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Abstract

Path openings and closings are algebraic morphological operators using families of thin and oriented structuring elements that are not
necessarily perfectly straight. These operators can typically be used in filtering applications in lieu of operators based on the more stan-
dard families of straight line structuring elements. They yield results which are less constrained than filters based on straight line seg-
ments, yet more constrained than connected area or other attribute-based operators. Furthermore, path operators can be
parametrised to behave more like either extreme.

Natural implementations of this idea using actual suprema or infima of morphological operators with paths as structuring elements
would imply exponential complexity. Fortunately, a linear complexity algorithm exists in the literature. This algorithm has similar run-
ning times as the best known implementation of morphological operators using straight lines as structuring elements.

However, even this implementation is sometimes not fast enough, leading practitioners to favour some attribute-based operators
instead, which in some applications is not the best solution.

In this paper, we propose an implementation of path-based morphological operators that is shown experimentally to exhibit a log-
arithmic complexity and comparable computing times with those of attribute-based operators. This implementation has the added ben-
efit of allowing the computation of the related opening transform at no extra computational cost.

In order to give additional flexibility and noise-robustness to these operators, we also investigate the case when some pixels are left
ignored from the path (i.e. ‘‘jumps’’ are allowed) and form incomplete paths.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Many problems in image analysis involve oriented, thin,
line-like objects, for example measuring thin fibres [20,18],
hair detection [17,14], blood vessel detection [7], grid-line
extraction on stamped metal pieces [19] and others.

In an application where some bright, thin and elongated
structure needs to be segmented, one typical approach is to
remove the features in the image which are neither thin nor
elongated. If the structures are also bright on a dark back-
ground, the standard approach would be to use an infimum
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of openings using lines as structuring elements oriented in
many directions [9]. The result is an isotropic operator if
the line structuring element lengths are adjusted to be inde-
pendent of orientation [11].

The implementation of such an operator with actual
lines as structuring elements is inefficient. However, using
recursive implementations of openings at arbitrary angles
yields a linear time algorithm [15] with respect to the length
of the structuring elements. Note that this algorithm is not
translation-invariant. A translation-invariant version,
which must be used if features are very thin, was proposed
in [16]. This version is more expensive but still of linear
complexity.

Area and attributes openings [1,12,21] are also often
used for the analysis of thin structures. An area opening
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of parameter k is equivalent to the supremum of all the
openings by connected structuring elements of area k.
Clearly, this includes all the straight line structuring ele-
ments of this length.

Practitioners often note that using only straight line
structuring elements removes too much of the desired fea-
tures, while using connected area or other known attribute
operators does not allow them to distinguish between long
and narrow features on the one hand, and short compact
ones on the other.

While it is sometimes possible to combine these opera-
tors to obtain the desired effect of retaining thin narrow
structures while filtering out compact noise, this cannot
always be done.

Recently efficient morphological operators using paths
as structuring elements were proposed in [3,5]. Paths are
families of narrow, elongated, yet not necessarily perfectly
straight structuring elements. These path operators consti-
tute a useful alternative to operators using only straight
lines and those using area or other attributes.

Fig. 1 summarizes the usefulness of path operators. On
this toy example we wish to eliminate the compact round
object and retain the line-like features. An area opening
does not work in this case because the compact round noise
is too big and one feature is eliminated before the noise as
the parameter increases. Similarly the supremum of open-
ings by lines suppresses features that are not perfectly
straight. On the other hand the path opening delivers the
expected result. Note that path openings do not afford con-
trol over the thickness of detected paths, both the thin
wavy line and the thicker straight line are detected. These
can be separated using further morphological operators
such as standard top-hats.

In the remainder, we propose ordered, significantly faster
algorithms for implementing path operators, with logarith-
mic complexity with respect to the length of the structuring
elements. The version with an unbroken path shall be
called ‘‘complete path operators’’ and the version where a
few pixels can be missing shall be called ‘‘incomplete path
operators’’.

This algorithm also allows the user to compute the path
opening or closing transform, the operator which for each
pixel associates the length of the longest path going
through it – in the foreground for the opening, and in
the background for the closing, at no extra cost. Opening
and closing transforms are useful for computing granulom-
etries [10], for interactively selecting opening and closing
Input Area

Fig. 1. Toy example: on the input we wish to retain the line-like features wh
parameters and for filtering [22]. In the paper we extend
this notion to grey-scale images.

In the final section, an algorithm is also proposed to
compute incomplete path operators, where a few pixels
can be missing at arbitrary locations along the path. This
complexifies the algorithms significantly but adds a mea-
sure of noise robustness in the manner of rank-max open-
ings [13].

2. Path-based morphological opening

The theory of path openings is explained in detail in [5]
and in a shorter fashion in [4]. We only summarize the
main points here.

2.1. Definitions

Let E be a discrete 2-D image domain, a subset of Z2.
Then B ¼ PðEÞ ¼ 2E is the set of binary images and
G ¼TE the space of grey-scale functions, where T is the
set of grey-values. We assume E is endowed with an adja-
cency relation x ´ y meaning that there is a directed edge
going from x to y. Using the adjacency relation we can
define the structuring function d(x) = {y 2 E, x ´ y}.
The L-tuple a = (a1, a2, . . ., aL) is called a d-path of length

L if ak+1 2 d(ak) for k = 1, 2, . . . , L � 1. Given a path a in
E, we denote by r(a) the set of its elements, i.e: r (a1, a2, . . . ,
aL) = {a1, a2, . . . , aL}. We denote the set of all d-paths of
length L by PL and the set of d-paths of length L contained
in a subset X of E is denoted by PL (X).

2.2. Adjacency graphs

In the following, we shall define morphological opera-
tors using families of paths as structuring elements. These
paths shall be defined on adjacency graphs. The layout of
this graph is of course of critical importance. In theory it
can be arbitrary. However, in practice it shall be most com-
monly repetitive and bound to the discrete grid. The main
reason for this is that practitioners most commonly wish
morphological operators to be translation-invariant. If
the layout of the adjacency graph is translation-invariant
for whole pixel translations, then any associated path oper-
ator also shall be.

Simple examples of adjacency graph are the familiar 8-
connected – shown on Fig. 2(a), and 4-connected graphs
associated with the square grid. However, paths in such a
Lines Path

ile eliminating compact noise. Only the path opening works in this case.
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Fig. 2. Some examples of adjacency graphs: (a) 8-connected graph, (b) S–N 90� graph, (c) SW–NE 90� graph, (d) S–N 45� graph.
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graph follow no particular pattern, and would not possess
any particular orientation. Morphological operators using
such paths would simply reduce to connected area opera-
tors. A contrario, using an adjacency graph consisting only
of either vertical or horizontal edges would result in the
familiar operators with respectively vertical or horizontal
line segments.

In contrast, using as underlying graph that of Fig. 2(b),
valid paths on such graphs are constrained at each of the
path vertex to entirely fit in a 90� angle cone oriented
south–north (SN), as shown in Fig. 3. These are clearly ori-
ented but not necessarily perfectly straight. Similarly the
graph of Fig. 2(c) constrains paths to fit in a 90� angle cone
oriented SW–NE.

As path operators fit in their usefulness in between con-
nected area operators and operators with segments as SE,
practitioners might elect to vary the adjacency graph to
be closer to one extreme or the other. For example the
graph of Fig. 2(d) constraints paths to fit in a narrower
S–N cone, of aperture close to 45�. This will result in path
operators closer in their effects to operators with line seg-
ments as SE. Note that operators using this graph alone
will not be translation-invariant, because the graph itself
is not. Nevertheless the supremum (resp. infimum) of path
openings (resp. closing) using the same graph shifted one
pixel row down shall be translation-invariant.

It should be noted that in the following adjacency
graphs shall be oriented out of necessity, as we will not
allow paths to back down on themselves, but that the
choice of global orientation is arbitrary. In other words,
pointing all the arrows down instead of up in the graph
of Fig. 2(b) would result in the same operators.

2.3. Path openings

We define the operator aL(X) as the union of all d-paths
of length L contained in X:
Fig. 3. Valid path with the the adjacency graph of Fig. 2(b).
aLðX Þ ¼
[
frðaÞ; a 2 PLðX Þg ð1Þ

It is easy to establish that aL has all the properties of an
opening. Fig. 4 offers an illustration using the adjacency
graph of Fig. 2(b). For this graph, if X ¼ E ¼ Z2, there
are 3L�1 distinct paths of length L starting from any point.
For bounded image this number may vary due to edge ef-
fects, but remains true far enough from the edges. The path
opening aL is in fact the union of the morphological open-
ing using these paths as structuring elements, which would
suggest an inefficient way to compute the operator. Fortu-
nately, [5] proposes a useful recursive decomposition which
allows the operator aL to be computed in linear time with
respect to L. Clearly path openings will depend on the
choice of adjacency, as discussed in the previous
subsection.

In the remainder, for simplicity, we refer almost exclu-
sively to the S–N 90� adjacency of Fig. 2(b) and its 90-de-
gree rotations.

2.4. Threshold decomposition

Let X be a binary image, i.e. an element B. We use the
Boolean indicator function b defined on Z2 as follows:

bðxÞ ¼ true; if x 2 X

¼ false; if not:

Given a grey-scale image g 2 G, a threshold operator Tt:
G! B with threshold t, and a binary opening cB :
B! B,there exists a grey-scale opening cG: G! G such
that for all thresholds t we have Tt�cG = cB �Tt, where �
is the composition operator.

This grey-scale opening cG(g) may be constructed explic-
itly by ‘stacking’ the results of the binary opening applied
Fig. 4. A set X ˝ E (black points on the left) and its opening a6 (X) (black
points on the right). Unfilled points on the right have been discarded. The
underlying adjacency graph is in light grey.
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to each threshold of the original image. This stacking
assigns to each pixel p the highest threshold t for which
the binary opening cB�Tt(g) is true.

2.5. Grey-level operator and practical considerations

The binary operator defined in earlier sections extends
to the grey-level domain by threshold decomposition. The
recursive decomposition in [5] also extends to the grey-level
domain in the same way.

In order for path openings and closings to be useful in a
context where features of interest are arbitrarily oriented,
one must compose paths openings and closing in the usual
way through supremums and infimums (resp.), much in the
same way as when using straight segments as structuring
elements [11]. However, in order to achieve acceptable lev-
els of isotropy with path operators, far fewer compositions
are necessary.

By definition of a path opening with the adjacency
graph of Fig. 2(b), only features containing valid paths
according to that graph – i.e. oriented South–North
within a 90� cone, shall be preserved by the opening.
By taking the supremum with the same adjacency graph
rotated 90�, clockwise for example, one would also pre-
serve paths oriented East–West in the opening. Recall
from Section 2.2 that the direction of the arrows in the
graph does not matter as long as it is consistent. To fur-
ther improve isotropy, one can also use the adjacency
graphs of Fig. 2(c) and its 90� rotation and their corre-
sponding openings.

As described earlier, one can also use adjacency graphs
such as that of Fig. 2(d), which is more constraining, as
paths must fit in a narrower cone. In this case, to achieve
acceptable levels of isotropy one must compose operators
with rotated versions of that graph.

3. Ordered algorithm

The grey-scale path opening algorithm presented in
this paper is based on a few simple observations. First,
the principle of threshold decomposition allows the con-
struction of grey-scale morphological operators from
binary morphological operators. Second, in the case of
grey-scale path openings it is possible to efficiently com-
pute the set of binary path openings for all thresholds in
sequence.

3.1. Updating binary path lengths

The second observation is that the binary images pro-
duced in this construction tend to change little between
sequential thresholds. In the case of path openings we will
show how to efficiently update the result of the binary
opening cB�Tt(g) from the result of the binary opening at
the previous threshold cB�Tt�1(g).

For brevity we here describe only the case of the
90-degree S–N adjacency of Fig. 2(b). In this case, for
a binary image b we store at each pixel p two values:
the length k�[p] of the longest path travelling upward
from pixel p ( not including p itself), and the length
k+[p] of the longest path travelling downward from pixel
p. Then the length of the longest path passing through
pixel p (where b[p] = true) is k[p] = k�[p] + k+[p] + 1. If
b[p] = false then we set k[p] = 0. The recursive computa-
tion of k� and k+ is described in details in [5]. Here, in
short, we may state that in the stated case, for
b[p] = true,

k�½p� ¼ 1þmax k�½ðp1 � 1; p2 þ 1Þ�; k�½ðp1; p2 þ 1Þ�;
k�½ðp1 þ 1; p2 þ 1Þ� ð2Þ

and

kþ½p� ¼ 1þmax kþ½ðp1 � 1; p2 � 1Þ�; kþ½ðp1; p2 � 1Þ�;
kþ½ðp1 þ 1; p2 � 1Þ� ð3Þ

For b[p] = false, k�[p] and k+[p] are both 0. In both these
equations p1 denotes the first coordinate of p, and p2 the
second, i.e. the coordinates of p are (pl,p2).Note that we
are actually computing the opening transform for a given
threshold, i.e. the operator that associates to each pixel
the length of the longest path going through that pixel
[10]. The path opening is obtained by thresholding this
opening transform image at a given parameter length L.

Now, in order to update the binary opening cB�Tt(g)
given the result from the previous threshold cB�Tt�1(g),
we must compute the new binary opening transform k
and hence k� and k+. Rather than recomputing these from
the image b = Tt(g),we may compute the changes to k� and
k+ due solely to the pixels which made the transition from
true to false between Tt�1(g) and Tt(g). This is performed in
the following steps:

Algorithm 3.1 (Updating k� and k+).

n Initialisation:

– Set all pixels with g[p] = t to active and enqueue

n For each row from top to bottom:
– For all active pixels p in this row:
* Recompute k�[p] according to Eq. (2)

* If k�[p] changed, set as active and enqueue the
dependent pixels (p1 � 1,p2 + 1), (p1,p2 + 1),
(p1 + 1,p2 + 1)

n For each row from bottom to top:
– For all active pixels p in this row:
* Recompute k+[p] according to Eq. (3)

* If k+[p] changed, set as active and enqueue the
dependent pixels (p1 � 1,p2 � 1), (p1,p2 � 1),
(p1 + l,p2 � 1)

The queueing system for active pixels consists of a first-
in-first-out (FIFO) queue for each row as well as a queue of
rows which contain active pixels. This queueing system is
necessary to comply with the dependencies in Eqs. (2)
and (3) and also avoids inefficiently scanning the entire
image.
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3.2. Recursive ordered path opening

Here, we use the preceding updating method to compute
the grey-scale path opening. L denotes the desired path
length. Note that, as we are interested in the specific path
length L, path lengths k�, k+ greater than L � 1 may be
treated as equal to L � 1 in Algorithm 3.1 – that is, k�[p]
and k+[p] are not considered ’changed’ if their value
increase above L � 1. This limits the propagation of chang-
es to the binary opening transform and hence improves the
efficiency of the grey-scale path opening.

Algorithm 3.2 (Recursive ordered path opening).

n Initialisation:

– Sort the pixels by their intensities
– Set b[p] = true for all pixels p

– Compute k+, k� from b

n For each threshold t in T:
– Using Algorithm 3.1, update k�, k+ for the new
threshold
– For all active pixels p whose path length k[p]
became shorter than L as the result of the update,
set cG(g)[p] = t

Sorting the pixels by their intensities is a necessary pre-
processing step in order to efficiently locate the pixels
whose threshold changes in the step t � 1 fi t. For integer
data a linear-time sorting algorithm such as the Radix sort
is recommended [8]. Alternatively a suitable priority queue
data structure [2] can be used.

A simple heuristic has been found to further improve the
efficiency of this algorithm in practice. When the maximal
path length of a pixel p drops below L, it cannot contribute
to a path of length L or greater at any further threshold.
Therefore we may remove this pixel from further consider-
ation by setting b[p] = false. We refer to this as the length

heuristic in the remainder of this paper. We believe that
the average running time of this algorithm is O(N logL)
on images containing N pixels. However, the formal deri-
vation of this average running time would require the selec-
tion of an appropriate stochastic image model and is not
pursued in this paper.

Note that Algorithm 3.2 works for arbitrary integer
data, not necessarily unsigned (positive) data types. In par-
ticular the zero threshold holds no special significance. In
practice images use discrete data types, so we have a finite
number of thresholds to process. We start at the threshold
immediately below the global minimum of the image. Start-
ing at the global minimum threshold is also valid but saves
little time in practice.
4. Grey-scale opening transform

The algorithm presented in Section 3.2 may be extended
in a simple manner to compute the grey-scale path opening
transform. Recall from Section 3.1 that the binary opening
transform, in this instance, is the operator which at each
pixel associates the length of the longest path going
through that pixel. Here the grey-scale path opening trans-
form associates a whole vector to each pixel. That vector
contains the lengths of the longest path going through it
for each successive threshold.

The binary opening transform is typically used to effi-
ciently compute granulometries. Indeed the histogram of
the binary opening transform image is exactly the granul-
ometry curve of the original image. Unfortunately, there
is no such simple relationship in the grey-scale case. How-
ever, useful operators based on the grey-scale opening
transform using simpler structuring elements have been
proposed in the literature, for example in [23,22].

In the course of Algorithm 3.2, the path opening trans-
forms for all binary thresholds were computed in sequence.
Instead of discarding these intermediate results we may store
them in compressed form allowing them to be queried at a
later time. At each threshold, those active pixels whose
maximal path length k[p] has decreased store a point
(t,k[p]) in a linked list. This linked list is monotonically
increasing in t and monotonically decreasing in k[p] Once
computed, we may query this structure with any desired path
length to extract the associated grey-scale path opening.

Algorithm 4.1 (Recursive ordered path transform).

n Initialisation: As per Algorithm 2.2
n For each threshold t in T:
– Using Algorithm 3.1, update k�, k+ for the new
threshold.
– For all active pixels p whose path length k[p]
decreased, append the node (t, k[p]) to the linked list
at pixel p.

This algorithm requires the same order of computation as
Algorithm 3.2, that is O(N logL). The number of linked list
nodes generated in Algorithm 4.1 must be less than the
number of operations in Algorithm 3.2, and therefore the
average memory required by Algorithm 4.1 is O(N logL).
This may also suggest that path openings are inherently
informative, as we may store all path openings in O(log L)
bytes per pixel rather than O(L) as may be initially expected.
5. Incomplete paths

We also consider the case of incomplete paths, both
binary and grey-scale, as defined in [5]. Paths openings with
increasing L are also increasingly sensitive to noise, as long
paths are more likely to contain noisy pixels. In order to
decrease the sensitivity to noise, it is useful to allow a few
pixels to be ignored along the structuring paths.

This is precisely what the rank-max opening achieves
[13]. It has proved to be useful [6] and workable especially
when using line structuring elements [16]. However, the
rank-max opening implementation relies on being able to
compute an arbitrary rank filter using the chosen structur-
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ing element as a window. It is a challenging task to imple-
ment this efficiently when using paths for windows.

Heijmans et al. [5] discuss and provide an incomplete
path operator algorithm whose complexity is in O(NLK),
where N is the number of pixels in the image, L the length
of the paths and K the tolerance, i.e. the number of pixels
that are allowed to be ignored along the paths.

In effect, the result is an opening (or a closing) using a
family of paths of length L which can have as many as K

missing pixels at arbitrary locations along the way, includ-
ing the extremities. It is clear that this family of SE is even
larger that the family used for regular (or complete) path
opening, and that the Heijmans et al. implementation is a
tremendous improvement over a trivial implementation
which would use the supremum of morphological openings
over this family.

However, we can implement the incomplete opening in
the same way as in the previous section, in an ordered fash-
ion, at the cost of significantly increased bookkeeping.
Since for each missing pixel in the path, each path might
be split into two subpaths, we need to track changes in each
of these as we go up the grey levels. The bookkeeping, and
the memory requirements costs are therefore proportional
to K.

For example, for a tolerance of a single missing pixel, we
assume the path is made of two sub-paths, one of which
can be of 0-length, and a gap pixel. In Algorithm 3.2,
instead of a single path to update, we have an array of
two. As we to up in the threshold we update both.

5.1. Incomplete path opening algorithm

Here we need to give new versions of the updating equa-
tions of Section 3.1. Eq. (2) becomes

if b½p� is false : k�½p; k� ¼1þmax

k�½ðp1 � 1; p2 þ 1Þ; k � 1�;
k�½ðp1; p2 þ 1Þ; k � 1�;
k�½ðp1 þ 1; p2 þ 1Þ; k � 1�

0
B@

1
CA ð4Þ

else : k�½p; k� ¼1þmax

k�½ðp1 � 1; p2 þ 1Þ; k�;
k�½ðp1; p2 þ 1Þ; k�;
k�½ðp1 þ 1; p2 þ 1Þ; k�

0
B@

1
CA

i.e. if b[p] is false, then we penalise the path accordingly and
inherit the path length from the path with k � 1 gaps.
Apart from this change the updating algorithm is identical
to Algorithm 3.1, and we inherit the path length from the
path with k gaps. Note that when k = 0, we interpret k
[p(� � �),�1] as zero length. In this way we can see that it col-
lapses back to the old algorithm for zero gaps.

Eq. (2) is modified likewise for k�[p,k].

Algorithm 5.1 (Incomplete path opening).

n Initialisation:

– Sort the pixels by their intensities
– Set b[p] = true for all pixels p
– Set k+[p,k], k�[p,k] to maximum for every pixel.

n For each threshold t in T:
– For each k in increasing order, apply Algorithm 3.1
to update k�[p,k], k+[p,k] for the new threshold.
– For all active pixels p whose path length
k[p] = maxk{k�[p,k] + k+[p,K � k � �b[p]]} became
shorter than L as the result of the update, set cG(g)
[p] = t

In the computation of k[p], K is the maximum number of
gaps, k the current number of gaps in the upward path, �b[p]
is the negation of b[p], and true = 1, false = 0 where neces-
sary in the interpretation of b[p]. This is considering all pos-
sible arrangements of the K gaps over the up/down paths,
partitioned as follows:

n The upward path (including the pixel p) has k gaps in it
n The downward path (including the pixel p) has K � k

gaps in it
n b[p] itself may indicate an extra gap, hence the com-

plexity of the k+ expression

6. Results

Here we present results regarding the regular (or com-
plete) path opening and the incomplete version.

6.1. Complete paths

An example of use is shown in Fig. 5. We wish to detect
the small thin fibres in this electron micrograph present at
the bottom of this image. The large fibres are detected by a
different method [18] which is of no interest here, and
removed from the image, so as not to perturb the detection
of the small fibres. The thin fibres are present on a noisy
background which requires some filtering. A supremum
of openings by lines is too crude here (result not shown).
An area opening does not eliminate enough of the noise,
but a complete path opening works as expected.

6.2. Opening transform

We give an example of the use of the opening transform.
In Fig. 6, we have computed the binary opening transform
of the noisy top-hat image of Fig. 5.

In this figure, (a) is the result of the transform. Each
path is associated with its length, thus longer paths appear
brighter, (b) is the granulometry curve, obtained from the
cumulated histogram of this image, which can be used
for image classification or finding an appropriate length
threshold automatically. For example, thresholding at the
first plateau allows the user to eliminate all the short paths
noise and yields the same result as the final image in Fig. 5.

6.3. Incomplete paths

Here we give two examples for the use of incomplete
paths.



Input Noisy top-hat

Area opening Path opening

Fig. 5. Electron micrograph of glass fibres: to detect the small thin fibres in the bottom of the image, a white top-hat is useful but noisy. When this top-hat
image is filtered by an area opening some compact noise remains while a path opening yields a better result.
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Fig. 6. (a) The opening transform of the noisy top-hat image of Fig. 5. (b) The granulometry curve, obtained from the histogram of (a).
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6.3.1. Illustrative example

Again we use an artificial but perhaps more interesting
example as an illustration. In Fig. 7(a) we have an example
image of lines and curves, corrupted by heavy noise in (b).
A supremum of openings using straight lines as structuring
elements of total length 21 pixels, covering all discrete ori-
entations recovers eliminates all information (not shown).
Similarly, as shown in Fig. 7(d), a complete path opening
with the same length eliminates most of the information.
If instead of a regular opening, a rank-max opening with
tolerance 2 pixels is used, most of the noise is eliminated,
and the two straight lines remain, as shown in Fig. 7(c).
However, some random noise pixels happen to be well
aligned, and so some artifacts are generated at the bottom
of the image. These would be very difficult to eliminate by
further filtering.

Using an incomplete path opening of the same length as
before, but with tolerance 2 pixels, we recover the data
shown in Fig. 7(e). Most of the noise is eliminated and both
lines and the curve are still in the data. Further filtering
(e.g. dilation followed by thinning) can be used to recover
the lines and curve even better if needs be.

6.3.2. Application to music OCR

As a realistic illustration, we use an experimental music
OCR system currently in development at ESIEE. The idea
behind music OCR is to be able to convert sheet music to
exploitable digital data, in the same way standard OCR is
used for text.

Fig. 8(a) shows a small portion of a musical sheet. All
processings are performed in grey-levels. The objective is
to segment all the components of the music as image ele-
ments for later recognition. For example we can readily
extract beams in Fig. 8(b), and note and alteration stems
in Fig. 8(c). Other elements which do not intersect others
are also relatively easy to segment, such as the lyrics or



Fig. 7. Artificial example of (a) straight lines and a thin curve, which are (b) corrupted by heavy salt and pepper noise (15% of each). Foreground is black.
A supremum of rank-max openings (c) with line structuring elements recovers the straight line at the expense of some artifacts. A complete path opening
(d) recovers very little, while an incomplete path opening with a tolerance of 2 pixels (e) recovers both lines and the curve.

Fig. 8. A few steps in a music OCR system–slur segmentation, (a) original image; (b) beams; (c) stems; (d) residues; (e) incomplete path closing on
residues, length = 80, tolerance = 5; (f) final slurs by thresholding. Note that all processing is done on the grey-level information.
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various elements above and below the main beams (not
shown).

However, ties and slurs on the main beams have proved
difficult to segment, as they are not straight elements and
intersect with others. One possible method to segment them
is to remove the stems from the notes, as in Fig. 8(d). In
this image remain only compact elements and the ties/slurs.
However, because of the use of the difference operator, the



Table 2
Comparison for complete/incomplete path openings

Algorithm COPO SRMO IOPO IOPO IRPO IRPO
Tolerance K= 0 K = 3 K = 1 K = 3 K = 1 K = 3

L = 1 0.56 0.20 5.9 11.3 21.3 39
L = 5 0.69 0.92 11.1 24.2 59 120
L = 10 0.73 1.80 12.0 27.6 123 283
L = 50 0.90 4.8 14.6 34.5 576 1560
L = 100 0.93 19.1 15.3 37.1 1200 3100

From left to right the columns are COPO, the complete ordered path
opening; SRMO, the supremum of rank-max opening with lines, toler-
ance = 3; IOPO, the incomplete path opening with tolerance 1 and 3 pixels
from this article and IRPO the incomplete recursive path opening with
tolerance 1 and 3 pixels from Heijmans et al. Timings are in seconds,
image was 560 · 510 · 8-bit. Processor was a single Pentium IV 1.7 GHz.
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slurs do not form connected elements anymore, and of
course they are still elements of a curve rather than a
straight line.

Using a incomplete path closing we can eliminate all
compact ‘‘noise’’ (the notes in that case) and keep the slurs
mostly intact, as shown in Fig. 8(e). Thresholding and the
use of a closing by a 2 · 2 square SE yields the slur segmen-
tation, as shown in Fig. 8(f). Note that we do find the full
extension of the slurs in spite of the gaps.

6.4. Timings

6.4.1. Complete openings/closings

Table 1 shows the running times of the complete pro-
posed algorithm compared with various alternatives. We
observe that the proposed ordered path opening implemen-
tation has a running time approximately logarithmic (plus
a constant) with respect to L, while both the recursive path
opening and the supremum of openings by lines have
approximately linear running times. Note that the individ-
ual openings by lines in the latter algorithm are all running
in constant time irrespective of L, but for larger L more ori-
entations need to be explored. Note also that the presented
algorithm for the supremum of opening by lines is a non-
translation-invariant implementation. A translation-invari-
ant version would be significantly slower still. The area
opening algorithm seems to converge to a constant-time
algorithm with low constant. The area parameter was sim-
ply L, although a constant times L could have been chosen,
e.g. 3 · L without significantly affecting the result.

Memory demands for these algorithms are all low except
the recursive path opening implementation which requires
an amount of memory proportional to LN, with N the
number of pixels in the image.

We observe that the area opening is the fastest algorithm
by far, but that the presented path opening algorithm
comes second, a factor of between 4 and 5 times slower
than the area opening, however still significantly faster
than the other two algorithms for most useful values of L.

6.4.2. Incomplete openings/closings

Table 2 shows the running times of the proposed incom-
plete, ordered path opening compared with various rele-
vant algorithms. First the complete path opening
Table 1
Comparison for complete path openings

L Ordered PO Recursive PO Supremum lines Area

1 0.56 0.08 0.14 0.13
5 0.69 0.54 0.65 0.17

10 0.73 1.16 1.38 0.17
50 0.90 14.24 3.29 0.21

100 0.93 30.74 11.43 0.22

From left to right the columns are the ordered complete path opening
presented in this paper, the recursive path opening of Heijmans et al., the
supremum of openings by lines and the area opening. Timings are in
seconds, image was 560 · 510 · 8-bit. Processor was a single Pentium IV
1.7 GHz.
presented earlier, then a supremum of rank-max openings
with lines as structuring elements, and finally the same
incomplete path openings but implemented with the algo-
rithm of Heijmans et al.

We observe that the incomplete ordered path opening
(IOPO) is much slower than the complete version, The run-
ning time of the incomplete opening is approximately 10*k

that of the complete version, and so we verify experimen-
tally the expected complexity of the algorithm.

We also observe that the IOPO is generally slower than
using a supremum of rank-max openings (SRMO) with lines,
except for small K and large L, which is to be expected since
the complexity of the SRMO with lines is O(LN). SRMOs
running time are also independent of K (for K > 0). We
should note that the IOPO algorithm does something signif-
icantly more complicated and flexible than the SRMO.

As well, the proposed ordered algorithm is much faster
than the previously available recursive algorithm of Heij-
mans et al., by a factor of 4–80, depending on L.

6.5. Discussion

Results obtained by path openings depend greatly on
the adjacency graph. It is for example possible to define
narrower or wider cones for paths as discussed in [5]. Using
narrower and more numerous cones one can define paths
that are increasingly similar to lines, and hence obtain
results similar to those obtained by regular openings by
unions of line structuring elements. Using fewer and wider
cones one can obtain results more similar to area openings.

In the results above we used 90� angle cones which are
easy to implement and seem to strike a good balance
between area openings and line-based openings.

7. Conclusion and future work

We have presented new, ordered implementations of the
complete and incomplete path opening and closing opera-
tors. These operators are identical to the supremum (resp.
infimum) of openings by a family of structuring elements
described as oriented paths, possibly with a limited number
of missing pixels along the way. The family of paths is of
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exponential size with respect to both their length L and K,
the number of allowed missing pixels. However, a recursive
implementation with only linear complexity with respect to
L and K is available in the literature.

We have proposed a new implementation with an experi-
mental logarithmic complexity with respect to L and linear in
K, which is observed to be much faster than the recursive
implementation except for very small L. It is also faster than
the usual operator by unions of lines structuring elements
used for the study of thin structures, at least for small K.

For the complete operator, area operators are still faster
than the proposed implementation, by a nearly constant
factor of 4–5. However, the proposed algorithm is fast
enough for many applications and can be used in cases
where using an area or attribute operator is not appropri-
ate, e.g. in the presence of sufficiently large compact noise.

For the incomplete operator, comparison with the area
operator is not appropriate. The only comparable, but less
flexible operator is the rank-max opening using lines as SE.
A union of such operators along a large number of orien-
tations yields conceptually similar, but in practice signifi-
cantly different results. For small K and large L, our
proposed implementation yields comparable running
times, but in other cases the rank-max based operator is
faster. However, the proposed implementation is always
much faster than the recursive algorithm available in the
literature, and the gap increases with L.

The path operators are intuitive methods useful for the
analysis of thin, elongated but not necessarily perfectly
straight structures. The present implementation is fast
enough for application use, at least in the complete path
version. The incomplete version provides a powerful oper-
ator useful in the presence of noise or for intricate prob-
lems involving thin curves, but the present version is
probably still too slow for day-to-day use.

Future work will include studying ways to use the rank
operator in a manner similar to the rank-max operator to
render incomplete path operators independent on K.
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