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Knowledge-based localization of hippocampus in human brain MRI
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Abstract

We present a novel and efficient method for localization of human brain structures such as hippocampus. Landmark localization is important
for segmentation and registration. This method follows a statistical roadmap, consisting of anatomical landmarks, to reach the desired structures.
Using a set of desired and undesired landmarks, identified on a training set, we estimate Gaussian models and determine optimal search areas
for desired landmarks. The statistical models form a set of rules to evaluate the extracted landmarks during the search procedure. When applied
on 900 MR images of 10 epileptic patients, this method demonstrated an overall success rate of 83%.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The hippocampus is an important structure of the human
brain’s limbic system. It is strongly believed that this struc-
ture has a key role in the learning process and memory. The
variations in volume and architecture of the hippocampus on
MRI have been observed with some neurological disorders
such as schizophrenia, epilepsy, Alzheimer’s disease, cognitive
impairment, dementia, temporal pole hypometabolism, neu-
rodegenerative diseases, verbal memory performance, emotion
processing, posttraumatic stress disorder, traumatic brain in-
jury, organic amnesia, vascular dementia, and mesial temporal
sclerosis [1–18]. On the MRI coronal sections, the hippocam-
pus looks like a peninsula of gray matter in white matter and
appears in both left and right hemispheres of the brain. On
Fig. 1(a) and (b), the left hippocampus is delineated on coronal
and sagittal views, respectively. Note that these figures show no
distinct boundaries at the medial and anterior limits of the hip-
pocampus, respectively. In 3D, the hippocampus has a sausage-
like shape (see Fig. 1(c)). Details of the hippocampus neuro-
physiology, anatomy and its appearance on MRI are presented
in various publications [2,17,19–22].
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In many cases, volumetric analysis of the hippocampus
from MRI is recommended for human [23] and animal stud-
ies [24]. The conventional methods (manual segmentation)
require expert operators and they are usually time consuming. In
addition, due to the involvement of human operator in the pro-
cedure, manual segmentation is not intrinsically reproducible,
although this problem can be greatly limited by standardization
of the segmentation procedure [25]. These are limiting factors
in intra- and more profoundly in inter-institutional quantitative
studies. Due to these problems, extraction of quantitative in-
formation from MRI is currently done by a limited number of
institutions.

Automated procedures are expected to solve the above prob-
lems, thereby making it possible for most medical institutions
to benefit from quantitative information extracted from MRI.
However, segmentation of the hippocampus with conventional
methods, e.g., edge tracking, thresholding, or region growing
[26] does not produce acceptable results. The reason is that
this structure has relatively low contrast, multiple edges, and
discontinuous or missing edges on MRI.

The atlas mapping/warping is among the methods that have
been widely used for human brain segmentation [27–36].
For relatively small and highly variable structures like the
hippocampus, these methods do not usually provide good
results due to the imperfections involved in the registration
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Fig. 1. Hippocampus on T1-weighted images of brain MRI: (a) coronal view with left hippocampus delineated where medial limits show no distinct boundaries;
(b) sagittal view with hippocampus delineated where anterior limits show no distinct boundaries; (c) 3D model of hippocampus overlaid on coronal view.

and warping steps. As Hsu et al. [35] reported, reliability of
automatic volumetry (using warping method) depends on the
selection of the hippocampal template (atlas). Moreover, the
warping/mapping methods are computationally inefficient since
they deform the entire atlas to match to the entire image data
set. In many cases, a single structure (e.g., hippocampus) is
of interest, yet the atlas-based methods require warping of the
entire brain. Therefore, the conventional atlas warping is nei-
ther sufficient nor efficient for localization or segmentation of
small structures with high variability in their morphology and
location, e.g., hippocampus.

Alternatively, deformable models have been proposed for
segmentation of the hippocampus [37–39], and other brain
structures from MRI [40,41]. Deformable models treat each
structure as a unit object and produce closed boundaries for it.
However, all deformable models require an initial state (poly-
gon) from which they start and evolve until they come to a
final shape (rest state) [42]. Leaving the definition of the ini-
tial polygon to the user may result in low productivity and low
reproducibility of the segmentation [43]. Using template (or at-
las) mapping/warping to define the initial shape, as proposed in
[44–52,38], is insufficient as discussed before. We will utilize a
mutual information-based atlas mapping to show how inaccu-
rate this strategy may perform. The inaccuracies in the initial-
ization of small structures like the hippocampus usually result
in incorrect segmentation since the edges of neighboring struc-
tures can easily absorb the model’s boundaries. In the above ex-
periment, we will show how the proposed localization method
can guide the atlas-based localization in Section 3. Details of
the proposed localization method are described in Section 2.
Experimental results and discussions are presented in Section
3. Conclusions and future works are presented in Section 4.

2. Proposed method

The proposed localization method consists of two main
steps: (1) information extraction and (2) information anal-
ysis, discussed in Sections 2.1 and 2.2, respectively. The
information extraction step locates a set of anatomical land-
marks on coronal sections of the brain T1-weighted MRI.
The information analysis step analyzes the extracted infor-
mation to determine whether or not the landmarks of the

hippocampus and other structures of interest are accurate and
reliable.

The MR images, used in this work, were obtained from
epileptic patients using a 1.5 T Signa GE scanner with the fol-
lowing protocol and parameters: 3D IR SPGR, TE = 10 ms,
TR = 500 ms, flip angle =20◦, slice thickness =2 mm, 256 ×
256 × 128 voxels, NEX = 2, FOV = 20 cm. The patients con-
tributed in this study are all adult with an age average and stan-
dard deviation of 45 and 14 years, respectively.

2.1. Information extraction

When localizing an anatomical structure, especially with low
contrast and missing boundaries, the experts tend to look at
well-defined and high-contrast neighboring structures to ensure
that they have targeted the correct structure. This brings up
the notion of making a roadmap to find a desired structure or
landmark1 as final destination. A roadmap consists of a starting
point and some milestones with pre-specified road segments
guiding a search algorithm from one milestone to the next. A
roadmap may require multiple routes to its destination so that
it would be possible to evaluate the accuracy and correctness
of the final destination.

Unlike the geographical maps, in a brain map the road from
one landmark to the next varies among individuals. However,
there is an approximate geometrical position for each human
brain anatomical structure in which it resides and thus it can
be looked for and found. An approximate relative spatial rela-
tionship does also exist among the brain anatomical structures.
These two postulations make it possible to estimate a set of
statistical roads connecting the landmarks of interest: statisti-
cal brain roadmap. For hippocampus localization, we estimate
the statistical models of the desired and undesired landmarks
using the MR images of six patients considered as the train-
ing set. This is discussed in Section 2.1.2. The undesired land-
marks are located close to the desired ones with similar inten-
sity features to those of the desired landmarks. However, they
do not belong to the desired anatomical structures. The desired
and undesired models make it possible to balance the sensi-

1 In this paper we interchangeably refer to milestones and landmarks.
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Fig. 2. Generating binary images using FCM: (a) original image; (b)–(d) binary images representing background and CSF, GM, WM, respectively, generated
based on seven clusters produced by FCM, shown in (e)–(k). Note that segmented tissues are shown black in (b)–(k).

tivity (probability of true detection) vs. specificity (one minus
the probability of false detection). This leads to the determina-
tion of an optimal search area for each desired landmark as the
road segment from one milestone to the next. This is discussed
in Section 2.1.3. We describe the search algorithm by which
the landmarks of interest are searched for and found within the
search area in Section 2.1.4. The last two steps will then be
applied on our specific application: hippocampus localization,
in Section 2.1.5. Since a major part of the proposed algorithm
(search method) takes place on binary images of CSF, GM,
and WM, we briefly describe how these images are generated
in Section 2.1.1.

2.1.1. Generating binary images
We have tested several methods to generate binary images.

The examined methods included: (a) histogram analysis (HA);
(b) K-Means (KM); (c) fuzzy C-Means (FCM), and (d) itera-
tive self-organizing data analysis (ISODATA) [53–55]. The HA
method works based on the assumption that the histogram peaks
and valleys can be related to the image background, scalp, mus-
cles, CSF, GM, and WM in a direct, unique and robust way. In
real situations, this assumption is not quite reliable. KM and
FCM are semi-unsupervised clustering methods in the sense
that the user should specify the number of clusters. The ISO-
DATA, on the other hand, does not have such a requirement and
provides more flexibility. However, working with ISODATA
is more complicated (compared to the FCM) due to some re-
quired parameter adjustments. The FCM and ISODATA have
produced similarly good results for our purpose. We have cho-
sen the FCM since it requires smaller number of parameters.
We have used the fcm function offered in the Matlab (Math
Works, Boston, MA, USA) Fuzzy Logic Toolbox with default
value for the “exponent for the partition matrix U” (i.e., 2.0),
maximum number of iterations 200, and minimum amount of
improvement 10−11, for seven clusters.

The criteria we use to assess the binary images are focused
on the hippocampus region, the insular cortex, and the ventri-
cle structures with an emphasis on the separation of the gray

matter from the white matter and the CSF. For instance, the
partial volume effect can result in false connections of the
lateral boarders of the hippocampus to the medial point of
parahippocampal and fusiform gyri interface (PFGI) or the
gray matter at the superior portions of the collateral sulcus.
On the other hand, if these separations are over emphasized
they may cause false discontinuities within the hippocampus
and the insular cortex. Keeping the above trade-off in mind,
the collaborating neuro-anatomist assisted us to determine an
acceptable combination of the clusters, produced by the FCM
with seven clusters. Fig. 2 shows the results of the FCM cluster-
ing method (Fig. 2(e)–(k)) and the final three combined binary
images (Fig. 2(b)–(d)).

The binary images, which are used in the following sec-
tions, are built based on the center of clusters 4–6 (CC4,
CC5, and CC6, respectively) when the clusters are increas-
ingly sorted based on their mean values. The three target bi-
nary images presenting: (1) background and CSF (Bk&CSF);
(2) gray matter (GM), and (3) white matter (WM), are cal-
culated based on the following formulae: Bk&CSF < CC4,
(CC4+(CC5−CC4)/3) < GM < (CC5+7×(CC6−CC5)/12),
and WM > (CC5 + 7 × (CC6 − CC5)/12). One may note
that the very tinny GM-WM partial volume strip forming the
lateral boundaries of the hippocampus referred to by an arrow
on the original image, (Fig. 2(a)). This area is preserved in
the GM and WM binary images (Fig. 2(c) and (d)), respec-
tively. The search for the lateral ventricles takes place on the
Bk&CSF binary images. These images are also used to find
lateral and superior borders of the head to determine the start-
ing point of the roadmap discussed in the following sections.
The searches for the rest of the structures are performed on the
GM and WM binary images. Note that the above strategy for
pre-segmentation of the brain tissues and generating the binary
images is neither the best possible method nor is it part of
the contributions of this paper. We just used it as an adequate
approach to prepare data for the proposed method. Clearly,
using more robust and accurate pre-segmentation methods can
improve the overall performance.
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Fig. 3. An instance of marking points of interest: starting points of search:
the most lateral points of lateral ventricles, desired points: superior landmarks
of hippocampus, undesired points: medial landmarks of insular cortex.

2.1.2. Statistical models of landmarks of interest
To estimate the statistical model for each structure, we have

randomly selected six epileptic patients and manually marked
the landmarks of interest on over 70 MRI slices. We mark a few
undesired structures around each desired landmark to limit the
search area and improve the specifi+city. Fig. 3 shows a snap-
shot of the program by which an expert can browse through
MRI slices and mark the desired and undesired points. Using
these points, we estimate the statistical models of the desired
landmarks as well as those of their neighboring undesired land-
marks. The procedure of marking the undesired landmarks is
done for each search by taking into consideration all neighbor-
ing tissues with similar features as that of the desired point. The
undesired landmarks may fall within the search area and pos-
sibly mislead the algorithm. Note that the search is performed
on the binary images representing the CSF, GM, or WM, so we
do not need to consider the neighboring tissues with different
intensity characteristics compared to that of the desired struc-
ture. After marking the desired and undesired landmarks, a 2D
normal (Gaussian) distribution is estimated for each landmark
as follows:

G(x, y) = 1

2�
√|Det(C)|

× exp

(
−1

2
[x − mxy − my]C−1

[
x − mx

y − my

])
(1)

where C is the covariance matrix and mx , my are the mean
values of the x, and y coordinates of the marked points for
each particular landmark. Fig. 4 depictes an instance of the
marked landmarks and the summation of their correspond-

ing density functions (when undesired models are considered
negative).

2.1.3. Definition of search areas
The search area is usually characterized by a viewpoint, two

angles of view, and two far- and near-zone arcs. The view-
point is usually determined in the initial (rough) roadmap de-
sign by an expert, e.g., a neuro-radiologists. To determine the
limits of the search area, we first determine a region for each
landmark in which it can be most likely found. This region is
derived from the statistical model of the structure (shown in
Fig. 4(a)) as an iso-contour of the Gaussian model. The volume
under the distribution function inside the iso-contour repre-
sents the likelihood of residing the landmark inside the region.
We call this likelihood “confidence level,” as a lower bound at
which the detection rate of the search algorithm is set. Finding
the iso-contour does not have an analytic solution; so we em-
ploy a numerical solution. We use an optimization procedure
[56] to calculate the z-value producing the iso-contour for a
given confidence level. We set the confidence level at 95% for
all structures either desired or undesired throughout this algo-
rithm. The objective function we minimize in this regard is as
follows:

Obj(z) =
∣∣∣∣
∫ ∫

inside iso-contour(z)
G(x, y) dx dy − 0.95

∣∣∣∣
2

.

(2)

We use the determined iso-contours and the viewpoint to de-
fine the search area. In the simplest case, the view angles are
the tangential lines to the desired model’s iso-contour from
the viewpoint. The search near- and far-zone limits are the
tangential arcs to the iso-contour with the viewpoint as their
centers. Note that there is greater than 95% probability for
the detection of the desired landmark in this search area since
it includes more than the area inside the iso-contour. There-
fore, in its simplest case, this procedure preserves a lower
bound for the confidence level by which the desired structure
can be detected. Note that finding the tangential line and arc
has straightforward analytic solutions. This search area does
sometimes partially cover the iso-contour of a neighboring un-
desired structure. There are even cases where the desired and
undesired iso-contours are intersecting. We take care of these
cases by adding limiting lines as described in the example
below.

Assume that we would like to determine a search area for the
landmarks depicted by pentagram points in Fig. 4(a) from the
viewpoint marked by the square point (located at (0 0)). Since
there is no undesired structure at the lower-right side of the
desired structure, �1 can be determined by the tangential line to
the iso-contour shown in Fig. 4(a). Also, there is no undesired
structure between the viewpoint and the desired structure, so we
choose the tangential arc with radius r1, as the near-zone limit.
For the other view angle (�2), the iso-contours of the desired and
undesired structures (pentagram and circles, respectively) are
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Fig. 4. Marked landmarks and their estimated distributions for an example of six landmarks: (a) marked points with iso-countors drawn where only 5% of volume
under estimated distribution function left outside; (b) 3D plot of sum of estimated Gaussian distributions where undesired models are considered to be negative.

Fig. 5. (a) Illustration of probability density functions (pdf) for six landmarks. pdf’s of desired landmarks are shown positive and those of undesired landmarks
are shown negative. Black lines show the search angles. (b) Zoomed-in view of the pdf’s intersecting with a search boundary.

intersecting. In such cases the “tangential line” solution leads
the algorithm to a low specificity, i.e., large number of false
alarms, which is not desirable. We propose an optimal solution
in the sense that the specificity and sensitivity are balanced.
Note that this is an optimal solution only if there is no tendency
toward finding the desired structure at the cost of getting more
erroneous landmarks (higher false alarm) or preventing false
alarms at the cost of lower detection rate.

Fig. 5(a) shows a 3D illustration of an overall distribution
map made up of the sum of all the probability density func-

tions where undesired models are considered to be negative.
Note that this overall map is not a probability density func-
tion. Fig. 5(b) shows portions of the desired and undesired
density functions outside and inside of the search angle, re-
spectively, as positive and negative edges. The positive edge
corresponds to the probability of missing the desired structure
(1-sensitivity). The negative edge corresponds to the probabil-
ity of false alarm (1-specificity). The specificity and sensitivity
are balanced when the volume of the positive and the negative
portions shown in Fig. 5(b) are equal. Therefore, we minimize
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Fig. 6. (a) Schematic showing a case where distributions of landmarks on
each individual slice/location are completely separate while their projections
on 2D space overlap. (b) An actual case illustration in which 3D iso-surface
of desired and undesired landmarks are separate while their 2D projections
overlap.

the objective function in formula (3) to obtain this optimal
solution

Obj(�) =
∣∣∣∣∣
∫ ∫

search angle side
Gu(x, y) dx dy

+
∫ ∫

outside the search angle
Gd(x, y) dxdy

∣∣∣∣∣
2

,

(3)

where Gd and Gu are the desired and undesired models, re-
spectively, and � is the angle of view (�2 in Fig. 4(a)). The
positive and negative portions shown in Fig. 5(b) correspond
to the first and the second terms in (3), respectively.

There are cases in which the desired and undesired distribu-
tions are (partially) at the same angle of view and the search
area contains part of the undesired models. Fig. 4(a) shows an
instance of such case for the far-zone limits where the pen-
tagrams represent the desired and the diamonds represent the
undesired structures. In this case, we estimate a limiting line
(Fig. 4(a)) in addition to the tangential arc. Then we define the
search limit at each angle by the one that is closer (farther for
near-zone limits) to the viewpoint (see Fig. 4(a)). To estimate
the limiting line, we consider the volumes under the undesired
and desired density functions inside the search area and on the
other side of the limiting line, respectively. We move the line
to minimize the difference between these two volumes. Since
such an optimal line does not usually pass through the view-
point (origin of the coordinate system), we estimate the inter-
cept of the line in addition to its slope. So an objective func-
tion of two parameters is optimized, Obj(�, h), where h is the
intercept of the limiting line.

There are cases in which the 2D density functions highly
overlap and the theoretical error (false alarms and missing land-
marks) are higher than the actual error. We explain the reason
using the schematic shown in Fig. 6(a) and an actual 3D il-
lustration shown in Fig. 6(b). By projecting the marked points

acquired in 3D space into the 2D space and building the 2D
statistical models, we assume that the landmarks of interest
have a co-centered distribution in the third dimension. Given
the fact that the points are marked in a very thin portion of the
image space (20–30 mm thick) this assumption is often valid.
However, there are occasional cases in which the distributions
of a landmark are not co-centered in the third dimension. So
while the landmarks’ models highly overlap on their 2D pro-
jection, they are separated in their 3D distribution (Fig. 6(b)).
This observation leads us to a very important fact that consti-
tutes our search method. The fact is that the proposed search
method mimics the mechanism by which light rays come into
the eyes of an observer (see Section 2.1.4). The closer object
is seen first no matter how overlapped its 2D projection is with
that of the other objects in the scene. Keeping the above obser-
vation in mind and looking at Fig. 6(a) one can easily see that
the proposed search makes it impossible to reach the undesired
structures’ iso-contours before passing the iso-contours of the
desired structure. In fact there is no intersection when the 3D
models of the structures are considered (Fig. 6(b)).

Up to this point, we have assumed a fixed viewpoint (usually
a previously found anatomical landmark) from which the search
is initiated. We can relax this criterion and look for a better
viewpoint. This is what we have done to adjust the viewpoint of
the search from the lateral ventricles for the superior landmarks
of the hippocampus. We will go into the details of this experi-
ment in Appendix A.2. In such cases, the objective function is
very similar to (3) with the extra step of intercept estimation,
i.e., Obj(�, h). The only difference is that we find all the opti-
mal limiting lines between each pair of desired–undesired dis-
tributions and then decide which pair of lines provide a close
intersection to the original viewpoint and thus should be con-
sidered as the angles of view. Since we use at most the four
closest undesired structures around the desired one, there re-
main at most two other lines that determine the far- and near-
zone limits of the search if they make a smaller search area
compared to the tangential lines/arcs drawn based on the new
viewpoint. In cases with less than four undesired structures, we
choose the missing limit by fitting a tangential arc/line to the
iso-contour. Note that we do not change the viewpoint radically
since it puts a strong bias on the selection of the surrounding
undesired points and the process of manual landmark identifi-
cation on the training set. In our experiment with the hippocam-
pus, there is one actual case (search from superior landmark of
the hippocampus for its inferior landmark) with the same situ-
ation (suggesting a radical viewpoint movement) that we will
discuss in details in Appendix A.5.

2.1.4. Search method (traversing search area)
In general, the search is performed from an initial boundary

(also referred to as distance or radius) relative to a viewpoint
and expands toward a final boundary (r1 and r2, respectively,
in Fig. 7(a)). For each radius all the pixels between two angles
of view (�1 and �2 in Fig. 7(a)) are examined to find a structure
with a specific condition on its color (black or white on the
binary images) and/or spatial connectivity before decreasing
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Fig. 7. (a) Search method mimicking emission of radii of sight; (b) fixed angle step-size and possibility of missing pixels while traversing search area. Squares
present some of missing pixels; (c) determining angle step-size adaptively leaves no pixel untouched/unexamined.

a cb d e f g h i j k l m

Fig. 8. Structuring elements of finding connected components (FCC) algorithm modified to grow directionally.

or increasing the search radius. When the smaller boundary
is the initial one, this search method looks very similar to the
way light traverses the space when departing a point source.
When the initial boundary is the larger one, it is similar to
the way light rays travel into the eyes of an observer. In the
simplest case, the search looks for a pixel with a particular
“color.” To decrease the sensitivity to the image noise, we may
search for a pixel with specific spatial connectivity constraint
(e.g., 8-neighbor connectivity). For example, in Fig. 7(a) a
dark point with at least 7 dark neighbors in an 8-nearest neigh-
borhood is searched for and found. Once a point satisfies the
search condition, an enhanced morphological algorithm based
on finding connected component (FCC) [57] is invoked. Us-
ing one of the structuring elements shown in Fig. 8 FCC is
used to grow the connected regions (in a specific direction)
and eventually reach to a superior, inferior, lateral, or medial
landmark.

To ensure all of the pixels in a search region are viewed, we
determine the angle step-size as a function of the radius. The
worse case scenario occurs for the pixels with sides perpendic-
ular to the direction of the view angle (light ray). Therefore,
the angle step-size should be smaller than the angle introduced
by the pixel-side segment and the coordinates of the viewpoint,
i.e., ��� arctan(1/r) where r is the length of the segment
connecting the viewpoint to the examined point. A search with
a fixed angle step-size either leads to inefficiency (each pixel is
examined more than one time) or fails to examine all the pix-
els (in Fig. 7(b) unexamined pixels are marked with squares).
Unlike the case with a fixed angle step-size, the adaptive

method (Fig. 7(c)) proposed here provides a relatively efficient
search and guarantees to examine all the pixels in the search
area.

2.1.5. Application of proposed method to hippocampus
The anatomical structures of interest participating in the

roadmap include the lateral ventricles, insular cortex, and hip-
pocampus. The proposed search approach finds the lateral ven-
tricles on the CSF binary images from the starting point of
the roadmap. Note that the roadmap’s starting point (Fig. 9,
point-1) is located on the brain midplane inferior to the most
superior point of the head by half of the head width. The FCC
algorithm is utilized to extract the whole ventricle structure and
locate its particular landmarks. Using the lateral landmarks of
the lateral ventricles, we initiate a search to identify a landmark
on the superior borders of the hippocampi (Fig. 9, point-2).
From this landmark, search regions are defined to identify the
medial inferior landmark of the hippocampus and the insular
cortex (Fig. 9, point-3 and point-4, respectively). The medial
inferior landmarks of the insular cortex are located using the
FCC algorithm. These landmarks define search regions to iden-
tify lateral landmarks of the hippocampi. Using the lateral and
the inferior points of the hippocampus a search from the su-
perior landmark of this structure is performed to find a fourth
point (somewhere between the lateral and inferior points) of
this structure. The searches for the superior and the lateral land-
marks of the hippocampus and the insular cortex take place on
GM binary images. The search for the inferior and the fourth
point of the hippocampus is performed on WM binary images.
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Details of the statistical models and search areas for the above
roadmap and its milestones are presented in Appendix A.

2.2. Information analysis

At this step, we evaluate the reliability of each slice-landmark
generated during previous step: information extraction. We em-
ploy several rules as the knowledge-based core of the proposed
system to distinguish the inaccurate or inappropriate landmarks

Fig. 9. Milestones of roadmap to localize left hippocampus: (1) starting point
of roadmap; (2) most lateral landmark of left lateral ventricle; (3) a point
on superior limits of left hippocampus, and (4) most inferior-medial point of
left insular cortex. Solid arrows show the sequence in which milestones are
visited.

Fig. 10. (a) Absolute coordinates of lateral and medial points of lateral ventricles (pentagrams and triangles, respectively), superior, lateral, and inferior points of
hippocampus (diamonds, stars, and pentagrams, respectively), and medial inferior points of insular cortex (triangles). All points are given in a coordinate system
built on starting point of roadmap (define in Section 2.1) as origin. The iso-contours are drawn at 95% confidence level. (b)–(e) Deviations in y-coordinate
for each pair of a landmark in left and right hemisphere vs. deviation of average of corresponding x-coordinates from brain midline, (b) lateral, (c) inferior
landmarks of hippocampus, (d) medial inferior points of insular cortex, (e) lateral landmarks of lateral ventricles.

found during the information extraction (Section 2.1). The pro-
posed rule-based system acts as an intelligent filter in ruling out
the inappropriate landmarks and corresponding slices. The ap-
proach to design the rules using the estimated statistical models
is presented in Section 2.2.1. The approximate reasoning pro-
posed to combine the results of the rules is discussed in Section
2.2.2.

2.2.1. Proposed rules
We have defined 14 rules for the proposed knowledge-based

system. Each rule generates an intermediate confidence factor
(ICNF). An ICNF is usually determined based on a particular
abstract concept associated with the high-level object(s). We
have defined three categories of rules based on: (i) absolute lo-
cation of the landmarks; (ii) relative locations of the landmarks
compared to each other; and (iii) general symmetry of the brain.

The first category is based on our first postulation that the
brain structures and landmarks have ballpark locations on the
slices with hippocampus across a generation of normal cases
or epileptic patients and that this ballpark can be statistically
modeled. The same training set as that of Section 2.1 has
been used for estimation of the absolute statistical models.
Fig. 10(a) depicts the marked points and the iso-contours of the
models estimated for the desired landmarks. The iso-contours
are determined at 95% confidence level. This guarantees the
probability of detection (sensitivity) of the associated rules to
be at least 95%. The models shown in Fig. 10(a) demonstrate
the absolute locations of the landmarks of interest in a coordi-
nate system with the first point of the roadmap as its origin. If
a landmark is found in an unexpected region, the confidence
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of the system in correct identification of the landmark decreases.
For instance, a point found as the superior landmark of the hip-
pocampus with a vertical (y-) coordinate greater than zero or
less than –36 (almost 30 mm) is not supported by the absolute
location distribution of this landmark (diamonds in Fig. 10(a)).
The above distribution also introduces horizontally acceptable
limits (AL) in which the superior points of the left and right
hippocampi may fall. An absolute rule checks all AL for an ex-
tracted point and generates an ICNF depending on how well the
extracted features (EF) of the point (e.g., horizontal or vertical
coordinates) match the ALs. When all ALs of a rule are satis-
fied, a maximum ICNF score of 100 is generated that strongly
supports the extracted point. The minimum ICNF score is zero
that strongly denies an extracted point to be a representative
of the corresponding landmark. When the EFs of the extracted
point do not satisfy some or all ALs, the rule performs a soft
transition from its absolute supportive state (ICNF = 100) to
its absolute denial state (ICNF = 0) based on formula (4),

ICNFi =
{

100 − �i , �i < 100,

0, �i > 100,
(4)

where

�i =
( ∑

features of the ith rule

(TPi,j × min
k

(EFj − ALj,k))
2

)0.5

(5)

and TPi,j is the softening parameter that governs the transition
of the i-th rule based on an unacceptable mismatch in jth AL,
and EF. TP is usually set to 7.8 in our work extending the
transient strip to 7.8 mm. When AL has more than one limit
(e.g., min and max limits for the vertical location of the superior
landmarks of the hippocampus), formula (5) uses the limit,
which is closer to the extracted feature (e.g., shortest distance
from the acceptable region). We have absolute rules for each
landmark of interest introduced in Fig. 10(a) except for the most
medial points of the lateral ventricles. We did not design an
absolute rule for this landmark since there are cases in which the
third ventricle is connected to the lateral ventricles in 2D view
and as a result the most medial points of the lateral ventricles
are not reliable for an absolute location testimony. Thus, we
have five absolute rules in the proposed rule-based system.

The second category of the rules is based on our second
postulation indicating that approximate relative spatial relation-
ships exist among the brain anatomical structures. So, one par-
ticular landmark is expected to be superior, inferior, interior,
or lateral compared to another landmark. These qualitative ex-
pectations are converted to quantitative relations based on the
statistical models shown in Fig. 10 as well as the ones derived
in the information extraction section.

As an example, we explain the details of the design for a
relative rule that quantitates the following qualitative rule: “the
superior and lateral landmarks of the hippocampus should not
have significantly different vertical coordinates (i.e., along the
y-axis).” The absolute statistical models shown in Fig. 10(a)
(diamonds and star models) suggest that the linguistics label
“not significantly different in vertical coordinates” to be as

Fig. 11. Distribution of medial inferior landmarks of insular cortex shown as
pentagram in coordinates system built on superior landmarks of hippocampus
as origin.

much as 31.2 mm (about 40 pixels in this example) for this case.
However, further investigations show a lower bound for this
term. We will explain this in details in the following paragraph.

Considering the model estimated in Appendix A.3 for the
medial inferior points of the insular cortex (Fig. 11 pentagram
points) in the superior points of the hippocampus coordinates
(Fig. 11 square points), we can estimate a distribution model
for the superior points of the hippocampus in the insular cortex
coordinates. This model would be the same as its counterpart
only with the difference of being centrically projected around
the middle of the segment connecting the mean value of the
insular cortex model and the origin, i.e., superior point of the
hippocampus. Keeping this point in mind and looking at Fig. 11,
we have applied the centric-projection and found out that the
superior point of the hippocampus is stretched somewhere from
3.9 to 19.5 mm in y-axis (about 5 to 25 pixels) underneath
the insular cortex based on the iso-contour of 95% confidence
level. On the other hand, the model estimated for the lateral
point of the hippocampus from the medial inferior point of the
insular cortex in Appendix A.4 shows that the lateral point of
the hippocampus is distributed from 2.3 to 11.7 mm (about 3–15
pixels) underneath the insular cortex. These two observations
suggest the use of 17.2 mm (about 22 pixels) as a maximum AL
to describe the term “not significantly different,” in this case.
The underlying rationale based on which we can set a lower
bound for this case is the fact that using the models estimated
in Appendix A.3 and A.4, eliminates the uncertainty brought in
by the roadmap’s starting point to the absolute models shown
in Fig. 10(a). The rules in this category follow formula (4) on
their transition from absolute supportive state to absolute denial
state.

We have designed relative spatial rules to examine the spa-
tial relationships of: (a) the lateral and interior landmarks of
the lateral ventricles, (b) superior and inferior points of the hip-
pocampus, (c) the superior point of the hippocampus and inte-
rior/inferior point of the insular cortex. There are other possible
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combinations of landmark pairs for which a relative rule could
be designed. However, such pairs are linearly dependent to the
rules we have just proposed. As an example there is no need
to examine the relationship of the insular cortex and the lateral
landmark of the hippocampus since it is not independent of the
rule discussed in previous paragraph and (c). Although the inte-
rior points of the lateral ventricles are not reliable, as mentioned
before, we are proposing in (a) a relative rule in which this
landmark is participating. As pointed out previously, the rea-
son for the interior point to be “unreliable” is that sometimes,
in 2D views, the third ventricle is connected to the lateral ven-
tricles. This may pull down the interior points unpredictably.
Therefore, even though the lower limits of this structure is not
reliable we can still set a limit on its upper bound relative to
the lateral points of the lateral ventricles. The corresponding
rule verifies the upper part of the lateral ventricles to have a
‘V’ shape.

The third category of the rules is based on general sym-
metry of the brain. If MR images are acquired in the coronal
or axial directions/cross sections (oror a combination of these
two directions), the symmetry feature will be observed with re-
spect to the midplane. The symmetric rules are designed based
on the statistical models derived here and partially shown in
Fig. 10(b)–(e). It is expected that the corresponding landmarks
at left and right hemispheres satisfy the following conditions:
(1) the horizontal (x-) coordinates average around brain mid-
line; (2) the vertical (y-) coordinates are not significantly dif-
ferent. We assume that the roadmap’s starting point is on the
brain midplane, therefore, the “x-coordinates averages of the
symmetrically located landmarks” are supposed to be around
the x-coordinate of the roadmap’s starting point.

The term “not significantly different” is interpreted for
each case based on the statistical models (partially) shown
in Fig. 10(b)–(e). For instance for the inferior points of the
hippocampus the corresponding model, the iso-contour in
Fig. 10(c), suggests that the left and right landmarks may be at
most 7 mm (about 9 pixels) apart in their y-coordinate. For the
deviation of the horizontal average from the roadmap’s start-
ing point, it is expected to be no more than 4.7 mm (6 pixels).
There are four rules similar to the one explained above for (a)
the superior and (b) lateral landmarks of the hippocampus; (c)
the lateral points of the lateral ventricles, and (d) the medial
inferior landmarks of the insular cortex. The symmetric rules
follow formula (4) on their transition from absolute supportive
state to absolute denial state.

2.2.2. CNF calculation
The sample mean of the intermediate confidence factors, IC-

NFs, is used to compute the overall confidence factor, CNF.
The rationale for computing the sample mean is that each ICNF
can be considered as an estimate of the probability of the slice
containing the hippocampus, and thus each ICNF is a random
variable. For independent ICNFs, the sample mean generates
the minimum variance estimate of CNF. If CNF is greater than
a pre-specified threshold, the slice is determined to contain the
hippocampus. In addition, the landmarks found around the hip-

pocampus are assessed to be accurate enough and therefore,
valid. In this study, the threshold is set to 90 while CNF range
is from 0 to 100. The average and standard deviation of CNF
for slices without hippocampus for the training set are 40.15
and 15.01, respectively.

We have selected the threshold conservatively to ensure no
wrong or inaccurate landmarks are considered as valid, since
such an error, depending on its severity, may cause a problem
for the next step of the segmentation (i.e., deformable model).
The underlying assumption is that applying the proposed search
method on slices without hippocampus either produces no re-
sults or the results are randomly distributed such that the above
rules will always detect and filter them out. On the other hand,
the slices with the hippocampus produce points that are scored
above the threshold by the rules.

3. Experimental results and discussion

We apply the proposed method to the MR images of 10 ran-
domly selected temporal lobe epileptic patients and evaluate
its performance. Fig. 12 illustrates sample results of the hip-
pocampus initialization (first row) and the corresponding final
segmentations provided by the deformable model (second row)
in sagittal and coronal views. Details of the 3D deformable
model used in our experiments are presented in [58,59]. Quan-
titatively, we first assess the success of the first phase of the
algorithm, the information extraction, during which the land-
marks of interest are found. Then we present the assessment
of the information analysis phase during which the landmarks
are evaluated. Finally, the overall evaluation of the proposed
method including the final step, deformable model segmenta-
tion, is reported.

If a point is accurately found on a slice with the landmark
of interest (e.g., hippocampus) or no point is found on the
slices without the landmark of interest, then it is considered
a success, for the information extraction phase. If a point is
found on a slice with no landmark of interest, or the point is
not accurately found where the landmark of interest exists, then
it is considered a failure. The success rates of the information
extraction phase for each individual patient and in overall are
presented in Table 1.

For the information analysis phase, we consider two mea-
sures by which the performance of this phase is assessed: speci-
ficity and sensitivity. We calculate the specificity as the ratio of
the number of slices with CNF < 90 over the number of the
slices without hippocampus or with the landmarks of interest
inaccurately found. The sensitivity of the information analysis
phase is defined as the ratio of the number of the slices with
CNF � 90 over the number of slices the landmarks of interest
are all accurately found. The first two rows of Table 2 sum-
marize the above definitions. For these two measures we have
obtained very high overall scores of 99.50% (STD: 1.58%) and
98.89% (STD: 3.51%), respectively. This indicates that the pro-
posed rule-based system has performed very well. The scores
for different patients are reported in the “information analysis”
columns of Table 1.
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Fig. 12. (a)–d) Sagittal and coronal pairs of T1-weighted MRIs of two subjects with initial contours overlaid. (e)–(h) Sagittal and coronal pairs of T1-weighted
MRIs with the final contours overlaid.

Table 1
Results of proposed algorithm for information extraction and analysis steps and overall system

Patient no. Information extraction Information analysis Accuracy Overall sensitivity Overall success rate

Specificity Sensitivity

1 78.67 100 100 99.17 66.67 80.00
2 71.67 100 100 100.0 91.67 95.00
3 70.63 100 100 99.07 75.00 85.71
4 90.10 100 100 98.48 78.57 81.25
5 71.25 100 100 100.0 66.67 80.00
6 55.75 100 100 100.0 60.00 86.21
7 64.77 100 100 100.0 54.55 77.27
8 66.67 100 100 99.07 75.00 85.00
9 58.97 95 100 95.83 54.55 80.77
10 62.88 100 88.89 100.0 66.67 81.82

Average 69.14 99.50 98.89 99.16 68.94 83.30
Standard deviation 9.95 1.58 3.51 1.30 11.51 5.00

We consider the “accuracy” of the algorithm as the num-
ber of the accurate points found for the landmarks of interest
divided by the total number of the points found for the land-
marks of interest on all slices with and without the hippocam-
pus with CNF � 90 (third row of Table 2). Note that in our
experiments, there is no circumstance under which the CNF �
90 for slices without the hippocampus. The mean, the standard
deviation, and the maximum CNF for the slices without the
hippocampus are 30.75, 19.66, and 87.5, respectively. The ac-
curacy is important since the points evaluated to be “accurate”
will define the hippocampus initial polygon as the final prod-
uct of the proposed localization method. The outstanding total
accuracy of 99.16% with a minimum of 95.83% is far beyond
the deformable model demands. There were 8 inaccurate points
throughout this experiment where the initial models have 1008

points in total. The inaccuracies mostly caused by the fourth
point of the hippocampus (7 out of 8 inaccurate points). Note
that we did not estimate a model and there is no rule to examine
the fourth point’s accuracy in the information analysis phase.
This means that the proposed statistical models and evaluation
methods failed only once in 1008 cases. The results for differ-
ent patients are reported in the “accuracy” column of Table 1.

The proposed method did not generate any false alarms (de-
fined in the fifth row of Table 2). Thus, we do not report it in
Table 1. The next measure is the “sensitivity,” which is the num-
ber of detected slices with an accurately identified hippocam-
pus and a CNF � 90 divided by the total number of slices with
the hippocampus (fourth row of Table 2). The scores are listed
for each patient in Table 1. The “overall sensitivity” is 68.94%
(STD: 11.51) considering all patients.
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Table 2
Summary of definitions of measures by which we have evaluated performance of proposed method

CNF�90 CNF < 90 Descriptions

Accurate landmarks on
slices with hippocampus

Information analysis sensitivity: (no. of slices with CNF�90)÷(no. of
slices with landmarks of interest accurately found)

Inaccurate landmarks on slices
without hippocampus

Information analysis specificity: (no. of slices with CNF < 90)÷(no. of slices
without the hippocampus or with the landmarks of interest inaccurately found)

Slices with and without hippocampus Overall accuracy: (no. of accurate points)÷(total no. of points on slices
with CNF�90)

Slice with hippocampus Overall sensitivity: (no. of slices with hippocampus & CNF�90)÷(no.
of slices with hippocampus)

Slice without hippocampus Overall false alarm: (no. of slices with CNF�90)÷(no. of slices without
hippocampus)

Fig. 13. Sagittal cross sections of the hippocampus with initial polygons produced using two different sensitivity levels for initialization: (a) 78% (b) 41%. The
final segmentation results (c) and (d) produced by deformable model using initial models shown in (a) and (b), respectively. Note robustness of proposed method.

It is extremely important to note that our deformable model
can easily perform under even a much lower sensitivity. To show
this, we have randomly removed some of the initial point-slices
from the original initialization results (Fig. 13(a)), to decrease
the sensitivity to 41.67% (5 point-slices out of 12 for one of
the patients) (Fig. 13(b)). We have then applied the deformable
model on the original and the reduced initial models. The dif-
ferences in the final segmentations were evaluated with visual
inspection and a similarity measure. The visual inspection re-
sulted in very good correspondences as shown in Fig. 13(c),(d).
The similarity is defined as:

similarity = 1

n

n∑
i=1

#(SegOrgi ∩ SegRdi )

#(SegOrgi ∪ SegRdi )
,

where SegOrgi and SegRdi are the segmented hippocampus on
the ith slice estimated based on the original and reduced initial
models, respectively. The function #(A) returns the cardinality
of set A. The similarity measure of the left hippocampus for the
above case is 0.83, the average distance of the two surfaces is
0.57 mm, and the volume correspondence is 90.10%. Therefore,
the sensitivity provided by the proposed initialization method
is well beyond the demands of the deformable model.

The final measure is the overall success rate of the al-
gorithm in performing its ultimate goal: localization of the
hippocampus. This measure is calculated as the ratio of the

number of correct decisions made by the knowledge-based
system divided by the total number of slices introduced to
it. A correct decision is producing a CNF � 90 when the
introduced slice contains the hippocampus structure or pro-
ducing a CNF < 90 when there is no hippocampus. The
overall success rate of the proposed algorithm is 83.30%
(STD: 5.0%).

Table 3 presents the average boundary distances and the
similarity measure of the initial and automatic (final) seg-
mented models compared to the neuro-anatomist manual
segmentation for each patient and for each side, separately.
The overall average distances of the initial models (poly-
gons) are 2.21 and 2.01 mm with standard deviations of 0.32
and 0.24 for the left and right hippocampi, respectively. The
overall average distances of final segmented models are 1.80
and 1.70 mm with standard deviations of 0.42 and 0.47 for
the left and right hippocampi, respectively. The overall simi-
larities of the initial models are 0.49 and 0.56 with standard
deviations of 0.07 and 0.09 for the left and right hippocampi,
respectively. The overall similarities of the final segmented
models are 0.63 and 0.64 with a standard deviation of 0.07
and 0.05 for the left and right hippocampi, respectively. The
volume correspondences of the final segmented models and
the manual ones are 57.97% and 62.05% with standard devia-
tions of 14.59% and 13.85% for the left and right hippocampi,
respectively.
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Table 3
Average boundary distance, overlap similarity, and volume correspondence measures for initial and final segmented models in comparison with manual
segmentation

Patient no Initial models Final models Initial Final models Final models Initial models Final models Initial Final models Final models
average average models average volume average average models average volume
distance, left distance, left average similarity correspondence distance, right distance, right average similarity correspondence
hemisphere hemisphere similarity (left) (left) (%) hemisphere hemisphere similarity (right) (right) (%)
(mm) (mm) (left) (mm) (mm) (right)

1 1.74 1.68 0.5697 0.6415 55.83 1.94 1.40 0.6043 0.6771 63.82
2 2.14 1.25 0.4422 0.7603 63.80 1.96 1.52 0.5534 0.6761 61.43
3 1.92 1.95 0.5028 0.5767 29.73 2.30 1.80 0.4277 0.5879 30.86
4 1.87 1.60 0.5289 0.6109 44.92 2.09 1.69 0.5042 0.5909 55.95
5 2.21 1.84 0.5138 0.5616 54.74 2.03 2.81 0.5894 0.5500 53.22
6 2.76 2.14 0.4501 0.5949 54.39 1.94 1.93 0.6026 0.6630 80.28
7 2.12 1.36 0.5868 0.7300 68.52 1.55 1.16 0.6727 0.6996 73.50
8 2.56 1.79 0.4181 0.6135 61.66 2.40 1.17 0.4076 0.6643 70.14
9 2.47 2.72 0.3533 0.5977 60.66 1.80 1.72 0.5590 0.6351 71.96
10 2.32 1.69 0.4929 0.5811 85.42 2.07 1.81 0.5919 0.6451 59.33

Average 2.21 1.80 0.4859 0.6268 57.97 2.01 1.70 0.5565 0.6389 62.05
Standarddeviation 0.32 0.42 0.0711 0.0665 14.59 0.24 0.47 0.0859 0.0479 13.85

Fig. 14. (a), (b) Coronal and sagittal views of a base MR volumetric data with the hippocampus boundaries overlaid. (c), (d) Hippocampus boundaries
transferred from the base to a new MRI data set using mutual information registration. (e) Coronal view of segmented model produced by deformable model
using initial model shown in (c) and (d): note an absolute failure: (f) A superior point of the hippocampus transferred model is used to search for the lateral
ventricles based on statistical models estimated in Section 2.1 (g) Landmarks of interest found by initialization method. (h) Result of deformable model applied
on landmarks shown in (g).

As discussed in Introduction an atlas mapping approach may
generate inaccurate initial polygon and have the deformable
model fail. Here, we examine an atlas-based initialization ap-
proach using a mutual information routine for registration. Then
we combine the proposed localization method into the atlas
to guide it to the accurate hippocampus location. The atlas
mapping leads to a rough localization of the desired structure.
However, within that ballpark there is no way to determine the
correlation between the landmarks on the boundaries of the
mapped model (atlas) and the landmarks in the target image

space. For instance, we do not have any clue as to whether
or not the superior landmark of the hippocampus model has
been mapped above or below its actual superior landmark. If
a deformable model is applied using this initial model, it may
be absorbed by the edges of the neighboring structures. How-
ever, since we are in close proximity of the structure of interest
(hippocampus) we know how to find the previous milestones
from which we can search for the actual landmark. In this case,
the previous landmark is the lateral ventricles. So we search
back for the lateral ventricles in the new image space from
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a superior landmark of the hippocampus identified by the at-
las. The following paragraph explains our experiment in this
regard.

We segment the hippocampus on MR images of one pa-
tient shown in coronal and sagittal views, respectively, in
Fig. 14(a)–(b). We use the segmented model and the corre-
sponding MRI data set as the atlas that should be mapped
to the new patient’s MRI. The mutual information is used to
register the atlas into the target MRI. Using the registration
information, the hippocampus model is then transferred into
the new image space (shown in Fig. 14(c)–(d)). Since the hip-
pocampus is not accurately located in the new image space,
the result of applying the deformable model provides incorrect
results (Fig. 14(e)). The boundaries of the initial model are ab-
sorbed by the PFGI, which is a neighbor of the hippocampus
with similar features.

We apply the proposed localization method to guide the atlas
and correct the hippocampus initialization. Although we do not
know where the atlas model falls in the new image space, we
know that it is within a close vicinity of the actual hippocam-
pus. Therefore, the structures relatively far from the hippocam-
pus area, e.g., lateral ventricles, should still have the same sta-
tistical distributions. We pick a superior point of the transferred
hippocampus and perform a search from a viewpoint, 10.9 mm
above and 0.78 mm medial to the superior point, to find the
right lateral ventricle (Fig. 14(f)). The search area is defined
by �1 = 60.8◦, �2 = 92◦, r1 = 10, r1 = 35. This is a symmet-
ric counterpart of the search area of the superior landmark of
the hippocampus from the lateral points of the lateral ventri-
cles. Then we follow our regular roadmap to find the land-
marks of the hippocampus. The result of applying this step is
shown in Fig. 14(g). We finally apply the deformable model
on the modified initial model to segment the hippocampus
(Fig. 14(h)).

4. Conclusions and future work

In this paper we have proposed a novel method to localize
the human brain anatomical structures within the MR image
space. To evaluate this method, we have applied it to the hip-
pocampus localization problem. The results of this experiment
shows that the proposed method is very well capable of land-
mark initialization and structure identification for small struc-
tures with high variability in their shapes and location. This
is an important feature that, to the best of our knowledge, no
other method is capable of. Landmark identification is impor-
tant as it provides: (1) initial and intra-procedure information
for registration (2) fast navigational guidance through the im-
age data in a highly populated database; (3) initial model for
the deformable model segmentation, and (4) valuable (though
rough) real time information about the organs and structures of
interest.

The proposed method is very focused on the task as it only
deals with a few landmarks of interest; therefore, it is very fast.
This method emulates the way human experts find an anatomi-
cal structure. That is unlike atlas-based methods no expert looks
through the entire data set to localize and segment a structure.

Rather, they look for some landmarks of interest that lead to
the structure of interest. They may also verify the identified
structure by some well-defined and high-contrast neighboring
structures. We compared the speed of the proposed algorithm
(with almost perfect results) to a mutual information-based
rigid-body registration method (with poor results). It turned
out to be 2 s vs. 20 min, which is 600 times faster. The very
short execution time of the proposed method makes it suitable
for intra-operative procedures as well as content-based image
navigation, retrieval and mining in largely populated image
databases.

The proposed initialization method can be easily combined
with the digital atlases to provide them with anatomical land-
marks used in registration and also guide them as we have pre-
sented an example in previous section. As a future work, the
effects of noise and voxel size on performance of the proposed
method can be investigated theoretically followed by simula-
tion and real situation studies. Such studies will evaluate the
robustness of the proposed method to changes in the voxel size
and signal-to-noise ratio.

The proposed method may require normalization of brain
sizes when applying on non-adult patients or patients with ex-
treme brain sizes (very small or very large). Such normalization
can be automatically carried out using the well-known princi-
pal component analysis (PCA) method to estimate the parame-
ters of an affine transformation. The proposed coordinate sys-
tem built upon the starting point of the roadmap can be used in
the estimation of this affine transformation. Such scheme can
be performed very quickly and it maintains the high-speed ad-
vantage of the proposed method. This normalization step can
be applied to all patients regardless of their brain size or age
group. We anticipate getting higher success rates if such nor-
malization preprocessing is included in the localization process
because it reduces the deviations of the landmarks of interest.
Note that the inverse transformation matrix will be applied to
restore the initial polygon in the native image space. Therefore,
the segmentation and volumetry will be carried out in the na-
tive image space of each patient without any distortion from
the scaling processes.

Abnormal tissues may cause the proposed method to fail as
they may generate fake targets for search algorithm or move
the normal structures dramatically and change their symmetric
appearance that might trouble symmetric rules. However, note
that this is also a problem for the methods that are based on
atlas warping. As a future work we will reduce the sensitivity of
the method to the presence of abnormal tissues. The symmetric
rules do also suffer when there is a tendency towards the sagittal
direction on scanned slices. In such case MRI volume should
be resliced.

In this work we have used linear combinations of a set of
variables for generating the binary images and calculating the
CNF. The proposed coefficients were found experimentally and
they are not necessarily optimal. Linear discriminant analysis
or LASSO (least absolute shrinkage and selection operator)
techniques combined with bootstrapping strategies can be used
to automatically find the optimal coefficients. The proposed in-
formation analysis scheme, which can be considered as an ex-
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tension of the conventional rule-based systems, did its job very
impressively in our application. However, there are other infor-
mation analysis methods one may choose from, e.g., Bayesian
networks and plausibility measures and calculus. It would be a
future work to see how the other information analysis schemes
perform in localizing and identifying the hippocampus and
other human brain structures.

5. Summary

We present a knowledge-based, fully automatic and very
fast method to localize small and highly variable brain struc-
tures (e.g., hippocampus) on MR images. Localization proce-
dure consists of two steps: information extraction and analysis.
As a prerequisite, information extraction generates binary im-
ages of CSF, gray matter, and white matter using FCM clus-
tering. On these binary images, landmarks of lateral ventricles,
hippocampus and insular cortex are searched for. Search areas
are determined using desired and undesired statistical distri-
butions, which are estimated through expert manual landmark
identification on a training set consisting of six epileptic pa-
tients. Undesired landmarks are points close to desired land-
marks with similar features that can mislead search procedure.
A search algorithm examines each search area in a specific order
to find a point with a particular color and neighboring connec-
tivity. At information analysis step, a rule-based system eval-
uates reliability and accuracy of points that are found during
information extraction step. Three types of rules are proposed;
(1) absolute spatial; (2) relative spatial, and (3) symmetric. A
linear combination of uncertain results produced by proposed
rules determines an overall confidence factor (CNF). For each
slice, CNF determines the likelihood of presence of hippocam-
pus and the accuracy of its landmarks. Finally, a triangulation
method followed by a 3D deformable surface model produces
the segmentation of the hippocampus. In its application to 10
randomly selected epileptic patients, the proposed method cor-
rectly identified all slices without hippocampus. Total success
rate for hippocampus localization was 83% and average simi-
larity between manual and automatic segmentations was 0.63
where similarity is defined as intersection of two regions over
their union.
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Appendix A.

Details of the parameters estimation for the roadmaps to
localize hippocampus are presented in this Appendix.

A.1. Statistical model and search areas for lateral ventricles

The viewpoint of the search for the lateral ventricles (starting
point of the roadmap) is a point on the brain midplane inferior
to the most superior limits of the head by half of the head width.

Fig. 15(a) shows the CSF binary image on which the skull is
also shown where three lines at the superior and the lateral lim-
its of the head have been drawn. These three lines determine
the width and the most superior limits of the head providing
the coordinates of the starting point of the search (point-1 in
Fig. 15(b)). The desired landmarks are the left and right lat-
eral ventricles each marked by 3 points (point-2 in Fig. 15(b)).
The undesired landmarks are illustrated in Fig. 15(a) (point-3,
point-4, point-5, and point-6). The distribution of the desired
and undesired points for about 50 images of the training set pa-
tients are shown and the iso-contours (at 95% confidence level)
and the search areas are schematically depicted in Fig. 15(c).
The search angles and radii along with the limiting lines are
summarized in Table 4. When a point colored black is found,
we employ the FCC algorithm with the structuring element
shown in Fig. 8(a) to segment the whole structure connected to
the found point as the left/right lateral ventricle. Then we find
the superior, inferior, lateral, and medial landmarks of the seg-
mented structure that are used later in the information analysis
section.

A.2. Statistical model and search area for superior landmarks
of hippocampus

The searches for the superior landmarks of the hippocampi
(Fig. 16(a) point-4) are initiated from the lateral points of the
lateral ventricles (Fig. 16(a) point-1). The undesired landmarks
are illustrated in Fig. 16(a) (point-2, point-3). The desired and
undesired structures are marked on over 60 slices of images of
the training set. The marked points and the iso-contours (at 95%
confidence level) derived from the marked points are shown
in Fig. 16(b). Using the method to find an optimal viewpoint,
discussed in 2.1.3, the point referred to by the arrow shown
in Fig. 16(b) is found. This point is reached from the lateral
limits of the left lateral ventricle by a translation of (−1, −14).
A similar point is determined for the right brain hemisphere.
We search for a black point with at least 5 black neighbors in
its 8-nearest neighborhood on GM binary images. The search
angles and radii are given in Table 4.

A.3. Statistical model and search area for medial inferior
limits of insular cortex

The search for the medial inferior landmark of the insu-
lar cortex (Fig. 17(a) point-2) is initiated from the superior
points of the hippocampus (Fig. 17(a) point-4). The undesired
landmarks are illustrated in Fig. 17(a) (point-1, point-3). The
search angles and radii along with the limiting lines are sum-
marized in Table 4. Note that the limiting lines (as well as the
search areas) are defined in two different coordinate systems,
i.e., the coordinate systems of left and right superior landmarks
of hippocampus. Fig. 17(b) illustrates the search performed for
the left side. The search is for a black point with at least 6
black neighbors in its 8-nearest neighborhood on GM binary
images. When a point of the insular cortex is found, we extend
its connected region downward to find the inferior landmark of
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Fig. 15. (a) BK&CSF binary image on which lateral and superior limits of head are determined to find starting point of search. (b) Manual landmark
identification for lateral ventricles when looking from starting point (point-1); lateral ventricles (point-2) as desired landmark, top corners of third ventricle
(point-3), Sylvian fissure (point-4), and lateral points of callosal sulcus (point-5) and eingulate sulcus (point-6) as undesired landmarks. (c) Distribution of
desired and undesired landmark points with iso-contours drawn at 95% confidence level.

Table 4
Summary of each segment (search area) of roadmap estimated based on proposed supervised procedure

View point Target point �1 �2 r1 r2 Limiting line
(mm) (mm)

Starting point Left lateral ventricle 36.9◦ 72.9◦ 29.6 11.7 y = 0.283x + 21.1
Starting point Right lateral ventricle 148◦ 108.4◦ 29.6 11.7 y = −0.283x + 21.1
Left lateral ventricle Left superior −30.9◦ −92◦ 7.8 27.3 –

hippocampus
Right lateral ventricle Right superior −149.2◦ −88◦ 7.8 27.3 –

hippocampus
Left superior Left insular cortex 14.9◦ 111.3◦ 6.2 25 y = 1.195x + 20.3
hippocampus
Right superior Right insular cortex 76.5◦ 165.1◦ 6.2 25 y = −1.195x + 20.3
hippocampus
Left insular cortex Left lateral hippocampus −163.8◦ −66.8◦ 3.9 15.6 –
Right insular cortex Right lateral −16.2◦ −71.6◦ 3.9 15.6 –

hippocampus
Left superior Left inferior −48.37◦ −108.44 2 13.7 y = ±(0.584)x − 14
hippocampus hippocampus
Right superior Right inferior −63.95◦ −120.96◦ 2 13.7 y = ±(2.250)x − 25
hippocampus hippocampus
Left superior Left fourth point See the text 6.2 25 –
hippocampus
Right superior Right fourth point See the text 6.2 25 –
hippocampus

this structure using FCC with the structuring element shown in
Fig. 8(b). Fig. 17(c) illustrates an instance of the grown region.

A.4. Statistical model and search area for lateral landmarks
of hippocampus

We perform a search from the medial inferior landmarks of
the insular cortex (Fig. 18(a) point-1) for the lateral landmarks
of the hippocampus (Fig. 18(a) point-2) as the desired points.
The undesired landmarks are illustrated in Fig. 18(a) (point-3,
point-4). The search is performed for a black point with at least
3 black neighbors in its 4-nearest neighborhood on GM binary
images. The search angles and radii are given in Table 4.

A.5. Statistical model and search area for inferior landmarks
of hippocampus and search for fourth point of hippocampus

As mentioned, the hippocampus looks like a peninsula of
gray matter extended horizontally in white matter on the coro-
nal T1-weighted MR images. To find the inferior landmarks
of the hippocampus (Fig. 18(b) point-1) a search is initiated
from the superior point of this structure (Fig. 18(b) point-2).
The undesired landmarks are illustrated in Fig. 18(b) (point-3,
point-4). The models derived from the marked points are shown
in Fig. 18(c) with the iso-contours drawn at 95% confidence
level. The search is performed for a black point with at least 7
black neighbors in its 8-nearest neighborhood on WM binary
images. The search angles and radii along with the limiting
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Fig. 16. (a) Manual landmark identification for desired and undesired structures when looking for superior points of hippocampus from lateral points of lateral
ventricles (point-1). Medial limits of insular cortex (point-2) and lateral inferior limits of hypothalamus (point-3) are undesired landmarks, and superior point
of hippocampus (point-4) is desired landmarks. (b) Manually marked desired and undesired landmarks with iso-contours at 95% confidence level. Search area
for left hemisphere is depicted. Note that viewpoint is moved to an optimal position (marked by an arrow on (b)) to balance sensitivity and specificity.

Fig. 17. (a) Manual landmark identification for desired and undesired structures when looking from superior points of hippocampus (point-4). Medial point of
insular cortex (point-2) is desired point. Lateral limits of hypothalamus (point-1) and medial limits of SMGTI (point-3) are undesired landmarks. (b) Search
performed on a GM binary image to find a black point with at least 6 neighboring black points in its 8-nearest neighborhood. (c) Region connected to point
found in (b) is grown downward by applying FCC.

Fig. 18. (a) Manual landmark identification for desired and undesired structures when looking from medial inferior point of insular cortex (point-1) for lateral
points of hippocampus (point-2) as desired landmarks. Medial limits of SMGTI (point-4), and superior limits of PFGI (point-3) are undesired landmarks. (b)
Manual landmark identification when looking for inferior point of hippocampus (point-1) as desired landmark from superior point of this structure (point-2).
Lateral limits of PFGI (point-3), and lateral boundaries of peduncular (point-4) are marked as undesired landmarks. (c) Distribution of desired and undesired
landmarks with iso-contour drawn at 95% confidence level for landmarks marked on (b). Arrow and letter “P” mark optimal viewpoint.

lines are summarized in Table 4. The iso-contours shown in
Fig. 18(c) suggest to move the viewpoint to the location marked
as “P.” However, since this is a radical change for the viewpoint
as we discussed it in Section 2.1.3, the original viewpoint is
used.

For the fourth point of the hippocampus, we compute the me-
dian bisector of the edge connecting the inferior and the lateral
points of the hippocampus in a triangle formed by these two
points and the superior point of the hippocampus. We search
from the superior point of the hippocampus in the direction of
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the median bisector with ±2◦ deviations. The search is per-
formed for a black point with at least 2 black neighbors in
its 4-nearest neighborhood and the search radii are given in
Table 4.
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