Imagerie par résonance magnétique – IRM

Isabelle Bloch

Isabelle.Bloch@enst.fr

http://www.tsi.enst.fr/~bloch

Télécom ParisTech - CNRS UMR 5141 LTCI

Introduction

- Imagerie in vivo, non invasive
- Coupes dans n'importe quelle direction, 3D
- Images de bonne qualité
- Imagerie anatomique, angiographie, imagerie fonctionnelle, tenseur de diffusion
- Nombreuses applications

Historique

- 1945 : phénomène de RMN (Bloch et Purcell)
- 1952 : prix Nobel de physique
- Développement dans le domaine de la chimie et de la biologie
- 1972 : expériences de Damadian sur la différenciation tissulaire
- 1973 : première image (doigt) par Lauterbur (zeugmatographie)
- 1977 : première image du thorax d'un patient par Damadian, Goldsmith et Minkoff (FONAR)
- 1980 : présentation du FONAR au RSNA
- 1980 : premiers résultats cliniques en imagerie du crâne (Hawkes)
- 1990 : imagerie fonctionnelle (IRMf)
- 1995 : imagerie du tenseur de diffusion (DTI)

Spin et magnétisme des noyaux

Noyau = sphère tournant portant une charge électrique

- Le plus utilisé : noyau d'hydrogène (concentration dans la plupart des tissus > 70%)
- Caractéristiques :
 - moment cinétique (spin)
 - moment magnétique

$$\vec{\mu} = \gamma \vec{P}$$

 γ = rapport gyromagnétique, dépendant du noyau (4257 Hz/T pour le proton)

Colinéarité entre $\vec{\mu}$ et \vec{P}

- sphère de rayon r, de densité de masse ρ_m , de densité de charge ρ_e
- rotation $\vec{\Omega}$, vitesse $v = r \vec{\Omega}$
- moment cinétique :

$$\vec{P} = \int_V \rho_m r v dV = \int_V \rho_m r^2 dV \vec{\Omega}$$

• moment magnétique induit par une charge élémentaire dq:

$$d\mu = \frac{1}{2}rvdq$$

• moment magnétique :

$$\vec{\mu} = \int_V \frac{1}{2} r v \rho_e dV = \frac{1}{2} \int_V \rho_e r^2 dV \vec{\Omega}$$

Résonance magnétique nucléaire : approche classique

Action d'un champ magnétique $\vec{B_0}$:

- orientation des dipôles dans le champ
- mouvement de précession à vitesse constante :

$$\vec{\omega_0} = \gamma \vec{B_0}$$

fréquence de Larmor (résonance) :

$$F_0 = \frac{\gamma B_0}{2\pi}$$

• ordre de grandeur : 63,86 MHz à 1,5 T

Mouvement de précession

• dans $\vec{B_0}$, le noyau est soumis au couple :

$$\vec{C} = \vec{\mu} \wedge \vec{B_0}$$

• moment cinétique :

$$\vec{P}=\vec{r}\wedge m\vec{v}$$

$$\frac{d\vec{P}}{dt} = \vec{r} \wedge m\frac{d\vec{v}}{dt} + \vec{0} = \vec{r} \wedge \vec{F} = \vec{C}$$

$ullet$
 colinéarité $ec{\mu}=\gammaec{P}$, d'où :

$$\frac{d\vec{\mu}}{dt} = \gamma(\vec{\mu} \wedge \vec{B_0})$$

solution :

$$\vec{\mu} = \begin{pmatrix} \mu \sin \theta \cos \omega_0 t \\ -\mu \sin \theta \sin \omega_0 t \\ \mu \cos \theta \end{pmatrix}$$

avec θ constant et $\omega_0 = \gamma B_0$

Résonance magnétique nucléaire : approche quantique

- I = valeur du spin (1/2 pour le proton)
- moment cinétique P_z quantifié : $P_z = m_I h/(2\pi)$ avec $m_I = -I...I$
- moment magnétique quantifié : $m_z = \gamma P_z = \mu m_I / I$
- énergie : $E_m = -\vec{\mu}.\vec{B_0} = -\gamma P_z B_0 = -\gamma m_I B_0 h/(2\pi)$
- $\Rightarrow \gamma m_I h/(2\pi) = \mu m_I/I$ et $\mu = \gamma I h/(2\pi)$
- variation d'énergie entre deux états (pour le proton entre I = -1/2 et I = 1/2) : $\Delta E = h\nu_0 = \gamma B_0 h/(2\pi)$

•
$$\omega_0 = 2\pi\nu_0 \Rightarrow \omega_0 = \gamma B_0$$

Moment macroscopique

Ensemble de protons :

$$\frac{N_{//}}{N_{anti//}} = 1,0000007$$

Moment macroscopique $\vec{M_0}$ parallèle à $\vec{B_0}$, mouvement de précession à ω_0 autour de $\vec{B_0}$

Action d'un champ tournant RF

 $ec{B_1}$ tournant dans un plan orthogonal à $ec{B_0}$

 \Downarrow

deuxième mouvement de précession

Impulsions

Impulsion à 90⁰ : \vec{M} dans le plan Oxy au bout de $t_1 = \frac{\pi}{2\omega_1}$ Impulsion à 180⁰ : \vec{M} renversé au bout de $t_2 = \frac{\pi}{\omega_1} = 2t_1$ \Rightarrow excitations qui permettent d'acquérir les informations par mesure de M_{xy} dans le plan Oxy

Variation de flux = signal reçu

$$e = \frac{d\Phi}{dt} = M_{xy}\omega_0\cos\omega_0 t$$

FID : Free Induction Decay (induction libre)

Domaine temporel :

Domaine fréquentiel :

Relaxation

Relaxation spin-réseau = échange d'énergie entre le système et le milieu extérieur

$$M_z = M_0 (1 - e^{-t/T_1})$$

Relaxation

Relaxation spin-spin = échange d'énergie entre les protons, les $\vec{\mu}$ reprennent des phases quelconques

illustration du déphasage

Equations de Bloch

 $\frac{d\vec{M}}{dt} = \gamma \vec{M} \wedge \vec{B_0}$ doit être modifié pour tenir compte de $\vec{B_1}$ et de la relaxation :

$$\frac{d\vec{M}}{dt} = \gamma \vec{M} \wedge (\vec{B_0} + \vec{B_1})$$

(précession et résonance)

$$-\frac{1}{T_1}(M_z - M_0)\vec{k}$$

(relaxation longitudinale ou spin-réseau)

$$-\frac{M_x\vec{i}+M_y\vec{j}}{T_2}$$

(relaxation transversale ou spin-spin)

hétérogénéité de
$$B_0 \Rightarrow \frac{1}{T_2^*} = \frac{1}{T_2} + \gamma \frac{\Delta B_0}{2}$$

Première hypothèse : faible interaction entre les noyaux

Première hypothèse : faible interaction entre les noyaux Répartition de Bolzmann entre les niveaux d'énergie :

$$\frac{n_i}{n_{i+1}} = e^{-\frac{\Delta E}{kT}}$$

Pour les protons : $\Delta E = 2\mu B_0$ Pour B_0 suffisamment intense :

$$\frac{n_{-1/2}}{n_{1/2}} = e^{-\frac{2\mu B_0}{kT}} \approx 1 - \frac{2\mu B_0}{kT}$$

À l'équilibre :

$$w_{1/2}n_{1/2} = w_{-1/2}n_{-1/2}$$

avec $w_{1/2}, w_{-1/2}$ probabilités de transition, $n_{1/2}, n_{-1/2}$ populations

$$w_{\pm 1/2} = w(1 - \pm \frac{\mu B_0}{kT})$$

(w = probabilité de transition moyenne)

Première hypothèse : faible interaction entre les noyaux

$$\frac{dn}{dt} = 2(n_{-1/2}w_{-1/2} - n_{1/2}w_{1/2}) = 2w(n_0 - n)$$

avec $n = n_{1/2} - n_{-1/2}$ et $n_0 = (n_{1/2} + n_{-1/2}) \frac{\mu B_0}{kT}$

Solution :

$$n_0 - n = (n_0 - n_{ini})e^{-2wt} = (n_0 - n_{ini})e^{-t/T_1}$$

 n_{ini} = écart de la population initiale

$$M_z = \mu n \text{ et } M_0 = \mu n_0 \Rightarrow$$

$$\frac{dM_z}{dt} = 2w(M_0 - M_z) = \frac{1}{T_1}(M_0 - M_z)$$

Evolution exponentielle de constante de temps T_1

Deuxième hypothèse : interaction entre les noyaux

- modification du champ local
- excitation de transition par les composantes magnétiques oscillantes dues aux transitions des noyaux voisins

 \downarrow

élargissement des niveaux d'énergie

[•] résonance sur un spectre de largeur moyenne $\Delta \nu$

• T_2 = temps au bout duquel deux spins initialement en phase résonant à ν et $\nu + \Delta \nu$ sont en opposition de phase

$$T_2 = \frac{1}{\Delta\nu}$$

+ hétérogénéité de $\vec{B_0} \Rightarrow$ élargissement accentué (T_2^*)

Exemples à 1,5 T et à 37°*C*

Tissus	T_1 (ms)	T_2 (ms)
Matière grise	950	100
Matière blanche	600	80
Muscle	900	50
CSF	2600	2200
Graisse	250	60
Sang	1200	100-200
Eau (à 22ºC)	2600	1370

Mesure de ρ

- \vec{M} est proportionnel à ρ (densité de protons)
- Impulsion à $90^o \Rightarrow$
 - \vec{M} a un mouvement de précession dans le plan Oxy à ω_0
 - puis décroissance exponentielle avec la constante de temps T_2
- Transformée de Fourier du signal induit dans une bobine placée dans le plan Oxy
- Courbe de résonance de valeur maximale proportionnelle à ρ

Saturation récupération

• deux impulsions de 90° séparées de t tel que

$$T_2 < t < T_1$$

 la deuxième impulsion (qui ramène M_z dans le plan de mesure) arrive avant la fin de la relaxation spin-réseau

Inversion récupération

- impulsions à 180° et 90° séparées de $TI < T_1$
- M_z passe de $-M_0$ à M_0 avec une constante de temps T_1
- courbe de M_z pour plusieurs valeurs de TI

Spin écho

- impulsion à 90° puis à 180° au bout de t = TE/2
- à TE : les spins sont rephasés (hétérogénéité du champ éliminée)

déphasage

Spin écho

- impulsion à 90° puis à 180° au bout de t = TE/2
- à TE : les spins sont rephasés (hétérogénéité du champ éliminée)

rephasage

Spectroscopie RMN

- noyaux H résonent à des fréquences différentes suivant leur environnement chimique
- décalage chimique
- champ local vu par un H :

$$B = B_0 - \Delta B_0 = B_0 - \sigma B_0$$

mesures de variations relatives par rapport à une substance de référence

$$\omega_{i} = \gamma B_{i} = \gamma B_{0}(1 - \sigma_{i})$$
$$\omega_{r} = \gamma B_{r} = \gamma B_{0}(1 - \sigma_{r})$$
$$\Rightarrow \frac{\omega_{i} - \omega_{r}}{\omega_{r}} = \sigma_{r} - \sigma_{i}$$

TF d'une FID : nombre de protons résonant à chaque fréquence

Spectroscopie RMN

Exemples :

high resolution nmr spectrum for methyl propanoate, CH₃CH₂COOCH₃

Vers l'imagerie

- RMN = résonance magnétique nucléaire
- temps, fréquence, spectroscopie
- pas d'information spatiale

- IRM = imagerie par résonance magnétique
- introduction de l'information spatiale ?

Codage de fréquence : champ de gradient linéaire G_x

$$\omega = \gamma (B_0 + xG_x)$$

Codage de fréquence : champ de gradient linéaire G_x

 $\omega = \gamma (B_0 + xG_x)$

Codage de fréquence : champ de gradient linéaire G_x

$$\omega = \gamma (B_0 + xG_x)$$

Codage de phase :

Sans gradient :

Codage de phase :

Gradient selon y:

Codage de phase :

Phases différentes à l'arrêt du gradient :

Construction de l'image

Codage de fréquence : au point x, signal harmonique de pulsation $\gamma G_x x$ et d'intensité I(x)

$$FID(t) = \sum_{x} I(x)e^{i\gamma G_x xt}$$

$$TF(FID)(f_t) = \sum_{x} I(x)\delta(f_t - \frac{\gamma G_x x}{2\pi})$$
$$= \sum_{x} I(x)\delta(x - \frac{2\pi f_t}{\gamma G_x}) = I(\frac{2\pi f_t}{\gamma G_x})PeigneDirac(x)$$

 ⇒ intensité en fonction de la position spatiale par transformée de Fourier du signal reçu

Construction de l'image

• Codage de phase : G_y pendant $\tau \Rightarrow$ déphasage

$$\varphi = \int_0^\tau 2\pi f(t)dt = \frac{\gamma}{2\pi} y G_y \tau$$

au point (x,y) : pulsation $\gamma G_x x$ et phase $\frac{\gamma}{2\pi} y G_y \tau$

$$FID(x,y) = \sum_{x} \sum_{y} I(x,y) e^{i\gamma G_x xt - i\frac{\gamma}{2\pi}yG_y\tau}$$

$$TF(FID)(f_t, f_\tau) = \sum_x \sum_y I(x, y) \delta(f_t - \frac{\gamma G_x x}{2\pi}) \delta(f_\tau - \frac{\gamma G_y y}{4\pi^2})$$
$$= I(x - \frac{2\pi f_t}{\gamma G_x}, y - \frac{4\pi^2 f_\tau}{\gamma G_y}) PeigneDirac(x, y)$$

 l'ensemble des points obtenus constitue la transformée de Fourier inverse de l'image
Construction de l'image

Construction de l'image

Durée d'acquisition : nombre d'incréments de $G_y \times TR \times nombre de moyennages$

Seulement $\vec{B_0}$:

Sélection de coupe :

 B_{0}

Codage de phase :

Codage de fréquence :

Gradients de refocalisation :

Image en T1 :

 $T1_{LCR} > T1_{MG} > T1_{MB} > T1_{graisse}$

Image en T2 :

 $T2_{LCR} > T2_{MB} > T2_{MG}$

Image en ρ (Densité de Protons) :

 $\rho_{LCR} > \rho_{MG} > \rho_{MB}$

Grande variété de séquences

exemples de séquences

Impulsions RF

Impulsion sélective :

- relativement longue (msec)
- en $\frac{\sin t}{t}$ (car TF d'une fonction rectangle)
- largeur de bande étroite
- \Rightarrow sélection de coupe

Gradients de champ magnétique

- Codage de l'information spatiale
- Entraînent un déphasage \Rightarrow compromis entre
 - déphasage suffisant pour permettre l'analyse de composantes individuelles
 - déphasage causant une décroissance du signal trop forte
- Contraintes :
 - doivent excéder les hétérogénéités du champ magnétique
 - doivent avoir une grande linéarité

Imagerie multi-dimensionnelle

- Imagerie 2D d'une coupe, puis attente pour permettre la relaxation complète avant d'imager la coupe suivante
- Imagerie multi-coupes : imagerie alternée de plusieurs coupes
- Imagerie 3D (volumique) : deux codages de phase
- Accélérations possibles :
 - utilisation de la symétrie du plan de Fourier. Gain : 2
 - réduction du TR en réduisant l'angle des impulsions (images combinant le T1 et le T2). Gain : 100
 - commutations rapides de gradient (EPI, etc.). Gain : > 1000
 - différents ordres de remplissage du plan de Fourier

Instrumentation

Instrumentation

Paramètres intrinsèques

- temps de relaxation T1
- temps de relaxation T2
- densité de protons ρ

- décalage chimique
- mouvement physiologique
- tissus adjacents à la zone d'intérêt
- dimensions de la zone d'intérêt
- perturbations dans le champ magnétique (implants)

Paramètres extrinsèques

- séquences d'impulsions
- paramètres des séquences
- nombre d'excitations
- épaisseur des coupes
- taille de la matrice
- champ d'acquisition
- espace entre les coupes
- position de la coupe dans le volume imagé
- orientation du plan de coupe
- agents de contraste paramagnétiques
- synchronisation physiologique
- champ magnétique (intensité, homogénéité)
- type d'antenne (corps/tête ou locale)
- caractéristiques RF
- "flip-angle" de l'impulsion RF
- ajustement de la fréquence RF aux conditions de résonance exactes
- variables de visualisation

SNR, CNR et résolution

- bruit proportionnel à f, 2 sources de bruit :
 - électronique (circuit récepteur)
 - tissus excités
- signal : proportionnel à f^2

 \Rightarrow SNR proportionnel à f

- autre mesure importante : le rapport contraste sur bruit
 CNR = SNR(A) SNR(B)
- dimension du voxel :

$$d\frac{D}{N_p}\frac{D}{N_f}$$

d = épaisseur de coupe, $D \times D$ = champ de vue

$$SNR \propto \frac{D^2}{N_p^{1/2} N_f} dN_{ex}^{1/2}$$

- effet de volume partiel
- si l'espace entre les coupes est faible, excitation simultanée de plusieurs coupes
- antennes de surfaces : le SNR décroît non linéairement quand la distance à l'antenne augmente

Plan de Fourier et résolution

$$D_x = \frac{1}{\delta k_x} \quad D_y = \frac{1}{\delta k_y}$$

$$d_x = \frac{1}{k_{x_{\max}}} \quad d_y = \frac{1}{k_{y_{\max}}}$$

$$k_{x_{\max}} = N_f$$
 et $k_{y_{\max}} = N_p$

I. Bloch - IRM – p.34/50

Décalage chimique

différences de fréquences \Rightarrow différences de position dans l'image

(dans le sens du codage de fréquence)

illustration

$$x_{eau} - x_{graisse} = \frac{D\Delta f}{F}$$

F =largeur de bande

Exemples à 1,5 T :

- $D = 40cm \Rightarrow \Delta x = 2,8mm$
- $D = 20cm \Rightarrow \Delta x = 1, 4mm$

Décalage chimique

Effet de volume partiel

Antenne locale

Artéfact de Gibbs

Discontinuités dans le signal mal rendues par transformée de Fourier discrète

Produits de contraste

Objectif : améliorer la détection et la caractérisation des tumeurs (ou vaisseaux sanguins) avec des séquences courtes

- Produits diamagnétiques :
 - très faible champ induit (10^{-6} du champ appliqué)
- Produits ferrognétiques :
 - forte attraction et alignement
 - intensité de 100 fois le champ
 - retiennent leur magnétisation induite en quittant le champ
- Produits paragnétiques :
 - s'alignent parallèlement au champ
 - 10^{-2} du champ
 - \Rightarrow bon choix (T1 raccourci, déphasage accéléré)

Contraintes :

- doivent être purs, stables, non toxiques, d'élimination facile
- obtention facile, à coût faible
- pouvoir de conjugaison avec des molécules spécifiques des organes ou des tissus
- \Rightarrow Gd-DTPA (le plus courant)

Produits de contraste

Objectif : améliorer la détection et la caractérisation des tumeurs (ou vaisseaux sanguins) avec des séquences courtes

IRM multi-nucléaire

- Imagerie d'autres noyaux
- Exemple : sodium
 - abondant dans l'organisme
 - spin = $3/2 \Rightarrow 4$ orientations possibles
 - relaxation de noyaux quadri-polaires : décroissance bi-exponentielle
 - Applications : pathologies du système nerveux central

Sodium Imaging:

- 2D and 3D FLASH applications
- High in-plane resolution (1.8 × 1.8 mm²)

2D ²³Na FLASH imaging at short echo time of 2.3 ms (left). Corresponding ¹H imaging slice using the ²³Na/¹H double tuned head coil.

3D $^{23}\rm Na$ FLASH imaging at short echo time of 2.3 ms. 20 slices at a spatial resolution of 2.5 \times 2.5 \times 10.0 cm $^3.$

IRM cardiaque

- Difficile mais grand potentiel
- Synchronisation avec l'ECG
- Bon contraste
- Plans de coupe anatomiques
- Bonne résolution temporelle

Une coupe pendant le cycle cardiaque Rehaussement tardif

IRM "taguée"

Imagerie de flux

- Exploitation du flux lui-même pour créer un signal différent
- Technique non invasive
- Exemple de séquence d'acquisition :

Coupe d'un vaisseau sanguin

Evolution pendant l'acquisition

Imagerie de flux

Imagerie de flux

Acquisitions anisotropes :

Reconstruction

Imagerie fœtale

Imagerie fœtale

Figure 9 Donnees originales (a g.) et donnees étiquetées (a dr.)

IRM fonctionnelle

- volume sanguin cérébral (VSC)
- flux sanguin cérébral (FSC)
- oxygénation du sang (Ox)
- + comparaison avec des images anatomiques

Mesure du VSC : Gd-DTPA (paramagnétique) \Rightarrow variation de volume avant et après une activation (2 injections).

Mesure du FSC et Ox : écho de gradient

- désoxyhémoglobine : paramagnétique
- oxyhémoglobine : diamagnétique

Mesure des variations lors d'une activité \Rightarrow zones actives

IRM fonctionnelle

Résolution typique :

- spatiale : $2 \times 2 \times 7mm^3$
- temporelle : 0,5 à 20 secondes

Avantages :

- résultats en accord avec la TEP
- anatomie + fonction avec une seule modalité
- non invasive
- activité du cerveau dans des temps assez courts

Exigences :

- machine stable (sensibilité aux défauts magnétiques)
- sujet stable (sensibilité aux mouvements)
- séquences adaptées et rapides
- moyennage de beaucoup d'images (faible variation des signaux : 2 à 10%)

Séquence EPI

Séquence EPI

Séquence EPI

Paradigme d'activation

- Séquences sensibles aux hétérogénéités de champ
- Pondération en T_2^*

Exemple d'activation : mouvement des doigts de la main gauche

Nouvelles techniques rapides

(UC Berkeley / Washington university)

Quelques références

- Felix W. Wehrli et al. (Eds.): Biomedical Magnetic Resonance Imaging. Principles, Methodology, and Applications. VCH Publishers, New-York, 1988.
- Joseph P. Hornak: The Basics of MRI. http://www.cis.rit.edu/htbooks/mri/
- http://irm-francophone.com/htm/liens.htm
- Sources des illustrations :
 - http://irmfmrs.free.fr/formation/cours_irm/cours_irm.htm (Muriel Roth, Jean-Michel Franconi)
 - http://www.cis.rit.edu/htbooks/mri/