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Abstract. For over 30 years, Blum’s Medial Axis Transform (MAT) has proven to be an intriguing tool for
analyzing and computing with form, but it is one that is notoriously difficult to apply in a robust and stable way.
It is well documented how a tiny change to an object’s boundary can cause a large change in its MAT. There has
also been great difficulty in using the MAT to decompose an object into a hierarchy of parts reflecting the natural
parts-hierarchy that we perceive. This paper argues that the underlying cause of these problems is that medial
representations embody both the substance of each part of an object and the connections between adjacent parts.
A small change in an object’s boundary corresponds to a small change in its substance but may involve a large
change in its connection information. The problems with Blum’s MAT are generated because it does not explicitly
represent this dichotomy of information. To use the Blum MAT to it’s full potential, this paper presents a method
for separating the substance and connection information of an object. This provides a natural parts-hierarchy while
eliminating instabilities due to small boundary changes. The method also allows for graded, fuzzy classifications
of object parts to match the ambiguity in human perception of many objects.
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1. Introduction

The lure of a form representation that inherently re-
flects the perceptual qualities of form has long attracted
scientists. Blum proposed his Medial Axis Transform
(MAT) as a representation that embodies the skeleton
of an object as well as the width of the object at ev-
ery point on the skeleton (Blum, 1967). This work has
spawned a tremendous amount of research into the use
of the Blum MAT and other skeleton representations
(Blum and Nagel, 1978; Brady and Asada, 1984; Bruce
et al., 1985; Ogniewicz and Ilg, 1992; Pizer et al., 1987;
Pizer et al., 1998; Szekely, 1996). A goal of much of
this work has been to create a form representation that
defines a natural decomposition of an object into a set
of basic parts that mirrors the object parts we perceive.
At the same time, these representations are intended to
allow easy access to the full form information about

each part and about the object as a whole to support
form analysis and computation.

A driving consideration faced by all skeleton meth-
ods is the condition put forth by Marr and Nishihara
that small changes to a boundary’s form should cause
only small changes to the form’s representation (Marr
and Nishihara, 1978). This rule insists that skeletons
remain stable under boundary change, and consider-
able effort has been spent on modifying Blum’s MAT
to exhibit this kind of stability (August et al., 1999;
Szekely, 1996). Complicating this rule is the problem
that some boundary perturbations actually are impor-
tant; the growth of a new tail or limb from a body, for in-
stance, can be a small boundary change that has a large
perceptual importance. Significant boundary perturba-
tions correspond to the parts of an object; examples are
the fingers on a hand, legs on a table and limbs on a
body. In order to decompose an object into its parts,
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Fig. 1. Challenges with using the Blum MAT. (a) MAT instabilities: A tiny change in the boundary produces a large change in the MAT. (b)
Part/protrusion ambiguity: Classifying a protrusion as a bump or separate part can be ambiguous.

any general form description needs to be able to make
a stable and clear distinction between an insignificant
bump on the boundary and a separate and significant
part of the object.

Used as originally proposed, the Blum MAT falls
short of each of these goals (see Fig. 1). It is notori-
ously unstable since even tiny perturbations can cause
the creation of very long segments with prominent ra-
dius values to be added to the MAT. In fact, instabilities
in the MAT can arise even under boundary smoothing
(August et al., 1999). Furthermore, the MAT’s network
of branching axis segments quickly grows as object
complexity grows, causing difficulty in creating a MAT
hierarchy that reflects an object’s perceptual parts.
Without a clear hierarchy, there is no distinction be-
tween object parts and insignificant object protrusions.

This paper offers a new method for using the Blum
MAT that does not suffer from these problems. We ar-
gue that objects are an assemblage of solid parts and
that form representations should explicitly separate the
substance of each part from the connections between
parts. The method proposed here adds a component to
the MAT that describes for every point on the MAT the
degree to which the point embodies object substance as
opposed to object connection. We call this measure the
substance value. The measure easily reveals the natu-
ral distinction between the parts of an object and mere
bumps, and it is a continuous measure that reflects the
naturally ambiguous part classification found in many
objects. The new method also reduces small boundary

perturbations to small substance changes in the new
weighted representation, maintaining a stable form de-
scription even with changes to the boundary. The new
method permits a substance-weighted application of
the MAT where the MAT pieces that cause instabilities
in the traditional Blum representation are weighted by
small values of the new substance measure. In this way,
the method presented here maintains a stable form de-
scription even with changes to the boundary.

While this paper describes how to instrument the
Blum MAT to separate substance and connection, we
anticipate that these ideas are applicable to the general
class of skeletons and medial form representations.

2. Objects are Substance and Connections

Objects in our physical world are solid, tangible enti-
ties. They have mass and fill space. Physical objects
are real substance and not mathematical abstractions.
Complex objects are perceived as collections of many
solid parts. A boulder is a round-ish blob, and hands
are a blob (the region between the wrist and the fingers)
with five elongated protrusions (the fingers).

For multi-part objects, we perceive not only the sub-
stance of each part but also the connections between
parts. A hand is a hand not just because it has a palm
and five fingers, but because of the way that the parts
are connected. The same five parts can be connected
in ways that are not at all hand-like. Clearly, both the
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substance information in each part of an object and
the connection information between parts are crucial
components of form description.

Another type of connectivity is also implicit in skele-
ton methods. If we consider each part of an object as a
series of tiny slices, then each slice is connected to its
neighboring slices to form the continuous substance of
the part. This continuity information is usually built into
the representation used for a skeleton; for the piecewise
linear boundaries used in this work, Blum’s MAT uses
line segments and parabolic segments to represent the
skeleton, and the continuity along each of these seg-
ments is implicitly defined. The distinction between
continuity along a single part and connections between
parts is exploited in this paper.

Analyzing and computing with form requires ac-
cess to substance information and connection infor-
mation. Form researchers want to be able to work ex-
plicitly with the substance information for calculations
involving the perceptual properties of an object such as
saliency, and they want to work explicitly with the con-
nection information for analyzing the decomposition of
objects into parts and analyzing the relationships be-
tween parts. Medial form representations naturally in-
clude substance information. By representing objects
as “middle” points and the “widths” at those points,
medial representations define an object from it’s inside
outward thus implicitly defining a solid object. Medial
representations also can include connection informa-
tion. In the same way that we can trace our own bones
to know that our legs are connected to the bottom of
our torso, medial representations can naturally define
the connectivity of an object.

While medial representations are natural carriers of
substance and connection information, many imple-
mentations do not harness the full potential of the two

Fig. 2. Examples of medial points with high degree of substance information and with high degree of connection information. Also shown is
a perceptual aperture around the substance points, showing the aperture within which computations are performed.

components. For example, medial methods such as SLS
(Brady and Asada, 1984) and Cores (Pizer et al., 1987)
provide substance information but have no explicit con-
nection information. Fig. 2 shows how the Blum MAT
contains both substance and connection information,
but they are not easily separable for creating parts-
hierarchies or for form computation. The next section
describes what it is about the standard approaches to
using the Blum MAT that fails to discriminate between
substance and connection, and Section 4 presents a
method that successfully separates the two form com-
ponents.

3. Parts Hierarchies and Form Information
in the Blum MAT

In order to solve the problems inherent in the Blum
MAT, we must understand their causes. A complex
object with many parts and many bumps generates a
MAT with a complex web of axes. There are far more
branching axis segments than the number of parts in the
object, and creating a parts-hierarchy requires deciding
which axis branches correspond to part substance and
which to part connections. Previous hierarchy methods
have attempted to impose a binary hierarchy, examin-
ing every axis point to determine if it belongs with its
neighbors in a single object part, either with its neigh-
bors in a single part or on a new object part that is
different from its neighbors, or if it should be pruned
away and ignored as merely connection information.
Shaked and Bruckstein give a good overview of pruning
methods (Shaked and Bruckstein, 1998). Fig. 3 shows
how using binary decisions to create parts-hierarchies
is highly unstable. A small change to the boundary can
cause a drastic change in the topology of the hierarchy,
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Fig. 3. (a) Unstable part-hierarchies caused by binary hierarchy decisions. A slight change to the boundary between the index and middle
fingers causes a drastic change to the MAT topology in the middle of the palm (within the rectangles). (b) The thick lines are examples of ligature
(top) and semi-ligature (bottom).

and with binary classifications, insignificant boundary
bumps can change to significant parts as a consequence
of the slightest boundary perturbation.

The instabilities in the Blum MAT are due to the fact
that the MAT is not a one-to-one correspondence; As
Fig. 3(b) shows, a single point on the boundary can gen-
erate many medial axis points. Thus, changing a single
boundary point can cause many axis points to change,
creating the instability. These many-to-one axis points
were identified by Blum as semi-ligature and ligature
(see Fig. 3). August et al. nicely describe the insta-
bilities caused by ligature (August et al., 1999). Their
work reveals that some ligature points are purely con-
nection information and some contain substance infor-
mation as well. They use a tertiary classification based
on the geometric heat equation to identify axis points
with substance-like information, and then they cull the
ligature that roughly corresponds to what we call con-
nection information; they propose that the culled lig-
ature are the points that cause instabilities. However,
their classification still requires explicit decisions to be
made at every point, and in this way they encounter the
same problems as a binary part-hierarchy.

Furthermore, some objects have a parts-hierarchy
that is naturally ambiguous. Fig. 4 shows progressive
deformations of an object that starts with one clearly
defined bending part and ends with three clearly defined
parts. However, there is no exact point in the deforma-
tion where the object changes from one part to three.
Instead, as the deformation progresses, the single main
part exhibits less and less continuity in its substance
and more and more connection among distinct parts.

Fig. 4. Part classification that is ambiguous under deformation.

The actual part classification is perceptually ambigu-
ous for the middle configurations of the deformation.
This example demonstrates the perceptual continuum
from substance to connection that must be addressed
in any part-classification approach.

Based on this line of reasoning, the creation of per-
ceptual parts-hierarchies can be resolved by first ex-
tracting explicit substance and connection information
from the MAT and then using these components to cre-
ate a fuzzy parts-hierarchy that allows for ambiguity.
This allows the inherent form information to be used
for parts-hierarchies and form computation. By using
these measures of substance and connection, the un-
derlying instabilities of the MAT are not changed but
their effects are eliminated.

4. Calculating Substance and Connection
Components

In order to create a natural parts-decomposition, this
method defines a measure that separates substance and
connection components for the Blum MAT. Every axis
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point will be considered to have these two components,
and a measure between 0 and 1 is calculated for each.
Neighboring axis points that have a substance compo-
nent that is much greater than their connection com-
ponent are continuous points on the same part of the
object. Axis points with a high connection component
and low substance component are connection points
that separate different parts of the object. Axis points
with similar substance and connection measures repre-
sent regions of the object that are perceived to have an
ambiguous part classification.

In this work, the two components are defined to be
directly related; if ω is the connection measure, then
substance measure ψ is 1 − ω. In this way every point
in the object is either substance, connection or a blend
of the two. In the remainder of this section, we will
develop the calculation for the connection measure ω,
but we will refer to both the substance and the connec-
tion components of an object. The end result will be
a new component added to the Blum MAT representa-
tion. Instead of every medial point having just location
and scale components, (x, y, σ ), every point will be a
4-tuple, (x, y, σ, ψ).

As described in Katz (2002), perceptually based
form calculations at a medial point should be integrated
over an aperture centered at that point. This idea cap-
tures the effects of the receptive fields in our visual
systems that operate at a scale that depends on the me-
dial width of the object at the point of interest (Burbeck
et al., 1996; Kovacs and Julesz, 1994).

According to this model, the size of the aperture is
directly related to the radius of the maximal circle at
the medial point, and calculations within the aperture
are weighted with a Gaussian fall-off to give points
closer to the center point a higher influence than more
distal points. All calculations to produce the connec-
tion measures for medial points are integrated over and
performed within such an aperture. Fig. 2 shows the
perceptual aperture with RMS width that is equal to
width of the maximal circle around a medial point.

The key to calculating the connection measure for
the Blum MAT is noticing that branches are the cru-
cial points in determining the connection and substance
components of an object. A single axis representing a
simple object would be fully substance with no con-
nection information. This reflects the intra-part conti-
nuity along the axis; there are no other connected parts
and thus there is no connection information. However,
when there is a branch point with three incident axes,
we must face the question: “which two axes combine to

form the ‘main body’ of the object, and which remain-
ing axis reflects a bump on the object or an entirely
new part?” Or, in other words, “what are the connec-
tion and the substance components of the axes around
this branch point?”

Any answer to this question must reflect the notion
that our visual systems will tend to follow the main
medial path of an object while ignoring less significant
off shoots. This continuity of a visual path is determined
by many factors; two of the most important factors are
the continuity of the direction of the medial axes and
the continuity of scale along the axes. In this work,
visual conductance is developed as a measure of how
likely any two of the axes at a branch point will be
perceived as the single, main perceptual path. In the
remainder of this section, the properties required for
useful perceptual metrics such as visual conductance
are presented, and then functions, sometimes ad-hoc
ones, are offered that satisfy these properties.

Visual Conductance

To measure the likelihood that we will perceptually
connect two axes at a branch point, visual conductance
is defined to be a relative measure that compares, at a
branch point, each pair of the branch’s axes. When one
pair has a high conductance while the other two pairs
are low, the first pair is perceived as the main visual path
through the branch, and therefore that path is perceived
as mostly substance while the third axis is perceived as
mostly connection information. When two or all three
pairs have similar values of visual conductance through
the branch point, there is perceptual ambiguity about
which branches are the main visual path, and therefore
all branches may reflect a significant amount of both
substance and connection information.

Visual conductance needs to capture the visual con-
tinuity provided by the continuity of direction along
two branching axes, and it should capture the visual
continuity provided by similar medial widths across
the medial axes. In order to calculate visual continuity
through a branch according to these notions, a “visual
vector” is first calculated for each axis at the branch (see
Fig. 5), and then these vectors are compared to produce
the visual conductance measure at the branch. Visual
conductance is defined to be a value between 0.0 and
1.0, with all non-branch points defined to have a con-
ductance of 1.0. The following development, therefore,
is applicable to branch points.
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Fig. 5. (a) Hand object with its Blum MAT and visual vectors at the branch where the middle finger’s axis joins the other axes. Longer vectors
represent greater accumulated visual scale in that direction. (b) Visual conductance values for each pair of axes represented by the visual vectors
in (a).

The visual vector for an axis emanating from a
branch point is defined to be a weighted directional
average of the tangent of the medial axes Ai starting
at the branch point and following that branch axis out-
ward through any neighboring branches. To be consis-
tent with the scale-based medial view, this directional
average is weighted by the width σ (s) of every axis
point s on the averaged path. In this work, the medial
width σ (s) is defined to be the Blum MAT medial ra-
dius R, that is, the radius of the maximal disk centered
at the medial point s. The final magnitude of the vector
reflects the accumulated scale of the object along the
vector.

The vector includes contributions from all axis
points that fall within an aperture centered at the initial
branch point with the aperture size equal to the medial
radius of the initial branch point. The calculation is
performed within a perceptual aperture of radius σ (sb)
around the initial branch point b, and closer axis points
are given a higher influence then more distant ones us-
ing a Gaussian fall-off G(s) with standard deviation
σ (sb). Distance from the branch point is calculated as
the shortest distance along the medial axes. Finally,
since the scale of all axis points around a branch point
are nearly the same (and are exactly equal at the branch
point), a term �(s) is added to lessen the influence of
axis points very close to the branch.

For a generic branch point with three intersecting
axes, there is a visual vector associated with each of
the three axes. Each vector includes in its calculation
all the axes that can be reached by traversing the MAT,

starting along axis Ai and emanating away from the
branch point b, traveling along the axes in a depth-first
manner up to a distance of σ (sb).

To incorporate all of these requirements, the visual
vector v̄ along axis Ai emanating from branch point b
is defined as follows. Here, the functions are parame-
terized as the arc-length distance from branch point b.

ū(s) = tangent vector at a medial point s
σ (s) = radius of maximal circle at a medial point s
sb = arc length parameter at branch point b
σ (sb) = radius of maximal circle at branch point b
Ai = the i ′th axis emanating from the branch point b

G(s) = e− 1
2 ( s

σ (sb ) )2

�(s) = 1 − e−( s
σ (sb ) )2

v̄ =
∫ t=σ (sb)

t=−σ (sb)
Ai

ū(t)σ (t)[G(t)][�(t)]dt

With visual vectors defined for each axis emanating
from a branch, the vectors can then be analyzed in pairs
to determine the visual conductance between each pair
of branch axes. Our perceptual systems use a combina-
tion of factors to determine how we perceive an object
at its medial branching points. Visually, we will tend
to follow along medial axes that provide a straight path
rather than a curved path; at the same time we will
tend to follow axes that have the most similar scales.
For a branch point b, the visual conductance measure
incorporates these phenomena; visual conductance C
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between branching axes Ai and A j at branch b is de-
fined as follows.

Ccontinuity
b (Ai , A j )

=
[(

1 − v̄i

|v̄i| · v̄j

|v̄j|
)]2[

min

( |v̄i|
|v̄j| ,

|v̄j|
|v̄i|

)]

The first term captures the continuity of direction using
the dot product function, and the value is squared as
an ad-hoc means to emphasize the continuity along
straight paths and decrease continuity when the path
bends. The second term captures the continuity of scale
by comparing the magnitude of the two branches under
consideration and then keeping the comparison value
less than one.

There are three measurements Ccontinuity
b (Ai , A j ) for

every generic branch point, one for each pair of the three
branching axes. If we had been required to deal with
the non-generic case of more than three axes meeting
at a branch point, we could have handled that by divid-
ing the branch into two or more very nearby generic
branches.

To use this measure, the visual conductances for each
pair of axes at a branch point are compared. The two
axes that have the highest conductance are chosen as
the “main visual path”, and their conductance is scaled
to be 1. The conductance of the other pairs are then
scaled by the same amount to maintain their relative

Fig. 6. (a) Rounded-end object with its Blum MAT. (b) Substance measure of an object with only continuity component of visual conductance.
Height at each medial point is the substance measure at that point. (c) Substance measure with endness adjustment added to visual conductance
in order to capture the visual effects at the tip of a part.

magnitudes but to have a value less than or equal to 1.
In this way, the main visual path through a branch point
fully “conducts” perceptually while other paths with
conductances less than 1 “attenuate” visual flow.

For example, in Fig. 5, the conductance between the
left-most and right-most vectors is the highest, so it is
scaled to be equal to 1. The conductance between the
right-most and the middle vector are both scaled by
the same amount. As Fig. 5 shows, while there is full
visual conductance between the axes represented by
the left-most and right-most vectors, the conductance
is attenuated between each of those axes and the axis
represented by the middle vector.

Part-End Adjustment

While this formulation for visual conductance applies
to general branch points, it fails when an object part
ends in a curved tip (see Fig. 6). The MAT in these
regions consists of a large scale axis segment branch-
ing into segments with much smaller scales. As defined
so far, visual conductance would recognize the small
scale segments at such branches as most similar in scale
and connect them as the main visual path unless they
meet at a very sharp angle. Clearly, this is not percep-
tually correct. Visually, at such a branch point the large
scale segment appears to connect with one of the small
scale ones to become the main visual path through the
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branch, and the remaining segment is seen as a con-
necting bump.

In order to implement this, we leverage the under-
standing in human vision that ends of object parts are
identified by end-stopped cells independently from the
identification of other features (Orban et al., 1979a,
1979b). In this work, an endness factor is calculated
separately for each axis at every branch point. Endness
measures the discontinuity in scale between one axis
and its other two branch axes; in other words, the end-
ness factor represents how much larger in scale each
axis is compared to the other two neighboring axes.
The largest endness factor of the three axes becomes
endnessb, the degree to which the branch point b will
be perceived as an ending of an object part.

Endness is used in formulating visual conductance
to signal branch points in which an axis with a high
degree of endness should be kept as part of the main
visual path through the branch even when the previous
conductance calculation indicates that it should not be.
When this is the case, the large scale axis is combined
with one of the other two smaller scale axes to form
the visual path, and is given an endness-conductance
Cendness

b that is equal to 1. Then the remaining axis is
considered an offshoot of that path, and its endness-
conductances are calculated as in the non-endness case
but they are left unscaled.

If the degree of endness is very low at a branch, the vi-
sual conductances at the branch should not be changed
by the endness calculations; if endness is very high, the
branch’s conductances should become these alterna-
tive end-condition conductances. For cases in between
where there is perceptual ambiguity about whether a
part is ending at that medial point, the visual conduc-
tance should be a blended combination of the two con-
ductance values.

The endness measure and final visual conductance
are calculated at branch point b, following the path
between branch axes Ai and A j as follows. The new
variables and parameters are described in the next
paragraph.

λ = max

[
min

( |v̄i|
|v̄j| ,

|v̄i|
|v̄k|

)
, min

( |v̄j|
|v̄i| ,

|v̄j|
|v̄k|

)
,

min

( |v̄k|
|v̄i| ,

|v̄k|
|v̄j|

)]

endnessb = (
1 − e−(λ)p )n

Cb(Ai , A j ) = endnessbCendness
b (Ai , A j )

+ (1 − endnessb)Ccontinuuity
b (Ai , A j )

Recall that the endness adjustment is intended to mod-
ify the visual conductances at MAT branches at the
end of a part. The initial factor λ is used to detect the
part-end situation by comparing branch-axis scales at a
branch to determine the greatest mismatch. The ad-hoc
formulation for the final endnessb factor is designed to
create a high threshold that the end condition must meet
before it influences visual conductance. The values of p
and n are used to adjust this threshold, with p typically
set to 4 and n typically set to 2. When a part-end sit-
uation is indicated by a non-zero value of the endness
measure, the alternative visual conductance Cendness

b ,
which is always 1.0, is factored in to the total visual
conductance between two branch axes.

In addition to the endness adjustment, the mea-
sures developed here must also account for multiple
branches, as developed in Section 3. For a simple object
with a single branch, if a point lies close to the branch
and is on the main visual path through the branch, then
that point has a high substance component. Similarly,
if the point lies on an axis whose conductance to the
other two axes is much less than the conductance of the
main path, then that point has a high connection com-
ponent. However, this classification fails when mul-
tiple branches are close together. Each branch point
may influence the substance/connection classification
of neighboring axis points. For example, in Fig. 7(c) the
axes labeled A2 and A4 around branch b2 would have a
substance measure of 1 if b2 were the only branch in the
object. However, because of b2’s proximity to branch
b1, A2 and A4 are low in substance and are mostly con-
nection information as shown in Fig 7(b). When many
branches are close together, each branch casts a shadow
of influence around itself that affects the calculation of
nearby connection measures.

Connection Shadows

Since the receptive fields in our visual systems process
visual input from a region of an object and not at a single
point, there may be many medial branches within this
aperture of viewing, and each branch can affect the de-
termination of connection and substance components
at the focal point. A branch that is close to the point of
interest may indicate that the point is on a high conduc-
tance visual path, but a branch farther upstream may
indicate a much lower conductance path at the same
point. More branch points may each indicate a differ-
ent conductance along the point’s path. To combine the
effects of many branch points, there needs to be a way
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Fig. 7. (a) Object with its Blum MAT. (b) The substance measure of the object. (c) A blow-up of the highlighted region from (a) showing a
connection shadow and the axes that it covers. See the text for more details.

to propagate the influence of a branch through other
branches and combine the many influences into a single
measure. At the same time, any solution to this problem
must insulate the main visual paths through an object
from branches that are on branches with low visual
conductance to a main path. The solution presented in
this work is to allow branch points to cast a shadow that
covers the local region around the branch. These con-
nection shadows propagate the substance-attenuating
effect of their branch, where this attenuation results in
increased connection measure (and reduced substance
measure) at the points their shadow affects. The large
circle in Fig. 7(c) illustrates a shadow at branch b2 and
the following paragraphs describe how the attenuation
is calculated.

To implement connection shadows, the attenuating
effect cast by a branch along one of its branch axes is
1 minus the largest of the conductances of that axis con-
necting with any of the other branch axes. In this way,
a branch will cast a highly attenuating shadow along its
branch axes that are not on a main visual path, and it will
cast no attenuation along its main visual axes. For the
example in Fig. 7, axis A3 has low conductance with
both A2 and A4 so the shadow from b2 creates high
connection measure on A3. At the same time, since

the conductance between A2 and A4 is 1, there is no
substance attenuation cast along those axes by b2. The
shadow is adjusted by a fall-off from the branch point
casting the shadow, with the aperture of the falloff de-
termined by the scale at the branch point. This provides
a high shadowing effect within most of the shadow with
a rapid fall-off at the edges of the shadow.

The connection shadow is calculated as follows,
where n is a parameter used to adjust the rate of fall-off
from the branch.

If s is a point on axis Ai , where Ai ends at branch
points b1 and b2, and bβ of Ai has neighboring axes
Aβ,1 and Aβ,2, then the shadow from a branch point
b cast on an axis point s that lies on axis Ai is

Si,b(s) =
[

1 − 2

(
erf

[ |s − sb|
σ (sb)

]n

− 0.5

)]

×
[
1 − max

j=1,2
Cβ(Ai , Aβ, j )

]

This value is clamped to zero if the result becomes
negative.

Following the principle that our visual processing oc-
curs within an aperture and not at a single point,
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connection shadows are propagated out from a branch
along each branch axis. A high value for the shadow,
indicating high connection and low substance compo-
nents, will flow along the axis and along all branching
axes downstream from the initial branch point. This in
effect casts a shadow along those axes that is used to
determine the connection measure at points along the
axes that it covers. With this construction, a branch’s
effect is felt by all points within its shadow even when
separated by other branches.

However, as a connection shadow flows through
other branch points its effect should be attenuated by
every branch that it flows through. This can be under-
stood by remembering that visually there are the main
medial paths through an object and there are sub-parts
that branch from the main paths. These sub-parts are
separated from the main parts by axes with a high con-
nection measure, and the medial configuration of the
sub-parts have little visual impact on the main part. For
example, in Fig. 7(c), point s1 is on the main visual path
of the object and its substance measure should not be
attenuated by the shadow cast from b2. In general, ev-
ery branch propagates a shadow according to the con-
ductance of the path the shadow follows through the
branch. In this way, branches that are located on a path
that is already highly connection information will not
cast influence on neighboring branches that are on the
main visual path attached to the connection path. In
other words, main visual paths through a branch are
insulated from connection shadows on attached low
conductance paths.

In order to compute shadow propagation, the accu-
mulated conductance Vi,b between a branch point b
and a point s on axis Ai must be determined. This is
the product of conductances encountered through each
branch point on a path starting at branch point b and
traversing the medial axes to reach axis Ai . These con-
ductances potentially attenuate the effects of branch
point b’s shadow on the points on a distant axis.

Accumulated conductance Vi,b is computed as
follows.

{pi,b,m} for a fixed axis Ai and branch point b is the
sequential ordered list of branch points numbered
1..mmax on the path from axis Ai to branch point b.

{ki,b,m} is the sequential ordered list of axes numbered
1..mmax on the path from axis Ai to branch point b
that is associated with {pi,b,m}.

The accumulated conductance Vi,b between a
point on axis Ai and a branch point b through the

path of branch points {pi,b,m} and axes {ki,b,m} is the
product of conductances encountered at each of the
m branch points along the path,

Vi,b =
∏

m

Cm(ki,b,m, ki,b,m+1)

Finally, the shadowing effect of any given branch point
b onto a point s on axis Ai is the attenuation of the con-
nection shadow from b multiplied by the accumulated
conductance between the branch point band the axis
Ai : Vi,b Si,b(s).

Combining all of these developments, the final mea-
sure ω(s) of the connection component (and the related
substance measure ψ(s)) at every point on a Blum me-
dial axis is the combined effects of all branch points on
the point of interest, s. That is, the connection measure
ω(s) is the sum of the effects of all branch points on
point s. While every branch point is considered, only
those whose shadow overlaps the point of interest will
have any effect on s. This is defined as follows, with a
summary of the terms involved.

Connection measure: ω(s) =
∑

b

Vi,b Si,b(s)

Substance measure: 1 − ω(s)

Accumulated conductance:

Vi,b =
∏

m

Cm(ki,b,m, ki,b,m+1)

{pi,b,m} for a fixed axis Ai and branch point b is the
sequential ordered list of branch points numbered
1..mmax on the path from axis Ai to branch point b.

{ki,b,m} is the sequential ordered list of axes numbered
1..mmax on the path from axis Ai to branch point b
that is associated with {pi,b,m}.
The accumulated conductance Vi,b between a point
on axis Ai and a branch point b through the path of
branch points {pi,b,m} and axes {ki,b,m} is the product
of conductances encountered at each of the mmax

branch points along the path.

Connection

Shadow
: Si,b(s)

=
[

1 − 2

(
erf

[ |s − sb|
σ (sb)

]n

− 0.5

)]

×
[
1 − max

j=1,2
Cβ(Ai , Aβ, j )

]

This is the connection shadow cast by branch point
b on a point s on axis Ai , where Ai ends at branch
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points b1 and b2, and bβ of Ai has neighboring axes
Aβ,1 and Aβ,2.

Visual

Conductance
: Cb(Ai , A j )

= endnessbCendness
b (Ai , A j )

+ (1 − endnessb)Ccontinuuity
b (Ai , A j )

λ = max

[
min

( |v̄i|
|v̄j| ,

|v̄i|
|v̄k|

)
, min

( |v̄j|
|v̄i| ,

|v̄j|
|v̄k|

)
,

min

( |v̄k|
|v̄i| ,

|v̄k|
|v̄j|

)]

endnessb = (
1 − e−(λ)p )n

Ccontinuity
b (Ai , A j )

=
[(

1 − v̄i

|v̄i| · v̄j

|v̄j|
)]2[

min

( |v̄i|
|v̄j| ,

|v̄j|
|v̄i|

)]

The endness measure and final visual conductance
are calculated at branch point b, following the path
between branch axes Ai and A j .

Visual Vector: v̄ =
∫ t=σ (sb)

t=−σ (sb)
Ai

ū(t)σ (t)[G(t)][�(t)] dt

ū(s) = tangent vector at a medial point s
σ (s) = radius of maximal circle at a medial point s
sb = arc length parameter at branch point b
σ (sb) = radius of maximal circle at branch point b
Ai = the i ′th axis emanating from the branch point b

G(s) = e− 1
2 ( s

σ (sb ) )2

�(s) = 1 − e−( s
σ (sb ) )2

In the example given in Fig. 7(c), the shadow cast from
b1 has no effect on s1 because A1 and A5 constitute the
main pathway through b1. The shadow does cast its at-
tenuation on s2, and this is propagated to s3. The shadow
is blocked by b2 from affecting s4 because A2 and A4

are the main path through that branch. The shadow cast
from b2 has no effect on s2 or s4 because they are on the
main pathway through b2, and there is no effect on s1

because it is on the main visual path from A2 to A1. The
shadow from b2 does cast its full attenuating effect on
s3. Summing all of these effects produces no substance
attenuation at s1, but much attenuation at s2, s3, and
s4. The results are seen in Fig. 7(b), showing the final
substance measure ψ(s) for the object. This measure is
added to the Blum MAT representation, giving a value

of ψ at every medial point and leading to an augmented
representation (x, y, σ, ψ) at every medial point.

The Blum MAT produces O(n) axes for n lines on
a polygonal boundary. This meas that the calculation
of the substance measure is an O(n2) process. A first
pass over all branches is required to compute the visual
vectors, visual conductances and connection shadows.
In a second pass over all the axes, the substance measure
is actually computed.

5. Results

Figs. 8–10 show the substance measure of several ob-
jects. The medial points with a high substance measure
correspond to the parts of the objects. Points where
substance measure is low correspond to axes that serve
mainly to connect the object parts. Points where the
substance measure is between 0.0 and 1.0 reflect re-
gions of the object where a parts-classification is per-
ceptually ambiguous.

These results show how extraneous axes are removed
and an object’s parts are naturally extracted. In the cat
example, the most salient parts of the cat are signaled
by the visual path that runs from the head through the
body and down to the end of the tail. The ears and
front paws are clearly distinct perceptual parts with the
connecting axes exhibiting very low substance measure
(and therefore a high connection measure). In a similar
manner, the lizard’s legs are perceptually distinct from
its body, and the stem of the leaf is distinct from the
body of the leaf.

The examples also demonstrate how perceptual am-
biguity about an object’s parts is reflected in the sub-
stance measure. The five points of the maple leaf have
no clear hierarchy of parts and substance measures in
the region reflect this. Here, the branching axes reflect
the medial axis filling a region of similar saliency rather
than connecting parts.

The object with protrusions in Fig. 10 shows how the
substance measure captures a broad range of percep-
tual ambiguity. Some protrusions are clearly separate
parts while others have some tendency to been seen as
an extension of the main object. The bottom-most pro-
trusions demonstrate this; the lower-right one is clearly
an independent part, a property highlighted by the high
connection measure of its connecting axis. On the other
hand, the lower-left protrusion can be perceived as an
extension of the central body, and the lower-middle
one can be perceived as an extension of the upper-left
protrusion. Perceptually there is no clear hierarchy in
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Fig. 8. The subtance measure of various objects, where the height of each medial point reflects the substance measure. (a) Cat object. (b) Maple
leaf object. (c) Lizard object.
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Fig. 9. (a) The MAT and substance measure of an object’s pro-
trusion. (b) and (c) Two deformed versions of the object, showing
significantly different MATs but very similar substance measures.

this region, and the substance and connection measures
reflect this.

A subtle effect of performing perceptual calculations
within a local aperture can be seen in the object with
protrusions example of Fig. 10, with the right-most
protrusion and the smaller one underneath it. While the
larger, right-most protrusion can be perceived clearly as
being a more salient part in a global sense, at the medial
junction of the parts there is no clear part hierarchy.
Within the local region around those branch points, this
can be seen to be valid. The substance and connection
measures are not intended to be used directly for high-
level global object interpretation.

Figure 9 shows a protruding part of an object and two
deformed versions created with tiny perturbations to
the object’s boundary. The MAT is significantly differ-
ent in each of the three versions, yet the substance mea-
sures remain very similar. Only the most distal edges of
the MAT pieces created by deforming the object show
any change in substance. This example demonstrates
how the substance-weighted MAT reflects only the mi-
nor changes to the boundary even when the underlying
MAT shows drastic instabilities.

Finally, Fig. 10 shows how the adjustment for ends
of figures works and where it fails. At the tip of each
protrusion, only one of the small-scale branches re-
mains and it is connected to the main visual path that
passes through the MAT to the tip; the other small scale
branches are identified as connection information with
only their very ends possibly showing any substance.
However, Fig. 10(b) shows where the ad-hoc endness
function is applied in a way that generates a substance
measure that has no perceptual basis. This object re-
flects the case of a large-scale body of an object with
two small wings off of one end. Clearly, both of the
wings are separate parts and neither is a continuation
of the main body. In this implementation, however, two
of the axes at a branch are always connected and given
a visual conductance of 1.0. While this choice was suit-
able for using these ideas to develop a visual saliency
measure and an associated object simplification algo-
rithm (Katz, 2002), it probably will not support other
perceptual analysis. For such work, the previous end-
ness function could still be used to identify MAT points
where an adjustment should be applied and a new ad-
justment created that does not connect any axes at that
point. Alternatively, a new endness function also could
be developed for these cases.

6. Conclusions

This paper describes a method for instrumenting the
Blum MAT to perform perceptual part-decompositions
of objects and to support stable and robust form cal-
culations. The method considers objects to be a col-
lection of solid parts and a set of connections among
those parts. A measure is created at every point on the
medial axes to grade the amount of substance infor-
mation at each medial point and the amount of con-
nection information. This measure is then used to de-
compose the object into a set of perceptually defined
parts. A key aspect of this classification is that this met-
ric gives a fuzzy measure of “part-ness”, and the parts
of an object are not forced into a binary classification
scheme.

Using the substance measure and complementary
connection measure as well as the resulting fuzzy clas-
sification of parts, form calculations remain stable un-
der MAT instabilities caused by continuously deform-
ing boundaries. This stability has been demonstrated
by extensive tests and is detailed in (Katz, 2002). Even
when drastic changes to the MAT result from tiny
changes to the boundary, these instabilities are confined
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Fig. 10. Objects and their substance measure. (a) Object with protrusions. The protrusions of the object show how perceptual uncertainty
about the part hierarchy is reflected in the substance measure. (b) This example shows how the implementation of the endness adjustment gives
unintuitive results.

to the connection component of the object and the
substance-weighted MAT shows only the small defor-
mation. In this way, form analysis can track the minor
boundary changes and remain immune to the sensitiv-
ities of the underlying MAT.
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