Introduction to Magnetic Resonance Imaging (MRI)

Alexandre Gramfort alexandre.gramfort@telecom-paristech.fr

11 Oct 2012

MRI

Magnetic Resonance Imaging (MRI) is a non-invasive imaging modality based on "Nuclear Magnetic Resonance"

• 3D

- High resolution (Imm isotropic for anatomy)
- Anatomical images, functional images, angiography, diffusion
- Many applications: clinical, cognitive neurosciences

Measures the magnetic properties of material

History

- 1945 : Bloch and Purcell "Nuclear induction" or "Nuclear magnetic resonance" (Nobel 1952)
- I 972 : Ist scanner shows that tumor tissue is different from normal tissue in vivo with NMR (Damadian)
- 1973 : First image of a finger by Lauterbur (Nobel 2003 with Mansfield)
- 1975 : Imaging with Frequency and Phase encoding by Ernst (Nobel 1991)
- 1978 : First clinical systems (1982 in France)
- 1985 : Diffusion MRI (Le Bihan)
- 1990 : BOLD (Blood-oxygen-level-dependent) effect in vivo (Ogawa et al.)
- I992 : BOLD activation experiments (Kwong et al. & Kwong et al. & Bandettini et al.)

"Nuclear induction" and Nuclear Magnetic Resonance (NMR)

Magnetic dipole

Alexandre Gramfort

Magnetic dipole

A magnetic dipole can also be obtained with a rotating charge

Rotation: $\vec{\Omega}$ Speed: $v = r\vec{\Omega}$

 ρ_m Mass density Kinetic momentum: Charge density ρ_e **µ: magnetic moment (A/m)** $\vec{P} = \int_{V} \rho_m r v dV = \int_{V} \rho_m r^2 dV \vec{\Omega}$ Magnetic moment induced by dq: $d\mu = \frac{1}{2}rvdq$ Magnetic moment: S $\vec{\mu} = \int_{V} \frac{1}{2} r v \rho_e dV = \frac{1}{2} \int_{V} \rho_e r^2 dV \vec{\Omega}$

Hydrogen (H) nuclei

While a charge can rotate at different speed the **speed is fixed** and intrinsic for a spin. **Only the orientation can vary.**

Remark : NMR possible with other nuclei. You just need a spin i.e. impair number of protons + neutrons

Spins in an external field

Spins align with external field producing a global **magnetization M** M is the magnetization **induced** by an external magnetic field M depends on the **proton density**, the temperature, amplitude of B₀ *Remark: Not all spins in low energy state: quantic effect, thermodynamic*

A material can be...

paramagnetic: M aligns with B

diamagnetic: M tends to cancel the effect of B

ferromagnetic: M is present even when B is absent (permanent magnet)

What changes is the **magnetic susceptibility** of the materials

Keep in mind: the magnetic susceptibility has an effect on the local magnetic field (what makes fMRI possible)

Ferromagnetic material in a scanner

Alexandre Gramfort

Ferromagnetic material in spatial varying field

MRI Intro

Precession

Spinning top in a gravitational field

Magnetic moment in a magnetic field

 f_0 : Larmor frequency (63.86 MHz at 1.5 T for H)

A magnetic field induces a rotation around the direction of the field

Alexandre Gramfort

Precession

$$\omega_0 = \gamma B_0$$

- γ is the gyromagnetic ratio
- ω_0 depends on the field strength and the type of nuclei

Nuclei	γ (MHz / T)
ΙH	42,575
¹³ C	10,7
³¹ P	17,235

A magnetic field induces a rotation around the direction of the field

Alexandre Gramfort

Precession

With
$$B_0$$
 only $M = M_z$
 $(M_{xy} = 0)$

Alexandre Gramfort

to sum up

- Spins precess in the direction of B
- Frequency depends on:
 - nuclei
 - field strength
- Spins are either down or up but more up than down to create the constant magnetization M
- \bullet Phases are random in the transverse plane and produce no M_{xy} magnetization

The idea of NMR is to perturb the constant magnetization to produce a signal

Alexandre Gramfort

Induction

Frames of reference

Lab frame

Magnetization precesses rapidly in lab frame Rotating frame $\omega_{rot} = \omega_0 - \omega$ $M_{rot} = \omega_0 - \omega$

Magnetization precesses slowly in rotating frame

Special Case: If frame rotates at Larmor frequency, magnetization appears stationary!!!

BI and radio-frequency (RF) pulse

Rotating frame with stationary magnetization

BI field along x' leads to a precession around x' and rotates the magnetization **producing a transverse magnetization**

Blis produced by a radio frequency (RF) pulse **tuned at the Larmor frequency**

Longitudinal Relaxation:TI

Longitudinal Relaxation:TI

Ist Bloch's law after 90° flip: $M_z(t) = M_z(0)(1 - e^{\frac{-t}{T_1}})$

TI : longitudinal relaxation time

Due to B₀ field

Transverse Relaxation:T2

2st Bloch's law after 90° flip: $M_{xy}(t) = M_{xy}(0)e^{-\frac{t}{T_2}}$

T2 : transverse relaxation time

Due to progressive dephasing of the spins

Relaxation

Image contrasts

T₁-weighted

T₂-weighted

PD-weighted

- Image contrast = signal difference between different tissues of interest
- Image contrast is the combined effects of tissue differences in proton density (PD), TI and T2
 - Many sequences can be either PD or T1 or T2 weighted, depending on details of timing
 - Typically aim to maximize the contrast due to one of these and minimize the contrast due to the others

TI, T2, proton density (PD)

Tissues have different magnetic properties:

	T ₁ (1,5 T)	T ₂
water	3000 ms	1500 ms
CSF	2500	1000
muscle	800	45
fat	200	75
white matter	750	90
gray matter	850	100

That's why you can see the difference

Echo time (TE) and T₂ contrast

Alexandre Gramfort

T_I contrast

Tissue I (short T_{I})

M₇

Tissue 2 (long T_1)

Excited magnetization returns to alignment with main field Speed of return is described by T I (transverse relaxation time) T I varies with tissue and field strength

Alexandre Gramfort

TR and T_I Contrast

Long TR: T₁ recovers completely for both tissues

Alexandre Gramfort

TR and T_I Contrast

Short TR: short T_1 recovers more T_1 contrast!

Alexandre Gramfort

What's My Contrast?

	ShortTE	Long TE
ShortTR	T ₁ -weighted	T ₁ and T ₂ weighted
LongTR	Proton density	T ₂ -weighted

T2*

In practice we don't observe T2 but T2* (T2* < T2)

$$\frac{1}{T_2^*} = \frac{1}{T_2} + \frac{1}{T_2'} = \frac{1}{T_2} + \gamma \Delta B_0$$

It describes the exponential decay of signal, due to **spin-spin interactions**, **magnetic field inhomogeneities**, and **susceptibility effects**.

It's a problem for anatomical images but this "issue" is actually a blessing for functional and diffusion imaging.

Spin Echo

Objective : correct for T2* dephasing

[Erwin Hahn 1950]

source: wikipedia.org

Alexandre Gramfort

Spin Echo vs. Gradient Echo signal

$T_2 vs T_2^*$ Relaxation

SE can refocus only part of the signal decay

- $-T_2^*$ refers to part that can be refocused
- –Without refocusing, signal will have T_2^* contrast

Even spin echo signal experiences some decay

- $-T_2$ refers to signal decay that cannot be refocused
- –With refocusing, signal will have T_2 contrast

Magnetic Resonance Imaging

Magnetic gradient

<u>Gradient</u>: Extra magnetic field varying over space

- Precessional frequency varies with position!
- Detect signal at a position by selectively listening to the corresponding frequency
- "Pulse sequence" modulates size of gradient

– Gradient around 10 mT / m

Magnetic gradients

3 gradients in MR system

Fast gradients lead to fast imaging Strong gradients lead to higher spatial resolution

Y Gradient Coil

Slice selection

Gradient along z axis so field varies along z axis: B = B₀ + zG_z Field strength matches RF pulse frequency only for a slice dZ

dZ

Strong gradient leads to small thickness

 $\omega = \omega_0 + \gamma z G_z$ so: $dz = d\omega/(\gamma G_z)$

Alexandre Gramfort

MR sequence Spins in a magnetic field

ID Frequency Encoding

Gradient along x axis Precession frequency varies along x axis: $\omega = \gamma(B_0 + xG_x)$

Y

Measured signal: $S(t) = \sum I(y)e^{i\gamma G_y yt}$

MRI Intro

It's a Fourier Transform!

2D Imaging

- Originally obtained by multiple ID projections by Lauterbur 1973 (like with CT scanner)
- Phase encoding is used today instead:
 - Gy gradient is used to have a phase that depends on y position
 - Image is obtained with 2D Fourier Transform

k-space

Image

Alexandre Gramfort

K-space coverage based on accumulated gradient

Gradients are used to cover the k-space The size and resolution of k-space specifies the **field of view (FOV)** (size of image)

If k-space sampling is too low : aliasing problem

Alexandre Gramfort

Multi-slice imaging

Each slice excited & acquired separately

TR: time between repeated excitation of same slice (typically I–3 seconds) Slices no thinner than \sim I mm

3D imaging

- With multi-slice we need to wait for full relaxation between each slice: ok with long TR like for T2 weighted images
- To accelerate (like for fast T1 weighted images):
 - using symmetry of Fourier plane
 - multi-slice imaging
 - full volume with 2 phase encoding
 - use smaller flip angles
 - Today TI weighted brain scan 8mn. (256x256x256 voxels)

Partial volume effect

Both WM and GM in 1 voxel Need smaller voxels

Alexandre Gramfort

MR system

Alexandre Gramfort

olarized RF Fields Fields

RF fields are generated by RF coils: Surface Solenoid Loop gap

Bird cage coil

- A circularly polarized RF field can be generated using
 - 2 surface coils at right angles: Coils are driven with sinusoidal currents, 90° out of phase"Quadrature" Excitation
 - a bird cage coil

Intrinsic parameters

- TI : longitudinal relaxation time
- T2 : longitudinal relaxation time
- PD : Proton density
- field inhomogeneity
- physiological motion

Extrinsic parameters

- External magnetic fields
- Sequence parameters:
 - TR: repetition time
 - TE: echo time (readout)
 - flip angle
 - number of slices
 - FOV
 - slice thickness
 - slice orientation
 - gradient parameters
 - type of coils (surface?)

Functional Magnetic Resonance Imaging (fMRI)

Functional neuroimaging

It's the study of the **brain activity** through **functional imaging devices**

Alexandre Gramfort

Vascular response of activation

 O₂ metabolism
 blood flow
 blood volume
 dHb = deoxyhemoglobin paramagnetic
 HbO₂ = oxyhemoglobin diamagnetic

Alexandre Gramfort

Functional MRI (fMRI)

- Blood Oxygenation Level Dependent (BOLD) contrast [Ogawa 1990]
- Deoxyhemoglobin (dHb) has different resonance frequency than water
- dHb acts as endogenous contrast agent: larger T2* detectable with fast imaging sequence
- dHb in blood vessel creates frequency offset in surrounding tissue (approximately as dipole pattern)
- Frequency spread causes signal loss over time
- BOLD contrast: Amount of signal loss reflects [dHb]
- Contrast increases with delay (TE = echo time)

Echo planar imaging (EPI) sequence

Alexandre Gramfort

EPI distortions

Magnetization precesses at a different rate than expected Reconstruction places the signal at the wrong location

Alexandre Gramfort

On On On On Stimulus off off off off off

- Subject is given sensory stimulation or task, interleaved with control or rest condition
- Acquire timeseries of BOLD-sensitive images during stimulation
- Analyze image timeseries to determine where signal changed in response to stimulation

FMRI at High Field (>3T)

- SNR and BOLD increase with field strength
- Physiological noise means practical gain is less
- Benefits: Resolution
- Problems: Artifacts, RF heating, wavelength effects...

Alexandre Gramfort

Diffusion Magnetic Resonance Imaging (dMRI)

Diffusion MRI (dMRI)

Measures local anisotropy using the signal drop out due to water diffusion

Alexandre Gramfort

Diffusion MRI (dMRI)

Diffusion direction

- Water diffusion restricted along white matter
- Sensitize signal to diffusion in different directions
- Measure along all directions, infer tracts

Alexandre Gramfort

Ε

GE1 GE2 GE3 GE4 GE5 GE6 GE7 GE8 GE9 GE10 GE11

Artifacts

What do you think happened?

Alexandre Gramfort

MRI with contrast agent (boost signal) most common Gd-GTPA (paramagnetic)

Alexandre Gramfort

Angiography

- Image blood flow
- Clinical applications: stenosis, aneurysms

Cardiac MRI

Need to synchronize with heart beat (ECG)

Alexandre Gramfort

Tagged MRI

Useful to track tissue motion and distortion

Alexandre Gramfort

What you should remember

- NMR measures the magnetic properties of nuclei (mainly H)
- Based of precession and electromagnetic induction
- Signal and contrast is obtained by T1 and T2 relaxation
- Intrinsic properties :TI,T2, Proton Density
- Extrinsic : TR, TE, sequence parameters
- Image is obtained by frequency encoding (precession frequency varying with spatial location) and phase encoding.

Learn more

Reading list:

- Introduction to Functional Magnetic Resonance Imaging, by R. Buxton
- The Basics of MRI, Joseph P. Hornak <u>http://www.cis.rit.edu/</u> <u>htbooks/mri/</u>
- <u>http://www.revisemri.com/</u>
- <u>http://www.mritutor.org/mritutor/</u>
- <u>http://www.ebyte.it/library/Library.html#nmr</u>
- google.com ...