Distance function

## Digital representation of images

#### Digital image:

- representation as an array
- $\blacksquare$  sampling from  $\mathbb{R}^2$  or  $\mathbb{R}^3$  into  $\mathbb{Z}^2$  or  $\mathbb{Z}^3$

Two possible approaches to process points in  $\mathbb{Z}^n$ :

- embed  $\mathbb{Z}^n$  in  $\mathbb{R}^n$ , then apply operations and transformations in the continuous space
- definition of operations and transformations directly in the digital space
  - definitions?
  - preservation of the expected effects?
  - preservation of the properties?

### A simple example: rotation



$$(x',y')=R(x,y)$$

Issues:

- $(x, y) = \text{integer coordinates} \Rightarrow (x', y')$ ?
- Computation?
- Properties?



Direct transformation



Inverse transformation (closest point interpolation)

### Topology and resolution



Source: D. Cœurjolly, A. Montanvert, J. M. Chassery (2007)

## Curve digitization



Source : D. Cœurjolly, A. Montanvert, J. M. Chassery (2007)

## Tessellations

Tessellation = partition of the continuous space  $\mathbb{R}^n$  into elementary cells

#### Constraints:

- physical sensors (regularity)
- usage of the representation (regularity, simplicity)
- 1 Tessellation from point distribution
  - distribution of points P
    - regular  $\Rightarrow$  classical grids
    - irregular  $\Rightarrow$  Voronoï diagram
  - attribution of a cell  $V_P$  to each point
- 2 Tessellation from cell juxtaposition
  - prior definition of a cell model  $V_P$
  - juxtaposition of  $V_P$  so as to build a partition
  - constraints:
    - V<sub>P</sub> convex and regular
    - vertices in contact with other vertices only

## Regular distributions



### Irregular distributions: Voronoï diagram



### An excluded configuration



#### Regular tessellations of the plane



| • | • | • | • | • | • |  |
|---|---|---|---|---|---|--|
| • | • | • | • | • | • |  |
| • | • | • | ٠ | ٠ | • |  |
| • | • | • | ٠ | • | • |  |
| • | • | • | ٠ | • | • |  |



triangular



#### hexagonal

#### Semi-regular tessellations



Examples

#### Admissible:



#### Non-admissible:



#### Admissible semi-regular tessellations



#### A complex tessellations (Escher)...



## Duality between tessellations and mesh (or grid)



## Digital topology

Classical topology in a countable set of points:

- every point is an open set of the topology
- not well adapted to the representation of connected sets
- Direct definition of a topological basis
  - possible on triangular and square tessellations, not on hexagonal tessellations
  - depends on point localization
  - does not satisfy Jordan theorem
- Direct definition of elementary neighborhood
  - digital connectivity
  - image = graph

### Direct definition of a topological basis: examples





## Elementary neighborhood



#### 4-connectivity graph



- vertices of the graph
- edges defining the neighbors and the connectivity

## Different grids and associated connectivities



- vertices of the graph
- edges defining the neighbors and the connectivity



### Neighbor coordinates on a hexagonal grid



for j even: (i - 1, j - 1), (i, j - 1), (i - 1, j), (i + 1, j), (i - 1, j + 1), (i, j + 1),
for j odd: (i, j - 1), (i + 1, j - 1), (i - 1, j), (i + 1, j), (i, j + 1), (i + 1, j + 1).

I. Bloch

## Elementary neighborhood on a 3D cubic grid







• 4-connected path = sequence of points  $(i_k, j_k)_{1 \le k \le n}$  such that:

$$\forall k, 1 \le k < n, |i_k - i_{k+1}| + |j_k - j_{k+1}| \le 1$$

■ 8-connected path = sequence of points  $(i_k, j_k)_{1 \le k \le n}$  such that:

$$\forall k, 1 \le k < n, \max(|i_k - i_{k+1}|, |j_k - j_{k+1}|) \le 1$$

- 4-connected component = set of points S such that for any (P, Q) in S, there exists a 4-connected path from P to Q, included in S, and maximal for this property.
- 8-connected component = set of points S such that for any (P, Q) in S, there exists a 8-connected path from P to Q, included in S, and maximal for this property.



- 4-connected path
- --- 8-connected path



- background
- objects

two 4-connected components one 8-connected component

## Topological paradox



### Jordan theorem

- Continuous case: any simple and closed curve divides the space into two connected components, one inside the curve and one outside.
- Digital case: duality between 4-connectivity and 8-connectivity on a square grid
  - 4-connected curve ⇔ 8-connected background,
  - 8-connected curve ⇔ 4-connected background.
- Digital case on a hexagonal grid: 6-connectivity for both objects and background (no topological problem).

Extension to 3D.



### Some definitions in the digital case

Simple and closed 4-connected path: 4-connected path  $(A_0, ..., A_n)$ such that  $n \ge 4$ ,  $A_i = A_j$  iff i = j, and  $A_i$  4-neighbor of  $A_j$  iff  $i = j \pm 1[n + 1]$ 

• Horizontal half-line from M = (a, b):

$$H_M = \{(a+k, b), k = 0, 1, 2...\}$$

- Inside A: set of points M such that H<sub>M</sub> crosses A an odd number of times.
- Outside A: set of points M such that  $H_M$  crosses A an even number of times.
- $\Rightarrow$  proof of the digital version of Jordan theorem.

## Cellular complexes



## Connected component labeling



| initial         | pointer | final |  |  |
|-----------------|---------|-------|--|--|
| label           |         | label |  |  |
| 0               |         | 0     |  |  |
| 1               |         | 1     |  |  |
| 2               |         | 2     |  |  |
| $3 \rightarrow$ | 2       | 2     |  |  |
| $4 \rightarrow$ | 3       | 2     |  |  |
| 5               |         | 3     |  |  |
| $6 \rightarrow$ | 3       | 2     |  |  |
| $7 \rightarrow$ | 2       | 2     |  |  |

## Example of topological characteristic: Euler number

- Number of connected components N<sub>cc</sub>
- Number of holes N<sub>t</sub>
- Euler number  $E = N_{cc} N_t$



- 8-connected objects and 4-connected holes:  $N_{cc} = 1$  and  $N_t = 2$ , hence E = -1
- 4-connected objects and 8-connected holes:  $N_{cc} = 1$  and  $N_t = 1$ , hence E = 0



8-connected objects and 4-connected holes:

$$E = v - e - d + t - q$$

4-connected objects and 8-connected holes:

$$E = v - e + q$$

- How to go from the continuous domain to the digital one, and vice-versa?
- How to represent a geometric entity on a digital grid, while preserving its properties?
- Which are the continuous representations of a discrete one?
- Which are the exact intersections of a continuous representation and the digital grid?

Example of straight lines or segments

## Digitization of a continuous line





Semi-open square

Digital representation of the continuous line

I. Bloch





Digital representation of the continuous line





Digital representation of the continuous line

#### Cf Bresenham algorithm

### Characterization of a digital straight line segment

Cord property

 ${\mathcal S}$  satisfies the cord property iff:

$$\forall (P,Q) \in \mathcal{S}, \forall R \in [P,Q], \exists T \in \mathcal{S}, d_{\infty}(T,R) < 1$$

with  $d_{\infty}((x, y), (x', y')) = \max(|x - x'|, |y - y'|)$ 





#### Syntactic characterization

- only two "neighbor" directions
- for one direction: sections of length 1
- for the other direction: sections of length n or n+1





## Analytical digital straight lines

$$y = ax + b$$

Intersections with the grid?

Condition for non-empty intersection:

$$a = \frac{p}{q}$$

p and q integers, co-prime, and:

$$p \leq q \leq N$$

Farey sequence:

- image of size  $N \times N$  and slope less than 1
- ⇒ possible slopes = Farey sequence of order N: F(N) (cardinality approximately  $3N^2/\pi^2$ )

• recursive construction  $\left(\frac{m+m'}{n+n'}\right)$  between  $\frac{m}{n}$  and  $\frac{m'}{n'}$ 

Example for N = 4  $(a \le 1)$  :  $F(N) = \{0, \frac{1}{3}, \frac{1}{2}, \frac{2}{3}, 1\}$ 



p/q = 0







p/q = 2/3



## Length of a digital straight segment

$$a^2 + b^2 = L$$

with a and b integer



I. Bloch

### Voronoï diagram

- Useful representation for shapes, image structures...
- Seeds $\{P_1, P_2, ..., P_n\}$
- Voronoï cells:

$$\mathcal{W}(\mathcal{P}_i) = \{\mathcal{P} \in \mathbb{R}^2 \mid orall j, 1 \leq j \leq n, \ d(\mathcal{P},\mathcal{P}_i) \leq d(\mathcal{P},\mathcal{P}_j)\}$$

• For the Euclidean distance:  $V(P_i) = \text{convex polygon}$ 



#### Delaunay triangulation





#### Properties:

- if there are no 4 co-circular points, every Voronoï vertex is equidistant of exactly 3 seeds
- any Voronoï vertex is the center of a circle (called Delaunay circle) passing through 3 seeds and containing no other seed
- $V(P_i)$  is non-bounded iff  $P_i$  belongs to the convex hull of the  $P_j$ s







#### A few geometric applications:

- minimal distance between two sets of points
- triangulation such that the circle circumscribed to each triangle is empty
- convex hull of a set of points

. . .

#### Discrete distances

- $\mathcal{P} = \{\vec{p_1}, ... \vec{p_m}\}$  set of vectors generating a graph
- Associated length d<sub>i</sub>
- Conditions:

$$\begin{array}{l} \bullet \ \vec{p_i} \in \mathcal{P} \Rightarrow -\vec{p_i} \in \mathcal{P} \\ \bullet \ \vec{p_i} \in \mathcal{P}, \lambda \vec{p_i} \in \mathcal{P} \Rightarrow \lambda = \pm 1 \\ \bullet \ ||\vec{p_i}|| = ||\vec{p_j}|| \Rightarrow d_i = d_j \end{array}$$

Distance between to vertices / points x and y:

$$d(x,y) = \frac{1}{s}\min\{\sum_{i=1}^m n_i d_i \mid n_i \in \mathbb{N}, \sum_{i=1}^m n_i \vec{p_i} = x\vec{y}\}$$

s: scale factor

Binary image with objects  $O \to$  distance map image where the value at x is  $d(x, O) = \min_{y \in O} d(x, y)$ 

• global concept  $\Rightarrow$  local computation by propagating local distances

- requirements:
  - good approximation of the Euclidean distance
  - fast algorithms

## Masks representing local distances

|   |   |   |   |   |   |   |   |   |    | 11 |   | 11 |    |
|---|---|---|---|---|---|---|---|---|----|----|---|----|----|
|   | 1 |   | 1 | 1 | 1 | 4 | 3 | 4 | 11 | 7  | 5 | 7  | 11 |
| 1 | 0 | 1 | 1 | 0 | 1 | 3 | 0 | 3 |    | 5  | 0 | 5  |    |
|   | 1 |   | 1 | 1 | 1 | 4 | 3 | 4 | 11 | 7  | 5 | 7  | 11 |
|   |   |   |   |   |   |   |   |   |    | 11 |   | 11 |    |
|   | a |   |   | b |   |   | c |   |    |    | d |    |    |

11

1.1

## Algorithms

#### Parallel algorithm

- *f*<sup>*k*</sup>: image at iteration *k*
- g: mask
- $f^0$ : points of objects set to 0, points of the background set to  $+\infty$

$$f^{k}(x) = \min\{f^{k-1}(y-x) + g(y), y \in \text{support}(g)\}$$

- number of iterations: depends on image size, object size, shape...
- two images in memory
- can be adapted for any grid (2D or 3D) and any mask
- can be parallelized

#### Sequential algorithm

- two scans of the image, in opposite directions
- masks g<sub>1</sub> and g<sub>2</sub> containing the points already examined according to the scan direction (+ origin)
- $f^0$ : points of objects set to 0, points of the background set to  $+\infty$

$$f^k(x) = \min\{f^{k-1}(x), f^k(y-x) + g_k(y), y \in \text{support}(g_k)\}$$

- fast algorithm
- only one image in memory
- can be adapted for any grid (2D or 3D) and any mask
- recursive

#### Algorithms based on object contours

- Using chains:
  - contour chaining
  - point displacement and rewriting rules
  - adjustments
- Using queues
  - FIFO initialized with contour points
  - for each point of the queue: computation of the neighbors, distance value increment, and neighbors added in the queue
  - applies in 3D as well

# Distance map (4-connectivity mask)





# Distance map (8-connectivity mask)



# Distance map (6-connectivity mask)



## Comparison 4c / 8c / 6c / 5-7-11



## Example on a binarized biological image









## Example on a coffee bean image



## Voronoï diagram from a discrete distance







- Distance computation (e.g. model-based object recognition, scene understanding)
- Registration
- Mathematical morphology operations on binary images

### Some references

- E. Andres. Discrete Circles, Rings and Spheres. Computers & Graphics, 18(5):695–706, 1994.
- G. Borgefors. Distance Transforms in the Square Grid. In H. Maître, editor, *Progress in Picture Processing, Les Houches, Session LVIII, 1992*, chapter 1.4, pages 46–80.
   North-Holland, Amsterdam, 1996.
- J. M. Chassery and M. I. Chenin. Topologies on Discrete Spaces. In Simon and Haralick, editors, *Digital Image Processing*, pages 59–66. Reidel, 1980.
- D. Cœurjolly, A. Montanvert, and J. M. Chassery. Géométrie discrète et images numériques. Hermes, Paris, 2007.
- L. Dorst and W. M. Smeulders. Discrete Representation of Straight Lines. IEEE Trans. on PAMI, 6(4):450–463, 1984.
- J. Franel. Les suites de Farey et les problèmes des nombres premiers. *Göttinger Nachrichten*, pages 198–201, 1924.
- P. J. Green and R. Sibson. Computing Dirichlet Tessellation in the Plane. The Computer Journal, 21:168–173, 1978.
- B. Grunbaum and G. C. Shepard. *Tilings and Patterns: an Introduction*. Freeman, 1989.
- E. Khalimsky, R. Koppermann, and P. R. Meyer. Computer Graphics and Connected Topologies as Finite Ordered Sets. *Topology and its Applications*, 36:1–17, 1990.
- R. Klein. Concrete and Abstract Voronoï Diagrams. Springer Verlag, 1989.
- R. Klette and A. Rosenfeld. *Digital Geometry*. Morgan Kaufmann, San Francisco, 2004.

- T. Y. Kong and A. Rosenfeld. Digital Topology: Introduction and Survey. Computer Vision, Graphics, and Image Processing, 48:357–393, 1989.
- V. A. Kovalesky. Finite Topology as applied to Image Analysis. Computer Vision, Graphics, and Image Processing, 46:141–161, 1989.
- S. Pham. Digital Straight Segments. Computer Vision, Graphics, and Image Processing, 36:10–30, 1986.
- F. P. Preparata and M. I. Shamos. Computational Geometry, an Introduction. Springer Verlag, 1988.
- A. Rosenfeld. Connectivity in Digital Pictures. Journal of ACM, 17(1):146–160, 1970.
- A. Rosenfeld. Digital Straight Line Segments. *IEEE Trans. on Computers*, 23(12):1264–1269, 1974.
- A. Rosenfeld. Digital Topology. Amer. Math. Monthly, pages 621-630, 1979.
- G. T. Toussaint. Computational Geometry. North Holland, Amsterdam, 1985.