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Digital representation of images

Digital image:

representation as an array

sampling from R2 or R3 into Z2 or Z3

Two possible approaches to process points in Zn :

embed Zn in Rn, then apply operations and transformations in the
continuous space

definition of operations and transformations directly in the digital
space

definitions?
preservation of the expected effects?
preservation of the properties?
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A simple example: rotation
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(x ′, y ′) = R(x , y)

Issues:

(x , y) = integer coordinates ⇒ (x ′, y ′) ?

Computation?

Properties?

π/4 rotation: x ′ = (x − y)
√

2
2 y ′ = (x + y)

√
2

2
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Topology and resolution

Source: D. Cœurjolly, A. Montanvert, J. M. Chassery (2007)
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Curve digitization

Source : D. Cœurjolly, A. Montanvert, J. M. Chassery (2007)
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Tessellations

Tessellation = partition of the continuous space Rn into elementary cells

Constraints:

physical sensors (regularity)

usage of the representation (regularity, simplicity)

1 Tessellation from point distribution
distribution of points P

regular ⇒ classical grids
irregular ⇒ Voronöı diagram

attribution of a cell VP to each point

2 Tessellation from cell juxtaposition
prior definition of a cell model VP

juxtaposition of VP so as to build a partition
constraints:

VP convex and regular
vertices in contact with other vertices only
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Regular distributions
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Irregular distributions: Voronöı diagram

edge

vertex

seed

Voronoï polygon
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An excluded configuration
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Regular tessellations of the plane
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Semi-regular tessellations

regular

regular

regular
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Examples

Admissible:

Non-admissible:
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Admissible semi-regular tessellations
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A complex tessellations (Escher)...
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Duality between tessellations and mesh (or grid)
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Digital topology

Classical topology in a countable set of points:

every point is an open set of the topology
not well adapted to the representation of connected sets

Direct definition of a topological basis

possible on triangular and square tessellations, not on hexagonal
tessellations
depends on point localization
does not satisfy Jordan theorem

Direct definition of elementary neighborhood

digital connectivity
image = graph
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Direct definition of a topological basis: examples
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Elementary neighborhood
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4-connectivity graph
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Different grids and associated connectivities
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Neighbor coordinates on a hexagonal grid

for j even: (i − 1, j − 1), (i , j − 1), (i − 1, j), (i + 1, j), (i − 1, j + 1),
(i , j + 1),

for j odd: (i , j − 1), (i + 1, j − 1), (i − 1, j), (i + 1, j), (i , j + 1),
(i + 1, j + 1).
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Elementary neighborhood on a 3D cubic grid
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Path and connected component

4-connected path = sequence of points (ik , jk)1≤k≤n such that:

∀k , 1 ≤ k < n, |ik − ik+1|+ |jk − jk+1| ≤ 1

8-connected path = sequence of points (ik , jk)1≤k≤n such that:

∀k , 1 ≤ k < n, max(|ik − ik+1|, |jk − jk+1|) ≤ 1

4-connected component = set of points S such that for any (P,Q) in
S, there exists a 4-connected path from P to Q, included in S, and
maximal for this property.

8-connected component = set of points S such that for any (P,Q) in
S, there exists a 8-connected path from P to Q, included in S, and
maximal for this property.
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4−connected path

8−connected path

one 8−connected component

two 4−connected components

objects

background
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Topological paradox
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Jordan theorem

Continuous case: any simple and closed curve divides the space into
two connected components, one inside the curve and one outside.
Digital case: duality between 4-connectivity and 8-connectivity on a
square grid

4-connected curve ⇔ 8-connected background,
8-connected curve ⇔ 4-connected background.

Digital case on a hexagonal grid: 6-connectivity for both objects and
background (no topological problem).
Extension to 3D.
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Some definitions in the digital case

Simple and closed 4-connected path: 4-connected path (A0, ...,An)
such that n ≥ 4, Ai = Aj iff i = j , and Ai 4-neighbor of Aj iff
i = j ± 1[n + 1]

Horizontal half-line from M = (a, b) :

HM = {(a + k, b), k = 0, 1, 2...}

Inside A: set of points M such that HM crosses A an odd number of
times.

Outside A: set of points M such that HM crosses A an even number
of times.

⇒ proof of the digital version of Jordan theorem.

I. Bloch Digital Representations 29 / 68



Cellular complexes

I. Bloch Digital Representations 30 / 68



Connected component labeling

initial pointer final
label label
0 0
1 1
2 2
3 → 2 2
4 → 3 2
5 3
6 → 3 2
7 → 2 2
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Example of topological characteristic: Euler number

Number of connected components Ncc

Number of holes Nt

Euler number E = Ncc − Nt

8-connected objects and 4-connected holes: Ncc = 1 and Nt = 2,
hence E = −1

4-connected objects and 8-connected holes: Ncc = 1 and Nt = 1,
hence E = 0
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v

e

d

t

q

8-connected objects and 4-connected holes:

E = v − e − d + t − q

4-connected objects and 8-connected holes:

E = v − e + q
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Digital geometry

How to go from the continuous domain to the digital one, and
vice-versa?

How to represent a geometric entity on a digital grid, while preserving
its properties?

Which are the continuous representations of a discrete one?

Which are the exact intersections of a continuous representation and
the digital grid?

Example of straight lines or segments
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Digitization of a continuous line
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Cf Bresenham algorithm
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Characterization of a digital straight line segment

Cord property
S satisfies the cord property iff:

∀(P,Q) ∈ S, ∀R ∈ [P,Q], ∃T ∈ S, d∞(T ,R) < 1

with d∞((x , y), (x ′, y ′)) = max(|x − x ′|, |y − y ′|)
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Syntactic characterization

only two “neighbor” directions

for one direction: sections of length 1

for the other direction: sections of length n or n + 1
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Analytical digital straight lines

y = ax + b

Intersections with the grid?

Condition for non-empty intersection:

a =
p

q

p and q integers, co-prime, and:

p ≤ q ≤ N

Farey sequence:
image of size N × N and slope less than 1
⇒ possible slopes = Farey sequence of order N: F (N) (cardinality
approximately 3N2/π2)

recursive construction (m+m′

n+n′ between m
n and m′

n′ )
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Example for N = 4 (a ≤ 1) : F (N) = {0, 1
3 ,

1
2 ,

2
3 , 1}
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Length of a digital straight segment

a2 + b2 = L

with a and b integer
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Voronöı diagram

Useful representation for shapes, image structures...
Seeds{P1,P2, ...,Pn}
Voronöı cells:

V (Pi ) = {P ∈ R2 | ∀j , 1 ≤ j ≤ n, d(P,Pi ) ≤ d(P,Pj)}
For the Euclidean distance: V (Pi ) = convex polygon

edge

vertex

seed

Voronoï polygon
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Delaunay triangulation
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Duality
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Properties:

if there are no 4 co-circular points, every Voronöı vertex is equidistant
of exactly 3 seeds

any Voronöı vertex is the center of a circle (called Delaunay circle)
passing through 3 seeds and containing no other seed

V (Pi ) is non-bounded iff Pi belongs to the convex hull of the Pjs
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Incremental construction

new seed

new Voronoï edges
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A few geometric applications:

minimal distance between two sets of points

triangulation such that the circle circumscribed to each triangle is
empty

convex hull of a set of points

...

I. Bloch Digital Representations 48 / 68



Discrete distances

P = {~p1, ... ~pm} set of vectors generating a graph

Associated length di
Conditions:

~pi ∈ P ⇒ −~pi ∈ P
~pi ∈ P, λ~pi ∈ P ⇒ λ = ±1
||~pi || = ||~pj || ⇒ di = dj

Distance between to vertices / points x and y :

d(x , y) =
1

s
min{

m∑
i=1

nidi | ni ∈ N,
m∑
i=1

ni ~pi = ~xy}

s: scale factor
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Distance function

Binary image with objects O → distance map image where the value at x
is d(x ,O) = miny∈O d(x , y)

global concept ⇒ local computation by propagating local distances

requirements:

good approximation of the Euclidean distance
fast algorithms
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Masks representing local distances
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Algorithms

Parallel algorithm

f k : image at iteration k

g : mask

f 0: points of objects set to 0, points of the background set to +∞

f k(x) = min{f k−1(y − x) + g(y), y ∈ support(g)}

number of iterations: depends on image size, object size, shape...

two images in memory

can be adapted for any grid (2D or 3D) and any mask

can be parallelized

I. Bloch Digital Representations 52 / 68



Sequential algorithm

two scans of the image, in opposite directions

masks g1 and g2 containing the points already examined according to
the scan direction (+ origin)

f 0: points of objects set to 0, points of the background set to +∞
for k = 1, 2

f k(x) = min{f k−1(x), f k(y − x) + gk(y), y ∈ support(gk)}

fast algorithm

only one image in memory

can be adapted for any grid (2D or 3D) and any mask

recursive

I. Bloch Digital Representations 53 / 68



Algorithms based on object contours

Using chains:

contour chaining
point displacement and rewriting rules
adjustments

Using queues

FIFO initialized with contour points
for each point of the queue: computation of the neighbors, distance
value increment, and neighbors added in the queue
applies in 3D as well
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Distance map (4-connectivity mask)
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Distance map (8-connectivity mask)
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Distance map (6-connectivity mask)
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Comparison 4c / 8c / 6c / 5-7-11
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Example on a binarized biological image
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Example on a coffee bean image
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Voronöı diagram from a discrete distance
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Applications

Distance computation (e.g. model-based object recognition, scene
understanding)

Registration

Mathematical morphology operations on binary images
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