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Abstract: This paper presents an efficient model for
automatic detection and extraction of blood vessels in
ocular fundus images. The model is formed using a
combination of the concept of ribbon snakes and twin
snakes. On each edge, the twin concept is introduced
by using two snakes, one inside and one outside the
boundary. The ribbon concept integrates the pair of
twins on the two vessel edges into a single ribbon. The
twins maintain the consistency of the vessel width,
particularly on very blurred, thin and noisy vessels.
The model exhibits excellent performance in extract-
ing the boundaries of vessels, with improved robust-
ness compared to alternative models in the presence
of occlusion, poor contrast or noise. Results are pre-
sented which demonstrate the performance of the dis-
cussed edge extraction method, and show a signifi-
cant improvement compared to classical snake formu-
lations.

Introduction

Vessel segmentation algorithms are a critical compo-
nent of blood vessel analysis systems. The segmentation
of vascular structures plays an important role in diagno-
sis, surgery and research, in many important systematic
diseases such as diabetes and hypertension. Furthermore,
the vascular tree seems to be the most appropriate repre-
sentation for image registration applications.

A number of authors have investigated the use of
active contour models in retinal vascular segmentation.
However, none have reached the level of performance re-
quired for robust automatic detection of the entire net-
work of blood vessels, which is needed for measurement
techniques used for identifying and grading the sever-
ity of diabetic retinopathy. We have thus introduced a
new parametric active contour model called a ribbon of
twins. Our model uses the Gradient Vector Flow method
– which provides good performance through concavi-
ties and noise features; the “twin” method – which uses
two contours coupled by spring models to overcome ini-
tialization and localized feature problems; and the “rib-
bon” method, which couples two snakes with a consistent
width parameter. Our model integrates these features to
form a novel hybrid model.

Parametric contours

In the parametric approach, an active contour [1] is
represented as a curve or spline, v(s) = (x(s),y(s)), where

v is a “vertex” and x and y represent the coordinates of the
vertices and are functions of the normalised arc length
0 ≤ s ≥ 1. The active contour has a dynamic behaviour
that deforms from an initial position and hopefully con-
verges to the boundary of the object. The energy func-
tional E∗snake composed of energy terms defines this be-
haviour:

E∗snake =
∫ 1

0
Esnake(v(s))ds (1)

=
∫ 1

0

(
Eint(v(s))+Epho(v(s))+Eext(v(s))

)
ds (2)

– where Eint is the internal energy term that is based
on the curve itself, which is designed to keep the model
smooth during deformation; Epho is the photometric en-
ergy term that arise from the image information, which is
defined to move the model toward an object boundary or
other desired feature within an image; Eext is the external
energy term that is proposed to improve the capture range
of the photometric force.

Internal energy

The internal energy consists of a first order term and
a second order term [1].

Eint =
α(s)|v′(s)|2 +β (s)|v′′(s)|2

2
(3)

where v
′
(s) and v

′′
(s) denote the first and second deriva-

tive respectively, and parameters α and β are the coeffi-
cients of the internal energy term and represent tension
and rigidity, respectively.

Photometric energy

The photometric energy is derived from the image to
attract the snake toward desired objects such as bound-
aries. Given a grey-level image I(x,y),the photometric
energy leading an active contour towards edges is defined
by [1]:

E(1)
pho =−|∇I(x,y)|2 (4)

E(2)
pho =−|∇(Gσ (x,y)∗ I(x,y))|2 (5)

where Gσ (x,y) is a two-dimensional gaussian filter with
standard deviation σ ,∇ is the gradient operator, and ∗ is
the 2D image convolution operator. The blurred gradi-
ent based approach has a number of limitations. First,



in boundary concavities the gradient vectors point in op-
posite directions and may cancel under smoothing [2].
Second, the algorithm has a limited capture range as
the magnitude of the photometric force dies out quite
rapidly away from the object boundary. Increasing σ ,
the smoothing filter size, increases this range but at the
cost of less accurate and distinct boundary localization,
ultimately obliterating concavities when σ becomes too
large [2].

Alternative formulations have been suggested to over-
come the limitations of the basic gradient formation.

Distance potential forces [3] were proposed to im-
prove the capture range of the photometric force. In this
approach, a thresholded edge map (a binary image) is
generated. A potential function is computed using a Eu-
clidean (or chamfer) distance map, which is based on the
image information, and the negative gradient of this is
used.

Fext =−∇P(v) (6)

The Euclidean distance map can be computed in different
ways, for example [3]:

P(v) =−ed(v)2
(7)

where d(v) is the distance between a point v on the im-
age and the nearest image edge pixel that is detected by
an edge detector. The attraction potential force does not
change the direction of the forces, only their magnitudes.
Therefore, the problem of convergence to boundary con-
cavities is not solved [2].

A more sophisticated approach is the Gradient Vec-
tor Flow (GVF) algorithm [2]; which provides a large
capture range for the boundary, so the active contour
does not have to be initialized close to the boundary.
It also improves active convergence in concavities [4].
The GVF field is defined to be the vector field V(x,y) =
[u(x,y),v(x,y)] that minimises the energy functional (ε):

ε =
∫ ∫

µ(u2
x +u2

y + v2
x + v2

y)+ |∇ f |2|V−∇f|2dxdy.

(8)

f (x,y) =−Epho(x,y) (9)

where f (x,y) is the photometric energy term that can be
the gradient of the image, and µ is a weighting param-
eter, also called a regularisation factor [2]. This is used
to manage the trade off between the two terms of the in-
tegrand. When |∇ f | is small (e.g. in homogeneous re-
gions), the energy functional is dominated by the first
term (smoothing term) yielding a slowly varying field.
However, if |∇ f | is large, the second term dominates the
integrand, and the term is minimised when V = ∇f. The
choice of µ depends on the amount of noise in the image
– the more noise in the image, the larger µ should be,
since in the presence of noise the gradient increases and
µ should increase to control the trade off between the first
and second terms in 8. However, GVF sometimes led to

edge delocalisation for boundary regions with low con-
trast and for boundary regions between nearby structure
[5]. The parameter µ should be as small as possible be-
cause as it increases edge delocalization gets worse.

External energy

The External energy is used to provide high-level
guidance to the active contour, to expedite convergence
to the boundary and improve the capture range of the im-
age force [6], and to compensate for problems such as a
close-up of the Photometric force field within a boundary
concavity. The most popular external energy terms are
discussed below.

Springs and volcanoes were introduced by [1] as user-
defined constraints that can be applied to an iterating ac-
tive contour. A spring pulls the vertex toward itself with
a force proportional to the distance between the spring
point and the vertex:

Espring =−k(p− vi)2 (10)

where p and v are positions of the spring and the ver-
tex, respectively, and k is a weighting factor. A volcano
creates an expansive force that is applied to all vertices
from a point c inside the region of interest. At each ver-
tex this force is inversely proportional to the distance be-
tween point c and the vertex. A volcano is defined as:

Evolcano =
1
r2 (11)

where r is the distance between point c and the vertex.
A pressure force or balloon model [7] was proposed

as a external force to improve the capture range of the
gradient. The pressure force is independent of the image
information and defines the direction of the active con-
tour deformation by inflating or deflating it. Using this
technique, the external force is composed of the Photo-
metric and the pressure forces:

Fext = kpressuren(s)−k
Fphot

||Fphot||
(12)

where kpressure is the pressure weighting and its positive
or negative sign leads the active contour to inflate and de-
flate, respectively; n(s) represents the unit vectors normal
to vertices; k is the photometric force weighting where
the photometric force is the gradient of the image.

The Dual Active Contour algorithm[8] was proposed
as an external force (spring force) to overcome the pri-
mary problems of sensitivity to initialisation and unde-
sirable convergence to insignificant localised or region-
alised features [8]. An interior contour lies within the
region of the desired feature and an exterior contour out-
side it. The two contours are coupled using springs which
cause them to be attracted to each other in addition to
suitable image features. The spring force is controlled by
λ ,

Eext(v(s)) = λ
1
2
(v(s)−mean(s))2 (13)



where mean(s) is the mean contour of the interior and
exterior contours.

mean(s) =
1
2
(inner(s)+outer(s)) (14)

The Dual snake includes a shape factor that forces the
snake to adjust to a specific form (e.g., a circle).

The Central contour model and pressure contour
model [9] were proposed to simplify the computational
procedure. The central point model relies on the idea that
motion of the contour points takes place along a predeter-
mined number of fixed equally spacial radial lines which
originate from an arbitrarily chosen contour centre point.
The model tries to control forces on vertices with respect
to the radial distance of snakels from the central point.
Spatial co-ordinates of each contour snaxel can be com-
puted from the following relationship:

x(s) = x0 + r(s)sin
2πs
Sm

y(s) = y0 + r(s)cos
2πs
Sm

(15)

where x0, y0 are the co-ordinates of the arbitrarily chosen
contour central point, Sm is the number of contour snax-
els, s is the snakel number, i.e. s = 0,1, ...,Sm−1 and r(s)
is the radial distance of snaxel s from the central point.
The pressure contour model aimed to extend active con-
tour capabilities when the edges of complex shapes need
to be extracted. The directions of the pressure forces have
to computed with high accuracy and the adjacent snaxels
should not be too close to each other so that the computa-
tion of the perpendicular direction to the contour is based
on a large contour fragment [9].

Sandwich snakes [10] [11] consists of two snakes
looking for the same contour; for closed contours one
snake is initially positioned inside the contour, and the
other outside the contour; both snakes have equal num-
ber of particles, the corresponding particles are connected
with a spring with an equilibrium length equal to zero.
The energy function for sandwich snakes includes a new
term in the internal energy; the coefficient α is equal to
zero to prevent the snake from minimizing its length [10].
The energy function of the sandwich snakes is:

E(p,q) = β ∑
i
|− pi−1 +2pi− pi+1|2

+β ∑
i
|−qi−1 +2qi−qi+1|2

+ γ ∑
i
|pi−qi|−λ [|∇M(pi)|+ |∇M(qi)|] (16)

where pi denotes the position of the ith particle for the
internal snake, and qi the position of the ith particle for
external snake. M(pi) is the M image evaluated at the pi
position.

The twin snake algorithm [12] is an extension to the
traditional snake, designed to detect two parallel contours
simultaneously, and is useful for line extraction in high

resolution imagery. Lines in the image have two bound-
ary contours close to each other; traditional snakes cannot
guarantee to detect exactly one of the two, and in fact the
extracted curve will jump between the two contours [12].
Therefore the twin snakes is used to find the two parallel
contours simultaneously. The external attraction force is
introduced as:

Eext(vi) = δi(di−d0)2 (17)

where δi is a weight factor, di is the actual distance to the
twin partner at point i and d0 the desired distance. The
method often fails when using snakes for line extraction
in high-resolution images [12]; unless the lines to be ex-
tracted can be defined as homogeneous, elongated areas
with two parallel contours; also the depicted lines must
have a width of at least three pixels, which guarantees
that the two contours of the line can be detected inde-
pendently [12]; this condition is not met in fine retinal
vessels.

Ribbon snakes [13] [14], used for road extraction, ex-
tend the original snakes with a width component, defined
as

~v(s, t) = (x(s, t),y(s, t),w(s, t)),(0≤ s≥ 1) (18)

where s is proportional to the length of the ribbon, t is
the current time, x and y are the coordinates of the cen-
terline of the ribbon, and w is the half width of the ribbon
measured perpendicular to the centerline. For each slice
of the ribbon~v(s0, t0) there exist two points~vL(s0, t0) and
~vR(s0, t0) corresponding to the ribbons left and right sides.
The position of these points which are composing the rib-
bons boundaries can be expressed as:

~vR(s, t) = w(s, t)~n(s, t)
~vL(s, t) =−w(s, t)~n(s, t) (19)

where~n(s, t) is the unit normal vector of the ribbon’s cen-
terline. The photometric term is:

p(~v(s, t)) = |∇I(~vR(s, t))|+ |∇I(~vL(s, t))| (20)

The function can be redefined [13] [14] as

p(~v(s, t)) = (∇I(~vL(s, t))−∇I(~vR(s, t))).~v(s, t) (21)

Ribbon of Twins

We introduce a new parametric active contour model
suitable for segmentation of retinal vessels and other fine,
noisy, linear structures. Two twins of contours represent
a ribbon along a vessel, with one twin on each edge of
the vessel. Each twin consists of two contours, one inside
and one outside the vessel. Each contour consists of a
number of nodes. Corresponding nodes on the four con-
tours are connected together to form a single integrated
model. The two outside contours are connected by pull
forces to the inside contours, while the inside contours
are connected by push forces to each other; see Figure 1.



Figure 1: A Ribbon of Twin Diagram

The model is suitable for extracting vessels, roads or
any tunnel shape. This model was tested on retinal ves-
sels; we assumed that a segment of vessel has approx-
imately parallel straight boundaries. We used the four
contours to extract a segment-vessel boundary, The en-
ergy of four contours are defined as:

E pos
contour =

∫ 1

0

(
E pos

int (v(s))+E pos
pho(v(s))+E pos

ext (v(s))
)

ds

(22)
– where pos ∈ re,ri, le, li which refers to the position

of the contours which are right external contour, right in-
ternal contour, left external contour and left internal con-
tour. The internal energy is described in equation 3. The
photometric energy is modified to

Epho =−|GV F( f (x,y)|2 (23)

where f (x,y) is a photometric energy which is defined as

f (x,y) = Gσ (x,y)∗ I(x,y) (24)

The external energy includes two different terms: the
“push” and “pull” energies. The push energy is used in-
side the vessel to push contours toward interior boundary
of the vessel and to maintain its width consistency, as de-
scribed below:

Epush =−|VW −|vr(n)− vl(n)||2

2
(25)

where VW is the vessel width, vr(n) is the right contour,
vl(n) is the left contour, and n is the index of nodes. The
vessel’s approximate width is calculated using one of the
simple and traditional methods (e.g. [15],[16]).

The pull energy is used to pull the outside contours
toward the inside contours, the pull energy is:

Epull =−|v
i(n)− ve(n)|2

2
(26)

where i is internal contour and e is external contour.

The model converges when the maximum distance
between two contours inside twins are less than a thresh-
old (θ ); the threshold is a sub-pixel value (e.g. 0.3 pix-
els). The edges of vessel are captured from both sides
by inside and outside contours. The distance between the
inside contours gives an extremely accurate estimated of
the vessel width.

Results

The ribbon snake has been previously used to extract
roads and blood vessels. However, the performance on
retinal vessels is not as good as on roads. This is due
to the contrasting characteristics of roads and vessels.
Roads have two parallel edges with a fixed width, in con-
trast to retina vessels. In addition, there are a lot of dis-
eases that affect the vessels of the retina; causing changes
in width, colour and the path of vessel. Adding to these
difficulties, noise in retinal images often makes the ves-
sel’s boundary blurred and fuzzy, particularly for vessels
near the edge of the image.

We illustrate the performance of the new model on a
number of typical problem cases found in retinal segmen-
tation; the model parameters are GVF (iteration=90 and
µ = 0.02), σ = 1.8, Twin-Threshold = 0.3; β = distance
between two nodes which is equal 0.3 where α is equal
β /4.

The first case is performed on a noisy vessel segment,
as shown in Figure 2.

Figure 2: Convergence of the ribbon of twins on a single
vessel with high noise around the vessel edges.

The second case shows the performance on very close
vessels; their edges could be very blurred and the strong
appearance edge of one vessel may affect the appearance
edge of the other, particularly as the outside contours may
initially be situated inside it’s neighbour vessel as in Fig-
ure 3. The outside contours will be pulled towards the
inside contours; if the outside contours are stuck at any
local minima where the local gradient force is greater or
equal to the pull force and the maximum deformable dis-
tance of the outside contours is approximately zero, then
the weight of the photometric term set to zero for next



iteration, allowing the outside contour to escape the local
minimum.

Figure 3: Two close vessel segments, where the contour
converges correctly despite poor initializations.

The third case illustrates performance on a vessel
which has a light reflex phenomenon; this causes sig-
nificant problems for most vessel segmentation methods,
making it difficult to calculate the width [17]. The pro-
posed model is not affected by this phenomenon because
the two inside contours are initiated far from the ves-
sel centre, and the push-force push them outside toward
edge, which has the opposite sense to any gradient forces
related to the light reflex phenomenon, as in Figure 4.

Figure 4: The model converges successfully on a vessel
with a central light reflex.

The fourth case illustrates performance on very fine
vessels. The majority of previously published methods
fail to extract small vessels, which are important in diag-
nostic systems; the new model can extract and measure
very tiny vessels, as shown in Figure 5.

The pull and push forces are normalized to keep the
model balanced. Consequently the external forces are
strongest at the initial stage, and weakest at the desired
edge; these forces do not allow the contours to jump to
the other side, as occurs in some snake formulations, be-
cause they pull the contours back.

Figure 5: Convergence on very fine vessels.

Conclusion

We have presented a new kind of snake called ”a
ribbon of twins”. This consists of four contours to ex-
tract segments of vessel boundaries, a ribbon joining two
twins. The model has robust behaviour, even with high
levels of noise, and can accurately locate contours un-
der difficult conditions, including: noisy blurred edges,
closely parallel vessels, light reflex phenomenon, and
very fine vessels. The model can extract tiny vessels
which can not be extracted by alternative techniques. The
model is more computationally expensive than the rib-
bon model, but the measurements are more accurate. The
trade off between more computation and more accurate
measurements and the previous models is governed by
the purpose and usage of the model.
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