Digital Representations

Isabelle Bloch

LIP6, Sorbonne Université - On leave from LTCI, Télécom Paris
s
SORBONNE
isabelle.bloch@sorbonne-universite.fr

Content

- Tessellations
- Digital topology
- Representation of geometrical entities

■ Distance function

Digital representation of images

Digital image:

- representation as an array

■ sampling from \mathbb{R}^{2} or \mathbb{R}^{3} into \mathbb{Z}^{2} or \mathbb{Z}^{3}
Two possible approaches to process points in \mathbb{Z}^{n} :
■ embed \mathbb{Z}^{n} in \mathbb{R}^{n}, then apply operations and transformations in the continuous space

- definition of operations and transformations directly in the digital space
- definitions?
- preservation of the expected effects?
- preservation of the properties?

A simple example: rotation

$$
\left(x^{\prime}, y^{\prime}\right)=R(x, y)
$$

Issues:
$\square(x, y)=$ integer coordinates $\Rightarrow\left(x^{\prime}, y^{\prime}\right)$?
■ Computation?
■ Properties?
$\pi / 4$ rotation: $x^{\prime}=(x-y) \frac{\sqrt{2}}{2} \quad y^{\prime}=(x+y) \frac{\sqrt{2}}{2}$

	a	b	c	
	d	e	f	
	g	h	i	

	c			
b		f		
ad	e	h i		
	g			

Direct transformation

	c			
b	e	f		
d	e	h		
	g			

Inverse transformation (closest point interpolation)

Topology and resolution

Curve digitization

Source : D. Cœurjolly, A. Montanvert, J. M. Chassery (2007)

Tessellations

Tessellation $=$ partition of the continuous space \mathbb{R}^{n} into elementary cells
Constraints:
■ physical sensors (regularity)

- usage of the representation (regularity, simplicity)

1 Tessellation from point distribution

- distribution of points P
- regular \Rightarrow classical grids
- irregular \Rightarrow Voronoï diagram
- attribution of a cell V_{P} to each point

2 Tessellation from cell juxtaposition

- prior definition of a cell model V_{P}
- juxtaposition of V_{P} so as to build a partition
- constraints:
- V_{P} convex and regular

■ vertices in contact with other vertices only

Regular distributions

Irregular distributions: Voronoï diagram

An excluded configuration

Regular tessellations of the plane

Semi-regular tessellations

Examples

Admissible:

Non-admissible:

Admissible semi-regular tessellations

A complex tessellations (Escher)...

Duality between tessellations and mesh (or grid)

Digital topology

■ Classical topology in a countable set of points:

- every point is an open set of the topology
- not well adapted to the representation of connected sets

■ Direct definition of a topological basis

- possible on triangular and square tessellations, not on hexagonal tessellations
- depends on point localization
- does not satisfy Jordan theorem

■ Direct definition of elementary neighborhood

- digital connectivity
- image = graph

Direct definition of a topological basis: examples

Elementary neighborhood

4-connectivity graph

- vertices of the graph
- edges defining the neighbors and the connectivity

Different grids and associated connectivities

Neighbor coordinates on a hexagonal grid

■ for j even: $(i-1, j-1),(i, j-1),(i-1, j),(i+1, j),(i-1, j+1)$, $(i, j+1)$,
■ for j odd: $(i, j-1),(i+1, j-1),(i-1, j),(i+1, j),(i, j+1)$, $(i+1, j+1)$.

Elementary neighborhood on a 3D cubic grid

Path and connected component

■ 4-connected path $=$ sequence of points $\left(i_{k}, j_{k}\right)_{1 \leq k \leq n}$ such that:

$$
\forall k, 1 \leq k<n,\left|i_{k}-i_{k+1}\right|+\left|j_{k}-j_{k+1}\right| \leq 1
$$

- 8-connected path $=$ sequence of points $\left(i_{k}, j_{k}\right)_{1 \leq k \leq n}$ such that:

$$
\forall k, 1 \leq k<n, \max \left(\left|i_{k}-i_{k+1}\right|,\left|j_{k}-j_{k+1}\right|\right) \leq 1
$$

- 4-connected component $=$ set of points \mathcal{S} such that for any (P, Q) in \mathcal{S}, there exists a 4-connected path from P to Q, included in \mathcal{S}, and maximal for this property.
- 8-connected component $=$ set of points \mathcal{S} such that for any (P, Q) in \mathcal{S}, there exists a 8-connected path from P to Q, included in \mathcal{S}, and maximal for this property.

4-connected path
8-connected path

- background
- objects
two 4-connected components one 8-connected component

Topological paradox

Jordan theorem

■ Continuous case: any simple and closed curve divides the space into two connected components, one inside the curve and one outside.
■ Digital case: duality between 4-connectivity and 8-connectivity on a square grid

- 4-connected curve $\Leftrightarrow 8$-connected background,
- 8-connected curve $\Leftrightarrow 4$-connected background.

■ Digital case on a hexagonal grid: 6-connectivity for both objects and background (no topological problem).

- Extension to 3D.

Some definitions in the digital case

- Simple and closed 4-connected path: 4-connected path $\left(A_{0}, \ldots, A_{n}\right)$ such that $n \geq 4, A_{i}=A_{j}$ iff $i=j$, and A_{i} 4-neighbor of A_{j} iff $i=j \pm 1[n+1]$
- Horizontal half-line from $M=(a, b)$:

$$
H_{M}=\{(a+k, b), k=0,1,2 \ldots\}
$$

■ Inside A : set of points M such that H_{M} crosses A an odd number of times.

- Outside A : set of points M such that H_{M} crosses A an even number of times.
\Rightarrow proof of the digital version of Jordan theorem.

Cellular complexes

Connected component labeling

initial	pointer	final
label		label
0		0
1		1
2		2
$3 \rightarrow$	2	2
$4 \rightarrow$	3	2
5		3
$6 \rightarrow$	3	2
$7 \rightarrow$	2	2

Example of topological characteristic: Euler number

■ Number of connected components $N_{c c}$
■ Number of holes N_{t}
■ Euler number $E=N_{c c}-N_{t}$

- Object
- Hole
- 8-connected objects and 4-connected holes: $N_{c c}=1$ and $N_{t}=2$, hence $E=-1$
■ 4-connected objects and 8-connected holes: $N_{c c}=1$ and $N_{t}=1$, hence $E=0$

v	\bullet				
e	\bullet	\bullet	\bullet		
d	\bullet	\bullet	\bullet		
\boldsymbol{t}	\bullet		\bullet	\bullet	\bullet
	\bullet	\bullet	\bullet	\bullet	\bullet
	\bullet	\bullet			
	\bullet	\bullet			

■ 8-connected objects and 4-connected holes:

$$
E=v-e-d+t-q
$$

■ 4-connected objects and 8-connected holes:

$$
E=v-e+q
$$

Digital geometry

- How to go from the continuous domain to the digital one, and vice-versa?

■ How to represent a geometric entity on a digital grid, while preserving its properties?

- Which are the continuous representations of a discrete one?

■ Which are the exact intersections of a continuous representation and the digital grid?

Example of straight lines or segments

Digitization of a continuous line

Semi-open square

Digital representation of the continuous line

Digital representation of the continuous line

Digital representation of the continuous line
Cf Bresenham algorithm

Characterization of a digital straight line segment

Cord property
\mathcal{S} satisfies the cord property iff:

$$
\forall(P, Q) \in \mathcal{S}, \forall R \in[P, Q], \exists T \in \mathcal{S}, d_{\infty}(T, R)<1
$$

with $d_{\infty}\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right)=\max \left(\left|x-x^{\prime}\right|,\left|y-y^{\prime}\right|\right)$

Syntactic characterization

■ only two "neighbor" directions

- for one direction: sections of length 1
- for the other direction: sections of length n or $n+1$

Analytical digital straight lines

$$
y=a x+b
$$

Intersections with the grid?
■ Condition for non-empty intersection:

$$
a=\frac{p}{q}
$$

p and q integers, co-prime, and:

$$
p \leq q \leq N
$$

- Farey sequence:
- image of size $N \times N$ and slope less than 1
$■ \Rightarrow$ possible slopes $=$ Farey sequence of order $N: F(N)$ (cardinality approximately $3 N^{2} / \pi^{2}$)
- recursive construction $\left(\frac{m+m^{\prime}}{n+n^{\prime}}\right.$ between $\frac{m}{n}$ and $\left.\frac{m^{\prime}}{n^{\prime}}\right)$

Example for $N=4(a \leq 1): F(N)=\left\{0, \frac{1}{3}, \frac{1}{2}, \frac{2}{3}, 1\right\}$

$\mathbf{p} / \mathbf{q}=0$

$p / q=1 / 3$

$p / q=1 / 2$

$p / q=2 / 3$

$p / q=1$

Length of a digital straight segment

$$
a^{2}+b^{2}=L
$$

with a and b integer

Voronoï diagram

■ Useful representation for shapes, image structures...

- Seeds $\left\{P_{1}, P_{2}, \ldots, P_{n}\right\}$
- Voronoï cells:

$$
V\left(P_{i}\right)=\left\{P \in \mathbb{R}^{2} \mid \forall j, 1 \leq j \leq n, d\left(P, P_{i}\right) \leq d\left(P, P_{j}\right)\right\}
$$

■ For the Euclidean distance: $V\left(P_{i}\right)=$ convex polygon

Delaunay triangulation

Duality

Properties:

- if there are no 4 co-circular points, every Voronoï vertex is equidistant of exactly 3 seeds
■ any Voronoï vertex is the center of a circle (called Delaunay circle) passing through 3 seeds and containing no other seed
■ $V\left(P_{i}\right)$ is non-bounded iff P_{i} belongs to the convex hull of the P_{j} s

- seedDelaunay circle
- Delaunay triangulation

Incremental construction

$X \quad$ new seed
-- - - - new Voronoï edges

A few geometric applications:

- minimal distance between two sets of points

■ triangulation such that the circle circumscribed to each triangle is empty

- convex hull of a set of points

Discrete distances

- $\mathcal{P}=\left\{\overrightarrow{p_{1}}, \ldots \overrightarrow{p_{m}}\right\}$ set of vectors generating a graph
- Associated length d_{i}
- Conditions:
- $\overrightarrow{p_{i}} \in \mathcal{P} \Rightarrow-\overrightarrow{p_{i}} \in \mathcal{P}$
- $\overrightarrow{p_{i}} \in \mathcal{P}, \lambda \overrightarrow{p_{i}} \in \mathcal{P} \Rightarrow \lambda= \pm 1$
- $\left\|\overrightarrow{p_{i}}\right\|=\left\|\overrightarrow{p_{j}}\right\| \Rightarrow d_{i}=d_{j}$

Distance between to vertices / points x and y :

$$
d(x, y)=\frac{1}{s} \min \left\{\sum_{i=1}^{m} n_{i} d_{i} \mid n_{i} \in \mathbb{N}, \sum_{i=1}^{m} n_{i} \overrightarrow{p_{i}}=\overrightarrow{x y}\right\}
$$

s : scale factor

Distance function

Binary image with objects $O \rightarrow$ distance map image where the value at x is $d(x, O)=\min _{y \in O} d(x, y)$

■ global concept \Rightarrow local computation by propagating local distances

- requirements:
- good approximation of the Euclidean distance
- fast algorithms

Masks representing local distances

Algorithms

Parallel algorithm

- f^{k} : image at iteration k
- g : mask
- f^{0} : points of objects set to 0 , points of the background set to $+\infty$

$$
f^{k}(x)=\min \left\{f^{k-1}(y-x)+g(y), y \in \operatorname{support}(g)\right\}
$$

■ number of iterations: depends on image size, object size, shape...

- two images in memory
- can be adapted for any grid (2D or 3D) and any mask
- can be parallelized

Sequential algorithm

- two scans of the image, in opposite directions
- masks g_{1} and g_{2} containing the points already examined according to the scan direction (+ origin)
- f^{0} : points of objects set to 0 , points of the background set to $+\infty$
- for $k=1,2$

$$
f^{k}(x)=\min \left\{f^{k-1}(x), f^{k}(y-x)+g_{k}(y), y \in \operatorname{support}\left(g_{k}\right)\right\}
$$

- fast algorithm
- only one image in memory
- can be adapted for any grid (2D or 3D) and any mask
- recursive

Algorithms based on object contours
■ Using chains:

- contour chaining
- point displacement and rewriting rules

■ adjustments
■ Using queues

- FIFO initialized with contour points

■ for each point of the queue: computation of the neighbors, distance value increment, and neighbors added in the queue

- applies in 3D as well

Distance map (4-connectivity mask)

Distance map (8-connectivity mask)

Distance map (6-connectivity mask)

Comparison 4c / 8c / 6c / 5-7-11

Example on a binarized biological image

Example on a coffee bean image

Voronoï diagram from a discrete distance

Applications

■ Distance computation (e.g. model-based object recognition, scene understanding)

- Registration

■ Mathematical morphology operations on binary images

Some references

- E. Andres. Discrete Circles, Rings and Spheres. Computers \& Graphics, 18(5):695-706, 1994.
- G. Borgefors. Distance Transforms in the Square Grid. In H. Maître, editor, Progress in Picture Processing, Les Houches, Session LVIII, 1992, chapter 1.4, pages 46-80. North-Holland, Amsterdam, 1996.
- J. M. Chassery and M. I. Chenin. Topologies on Discrete Spaces. In Simon and Haralick, editors, Digital Image Processing, pages 59-66. Reidel, 1980.
- D. Cœurjolly, A. Montanvert, and J. M. Chassery. Géométrie discrète et images numériques. Hermes, Paris, 2007.
- L. Dorst and W. M. Smeulders. Discrete Representation of Straight Lines. IEEE Trans. on PAMI, 6(4):450-463, 1984.
- J. Franel. Les suites de Farey et les problèmes des nombres premiers. Göttinger Nachrichten, pages 198-201, 1924.
- P. J. Green and R. Sibson. Computing Dirichlet Tessellation in the Plane. The Computer Journal, 21:168-173, 1978.
■ B. Grunbaum and G. C. Shepard. Tilings and Patterns: an Introduction. Freeman, 1989.
■ E. Khalimsky, R. Koppermann, and P. R. Meyer. Computer Graphics and Connected Topologies as Finite Ordered Sets. Topology and its Applications, 36:1-17, 1990.
- R. Klein. Concrete and Abstract Voronoï Diagrams. Springer Verlag, 1989.

■ R. Klette and A. Rosenfeld. Digital Geometry. Morgan Kaufmann, San Francisco, 2004.

- T. Y. Kong and A. Rosenfeld. Digital Topology: Introduction and Survey. Computer Vision, Graphics, and Image Processing, 48:357-393, 1989.
- V. A. Kovalesky. Finite Topology as applied to Image Analysis. Computer Vision, Graphics, and Image Processing, 46:141-161, 1989.
■ S. Pham. Digital Straight Segments. Computer Vision, Graphics, and Image Processing, 36:10-30, 1986.
- F. P. Preparata and M. I. Shamos. Computational Geometry, an Introduction. Springer Verlag, 1988.
■ A. Rosenfeld. Connectivity in Digital Pictures. Journal of ACM, 17(1):146-160, 1970.
- A. Rosenfeld. Digital Straight Line Segments. IEEE Trans. on Computers, 23(12):1264-1269, 1974.
- A. Rosenfeld. Digital Topology. Amer. Math. Monthly, pages 621-630, 1979.
- G. T. Toussaint. Computational Geometry. North Holland, Amsterdam, 1985.

