Digital Representations

Isabelle Bloch

LIP6, Sorbonne Université - On leave from LTCI, Télécom Paris

isabelle.bloch@sorbonne-universite.fr
Content

- Tessellations
- Digital topology
- Representation of geometrical entities
- Distance function
Digital image:
- representation as an array
- sampling from \(\mathbb{R}^2 \) or \(\mathbb{R}^3 \) into \(\mathbb{Z}^2 \) or \(\mathbb{Z}^3 \)

Two possible approaches to process points in \(\mathbb{Z}^n \):
- embed \(\mathbb{Z}^n \) in \(\mathbb{R}^n \), then apply operations and transformations in the continuous space
- definition of operations and transformations directly in the digital space
 - definitions?
 - preservation of the expected effects?
 - preservation of the properties?
A simple example: rotation
\[(x', y') = R(x, y)\]

Issues:
- \((x, y) = \text{integer coordinates} \Rightarrow (x', y')?\)
- Computation?
- Properties?

\(\pi/4 \text{ rotation: } x' = (x - y)\sqrt{2}/2 \quad y' = (x + y)\sqrt{2}/2\)

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>d</td>
<td>e</td>
<td>f</td>
<td></td>
</tr>
<tr>
<td>g</td>
<td>h</td>
<td>i</td>
<td></td>
</tr>
</tbody>
</table>

- Direct transformation
- Inverse transformation (closest point interpolation)
Topology and resolution

Curve digitization

Tessellations

Tessellation = partition of the continuous space \mathbb{R}^n into elementary cells

Constraints:
- physical sensors (regularity)
- usage of the representation (regularity, simplicity)

1. **Tessellation from point distribution**
 - distribution of points P
 - regular \Rightarrow classical grids
 - irregular \Rightarrow Voronoï diagram
 - attribution of a cell V_P to each point

2. **Tessellation from cell juxtaposition**
 - prior definition of a cell model V_P
 - juxtaposition of V_P so as to build a partition
 - constraints:
 - V_P convex and regular
 - vertices in contact with other vertices only
Regular distributions
Irregular distributions: Voronoï diagram
An excluded configuration
Regular tessellations of the plane

triangular square hexagonal
Semi-regular tessellations
Examples

Admissible:

Non-admissible:
Admissible semi-regular tessellations
A complex tessellations (Escher)…
Duality between tessellations and mesh (or grid)
Digital topology

- Classical topology in a countable set of points:
 - every point is an open set of the topology
 - not well adapted to the representation of connected sets
- Direct definition of a topological basis
 - possible on triangular and square tessellations, not on hexagonal tessellations
 - depends on point localization
 - does not satisfy Jordan theorem
- Direct definition of elementary neighborhood
 - digital connectivity
 - image = graph
Direct definition of a topological basis: examples
Elementary neighborhood
4-connectivity graph

- vertices of the graph
- edges defining the neighbors and the connectivity
Different grids and associated connectivities
Neighbor coordinates on a hexagonal grid

for j even: $(i - 1, j - 1), (i, j - 1), (i - 1, j), (i + 1, j), (i - 1, j + 1), (i, j + 1),$

for j odd: $(i, j - 1), (i + 1, j - 1), (i - 1, j), (i + 1, j), (i, j + 1), (i + 1, j + 1)$.
Elementary neighborhood on a 3D cubic grid
Path and connected component

- **4-connected path** = sequence of points $(i_k, j_k)_{1 \leq k \leq n}$ such that:

 $$\forall k, 1 \leq k < n, \ |i_k - i_{k+1}| + |j_k - j_{k+1}| \leq 1$$

- **8-connected path** = sequence of points $(i_k, j_k)_{1 \leq k \leq n}$ such that:

 $$\forall k, 1 \leq k < n, \ \max(|i_k - i_{k+1}|, |j_k - j_{k+1}|) \leq 1$$

- **4-connected component** = set of points S such that for any (P, Q) in S, there exists a 4-connected path from P to Q, included in S, and maximal for this property.

- **8-connected component** = set of points S such that for any (P, Q) in S, there exists a 8-connected path from P to Q, included in S, and maximal for this property.
4-connected path
8-connected path

- - - - - -

one 8-connected component
two 4-connected components

○ background
● objects
two 4-connected components
one 8-connected component
Topological paradox
Jordan theorem

- Continuous case: any simple and closed curve divides the space into two connected components, one inside the curve and one outside.
- Digital case: duality between 4-connectivity and 8-connectivity on a square grid
 - 4-connected curve ⇔ 8-connected background,
 - 8-connected curve ⇔ 4-connected background.
- Digital case on a hexagonal grid: 6-connectivity for both objects and background (no topological problem).
- Extension to 3D.
Some definitions in the digital case

- **Simple and closed 4-connected path**: 4-connected path \((A_0, ..., A_n)\) such that \(n \geq 4\), \(A_i = A_j\) iff \(i = j\), and \(A_i\) 4-neighbor of \(A_j\) iff \(i = j \pm 1 [n + 1]\)

- **Horizontal half-line from** \(M = (a, b)\) :

 \[H_M = \{(a + k, b), k = 0, 1, 2...\} \]

- **Inside** \(A\): set of points \(M\) such that \(H_M\) crosses \(A\) an odd number of times.

- **Outside** \(A\): set of points \(M\) such that \(H_M\) crosses \(A\) an even number of times.

⇒ proof of the digital version of Jordan theorem.
Cellular complexes

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Connected component labeling

Diagram:

- Initial labels:
 - 0
 - 1
 - 2
 - 3
 - 4
 - 5
 - 6

- Final labels:
 - 2
 - 2
 - 2
 - 2
 - 2
 - 2

Table:

<table>
<thead>
<tr>
<th>initial label</th>
<th>pointer label</th>
<th>final label</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>3 →</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>4 →</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>6 →</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>7 →</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>
Example of topological characteristic: Euler number

- Number of connected components \(N_{cc} \)
- Number of holes \(N_t \)
- Euler number \(E = N_{cc} - N_t \)

8-connected objects and 4-connected holes: \(N_{cc} = 1 \) and \(N_t = 2 \), hence \(E = -1 \)

4-connected objects and 8-connected holes: \(N_{cc} = 1 \) and \(N_t = 1 \), hence \(E = 0 \)
8-connected objects and 4-connected holes:

\[E = v - e - d + t - q \]

4-connected objects and 8-connected holes:

\[E = v - e + q \]
Digital geometry

- How to go from the continuous domain to the digital one, and vice-versa?
- How to represent a geometric entity on a digital grid, while preserving its properties?
- Which are the continuous representations of a discrete one?
- Which are the exact intersections of a continuous representation and the digital grid?

Example of straight lines or segments
Digitization of a continuous line

- Semi-open square
- Digital representation of the continuous line
Digital representation of the continuous line
Cf Bresenham algorithm

Digital representation of the continuous line
Cord property
S satisfies the cord property iff:

$$\forall (P, Q) \in S, \forall R \in [P, Q], \exists T \in S, d_\infty(T, R) < 1$$

with $d_\infty((x, y), (x', y')) = \max(|x - x'|, |y - y'|)$
Syntactic characterization

- only two “neighbor” directions
- for one direction: sections of length 1
- for the other direction: sections of length n or $n + 1$
Analytical digital straight lines

\[y = ax + b \]

Intersections with the grid?

- **Condition for non-empty intersection:**
 \[a = \frac{p}{q} \]
 where \(p \) and \(q \) are integers, co-prime, and:
 \[p \leq q \leq N \]

- **Farey sequence:**
 - Image of size \(N \times N \) and slope less than 1
 - \(\Rightarrow \) possible slopes = Farey sequence of order \(N \): \(F(N) \) (cardinality approximately \(3N^2/\pi^2 \))
 - Recursive construction (\(\frac{m+m'}{n+n'} \) between \(\frac{m}{n} \) and \(\frac{m'}{n'} \))
Example for $N = 4 \ (a \leq 1) : \ F(N) = \{0, \frac{1}{3}, \frac{1}{2}, \frac{2}{3}, 1\}$
Length of a digital straight segment

\[a^2 + b^2 = L \]

with \(a \) and \(b \) integer
Voronoï diagram

- Useful representation for shapes, image structures...
- Seeds\(\{P_1, P_2, \ldots, P_n\}\)
- Voronoï cells:

\[
V(P_i) = \{ P \in \mathbb{R}^2 \mid \forall j, 1 \leq j \leq n, \ d(P, P_i) \leq d(P, P_j) \}
\]

- For the Euclidean distance: \(V(P_i) = \text{convex polygon}\)
Delaunay triangulation
Duality
Properties:

- if there are no 4 co-circular points, every Voronoi vertex is equidistant of exactly 3 seeds
- any Voronoi vertex is the center of a circle (called Delaunay circle) passing through 3 seeds and containing no other seed
- $V(P_i)$ is non-bounded iff P_i belongs to the convex hull of the P_js
Incremental construction

× new seed
----- new Voronoï edges
A few geometric applications:

- minimal distance between two sets of points
- triangulation such that the circle circumscribed to each triangle is empty
- convex hull of a set of points
- ...

Discrete distances

- $\mathcal{P} = \{\vec{p}_1, \ldots, \vec{p}_m\}$ set of vectors generating a graph
- Associated length d_i
- Conditions:
 - $\vec{p}_i \in \mathcal{P} \implies -\vec{p}_i \in \mathcal{P}$
 - $\vec{p}_i \in \mathcal{P}, \lambda \vec{p}_i \in \mathcal{P} \implies \lambda = \pm 1$
 - $||\vec{p}_i|| = ||\vec{p}_j|| \implies d_i = d_j$

Distance between to vertices / points x and y:

$$d(x, y) = \frac{1}{s} \min \left\{ \sum_{i=1}^{m} n_i d_i \mid n_i \in \mathbb{N}, \sum_{i=1}^{m} n_i \vec{p}_i = \vec{x}\vec{y} \right\}$$

s: scale factor
Binary image with objects $O \rightarrow$ distance map image where the value at x is $d(x, O) = \min_{y \in O} d(x, y)$

- global concept \Rightarrow local computation by propagating local distances
- requirements:
 - good approximation of the Euclidean distance
 - fast algorithms
Masks representing local distances

\[
\begin{array}{ccccccc}
1 & 1 & 1 & 4 & 3 & 4 & 11 & 11 \\
1 & 0 & 1 & 3 & 0 & 3 & 5 & 0 & 5 \\
1 & 1 & 1 & 4 & 3 & 4 & 11 & 7 & 5 & 7 & 11 \\
\end{array}
\]

\[
a \quad b \quad c \quad d
\]
Parallel algorithm

- f^k: image at iteration k
- g: mask
- f^0: points of objects set to 0, points of the background set to $+\infty$

$$f^k(x) = \min\{f^{k-1}(y - x) + g(y), \ y \in \text{support}(g)\}$$

- number of iterations: depends on image size, object size, shape...
- two images in memory
- can be adapted for any grid (2D or 3D) and any mask
- can be parallelized
Sequential algorithm

- two scans of the image, in opposite directions
- masks g_1 and g_2 containing the points already examined according to the scan direction (+ origin)
- f^0: points of objects set to 0, points of the background set to $+\infty$
- for $k = 1, 2$

$$f^k(x) = \min\{f^{k-1}(x), f^k(y-x) + g_k(y), \ y \in \text{support}(g_k)\}$$

- fast algorithm
- only one image in memory
- can be adapted for any grid (2D or 3D) and any mask
- recursive
Algorithms based on object contours

- Using chains:
 - contour chaining
 - point displacement and rewriting rules
 - adjustments

- Using queues
 - FIFO initialized with contour points
 - for each point of the queue: computation of the neighbors, distance value increment, and neighbors added in the queue
 - applies in 3D as well
Distance map (4-connectivity mask)
Distance map (8-connectivity mask)
Distance map (6-connectivity mask)
Example on a binarized biological image
Example on a coffee bean image
Voronoi diagram from a discrete distance
Applications

- Distance computation (e.g. model-based object recognition, scene understanding)
- Registration
- Mathematical morphology operations on binary images
Some references

