
Random Walks for Image Segmentation
Leo Grady, Member, IEEE

Abstract—A novel method is proposed for performing multilabel, interactive image segmentation. Given a small number of pixels with

user-defined (or predefined) labels, one can analytically and quickly determine the probability that a random walker starting at each

unlabeled pixel will first reach one of the prelabeled pixels. By assigning each pixel to the label for which the greatest probability is

calculated, a high-quality image segmentation may be obtained. Theoretical properties of this algorithm are developed along with the

corresponding connections to discrete potential theory and electrical circuits. This algorithm is formulated in discrete space (i.e., on a

graph) using combinatorial analogues of standard operators and principles from continuous potential theory, allowing it to be applied in

arbitrary dimension on arbitrary graphs.

Index Terms—Image segmentation, interactive segmentation, graph theory, random walks, combinatorial Dirichlet problem, harmonic

functions, Laplace equation, graph cuts, boundary completion.

Ç

1 INTRODUCTION

IMAGE segmentation has often been defined as the problem
of localizing regions of an image relative to content (e.g.,

image homogeneity). However, recent image segmentation
approaches have provided interactive methods that im-
plicitly define the segmentation problem relative to a
particular task of content localization. This approach to
image segmentation requires user (or preprocessor) gui-
dance of the segmentation algorithm to define the desired
content to be extracted.

A practical interactive segmentation algorithm must

provide four qualities:

1. fast computation,
2. fast editing,
3. an ability to produce an arbitrary segmentation with

enough interaction, and
4. intuitive segmentations.

The random walker algorithm introduced here exhibits all

of these desired qualities. We note that this algorithm was

first presented in a shortened form as a conference paper

[1]. The random walker algorithm requires the solution of a

sparse, symmetric positive-definite system of linear equa-

tions which may be solved quickly through a variety of

methods. The algorithm may perform fast editing by using

the previous solution as the initialization of an iterative

matrix solver. An arbitrary segmentation may also be

achieved through enough user interaction.
In this paper, we present a novel approach toK-way image

segmentation given user-defined seeds indicating regions of

the image belonging to K objects. Each seed specifies a

location with a user-defined label. The algorithm labels an

unseeded pixel by resolving the question: Given a random

walker starting at this location, what is the probability that it
first reaches each of the K seed points? It will be shown that
this calculation may be performed exactly without the
simulation of a random walk. By performing this calculation,
we assign a K-tuple vector to each pixel that specifies the
probability that a random walker starting from each un-
seeded pixel will first reach each of theK seed points. A final
segmentation may be derived from these K-tuples by
selecting for each pixel the most probable seed destination
for a random walker. By biasing the random walker to avoid
crossing sharp intensity gradients, a quality segmentation is
obtained that respects object boundaries (including weak
boundaries). In a uniform image (e.g., all black) or, as will be
proved in Section 4, an image of pure noise, a segmentation
will be obtained that roughly corresponds to Voronoi cells for
each set of seed points. We term this segmentation the neutral
segmentation since the image is neutral (i.e., devoid of
meaningful content).

In our approach, we treat an image (or volume) as a
purely discrete object—a graph with a fixed number of
vertices and edges. Each edge is assigned a real-valued
weight corresponding to the likelihood that a random
walker will cross that edge (e.g., a weight of zero means
that the walker may not move along that edge). The
advantage of formulating the problem on a graph is that
purely combinatorial operators may be used that require
no discretization and therefore incur no discretization
errors or ambiguities. Formulation of the algorithm on a
graph also allows the application of the algorithm to
surface meshes or space-variant images [2], [3]. Regardless
of the dimensions of the data, we will use the term pixel
throughout this paper to refer to the basic picture element
in the context of its intensity values. In contrast, the term
node will be used in the context of a graph-theoretical
discussion.

Although the present algorithm is motivated in terms of
random walks, an adequate sampling from this distribution
would be completely infeasible for segmentation problems
of interest. Fortunately, it has been previously established
[4], [5] that the probability a random walker first reaches a
seed point exactly equals the solution to the Dirichlet

1768 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 28, NO. 11, NOVEMBER 2006

. The author is with Siemens Corporate Research, Department of Imaging
and Visualization, 755 College Road East, Princeton, NJ 08540.
E-mail: Leo.Grady@siemens.com.

Manuscript received 19 May 2005; revised 27 Feb. 2006; accepted 1 Mar.
2006; published online 14 Sept. 2006.
Recommended for acceptance by J. Buhmann.
For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number TPAMI-0259-0505.

0162-8828/06/$20.00 � 2006 IEEE Published by the IEEE Computer Society

problem [6] with boundary conditions at the locations of the
seed points and the seed point in question fixed to unity
while the others are set to zero. For a popular account of this
connection, see [7]. The development of a fully discrete
calculus [8] has allowed for the connection between random
walks on graphs [9] and discrete potential theory [10] to be
made completely explicit [5]. The solution to the combina-
torial Dirichlet problem on an arbitrary graph is given
exactly by the distribution of electric potentials on the nodes
of an electrical circuit with resistors representing the inverse
of the weights (i.e., the weights represent conductance) and
the “boundary conditions” given by voltage sources fixing
the electric potential at the “boundary nodes.”

In light of the connection between random walks on
graphs and discrete potential theory, one may calculate the
probability, xsi , that a random walker starting at pixel vi first
reaches a seed with label s, by solving the circuit theory
problem that corresponds to a combinatorial analog of the
Dirichlet problem [5]. Ground (i.e., fix the potential to zero)
all seed points belonging to labels other than s and establish
a unit voltage source with ground that fixes the s-labeled
seeds to have a unit potential. The electric potentials
established at each unseeded node provide the probabilities
that a walker originating from that node will first reach the
seed with label s. These electric potentials may be calculated
through the solution of a system of sparse linear equations,
as described in Section 3.7. The full K-tuple may be
calculated by finding the potentials established through
switching “on” (providing a unit voltage source to) each
labeled collection of nodes and “off” (grounding) the
remaining labeled nodes. Therefore, K � 1 systems of linear
equations must be solved. By linearity (i.e., the principle of
superposition in circuit theory), the potentials so calculated
must sum to unity. This allows us to avoid solving for one of
the systems by subtracting the sum of the calculated
potentials from unity to find the last entry in the full
K-tuple. A function that solves the Dirichlet problem for a
given set of boundary conditions is known as harmonic.
Fig. 1 illustrates the harmonic functions (and subsequent
segmentation) obtained for a 4� 4 graph with unit weights
in the presence of three seeds with different labels.

Additional properties of our approach that will be
established in Section 4.3 include:

1. Each segment is guaranteed to be connected to seed
points with the same label, i.e., there are no isolated
regionsof aparticular label thatcontain noseed points.

2. The K-tuple of probabilities at each pixel is equal to
the weighted average of the K-tuples of neighboring
pixels, with the weights given by walker biases.

3. The solution for the potentials is unique.
4. The expected segmentation for an image of pure noise,

given by independent, equal-mean, random variables,
is equal to that obtained in the neutral segmentation.

A rich tradition of work in image segmentation has focused
on the establishment of appropriate image (object) models
and the development of algorithms focused on finding the
parameters for these models (e.g., [11]). For example, the
FRAME model of [12] provides a method for both synthesis
and analysis of image textures. A different line of research in
computer vision has first established the desired behavior of

an algorithm and then set out to identify a PDE or other
physical process that exhibits the desired behavior. In such
approaches, an image is typically viewed as a domain with
material properties (metric) induced by the image content
upon which the PDE or other physical process is simulated.
Notable examples of research along this second line of work
include anisotropic diffusion for image filtering [13] and
normalized cuts for image segmentation [14]. In such
approaches, theprimaryfocus is typicallyonthecharacteristic
behavior of the process and the manner in which the image
content induces a metric is left as a task-specific question (e.g.,
this information may come from intensity gradients, color
gradients, or texture gradients, as appropriate to the parti-
cular problem). The present random walker approach follows
from this second tradition in computer vision in which
desirablebehavioralpropertiesofaninteractivesegmentation
algorithm are identified and a particular physical process is
proposed that exhibits the required characteristics. In this
case, the characteristics that we try to capture in an interactive
segmentation algorithm are:

1. location of weak (or missing) boundaries,
2. noise robustness,
3. ability to identify multiple objects simultaneously,
4. fast computation (and editing), and
5. avoidance of small/trivial solutions (i.e., an avoid-

ance of a “small cut” phenomenon).

This paper is organized as follows: Section 2 reviews the
relationship of this work to previous approaches. Section 3
gives a simple weighting function, derives the set of linear
equations that must be solved and provides implementation
details. Section 4 establishes theoretical properties and
Section 5 examines behavioral properties of the algorithm.
Section 6 provides segmentation results and we conclude in
Section 7 with a summary of the algorithm presented and a
discussion of future work.

2 PRIOR WORK

Image segmentation is a vast topic. Therefore, we limit our
review to supervised and/or graph-based algorithms.
Additional work on random walks and combinatorial
harmonic functions will also be discussed.

2.1 Supervised Segmentation

Supervised segmentation algorithms typically operate under
one of two paradigms for guidance: 1) Specification of pieces
of the boundary of the desired object or a nearby complete
boundary that evolves to the desired boundary. 2) Specifica-
tion of a small set of pixels belonging to the desired object
and (possibly) a set of pixels belonging to the background.
We note also that any of the automatic segmentation
algorithms might be considered supervised by subsequent
user selection of the desired segment. However, if the
desired object is not a complete segment, a secondary
clustering/segmentation algorithm must be employed to
split or merge the automatic segments.

The intelligent scissors algorithm [15] treats the image as a
graph where each pixel is associated with a node and a
connectivity structure is imposed. This technique requires the
user to place points along the boundary of the desired object.

GRADY: RANDOM WALKS FOR IMAGE SEGMENTATION 1769

Dijkstra’s algorithm is then used to compute the shortest path

between the user-defined points and this path is treated as the

object boundary. The algorithm is simple to implement, very

fast, and may be used to obtain an arbitrary boundary with

enough points. Unfortunately, a low-contrast or noisy

boundary may require the specification of many points and

the algorithm is inapplicable to 3D boundaries.
Although the family of active contours and level sets is

large [16], a user is generally asked to place a contour near the

desired boundary and the algorithm evolves the boundary to

a local energy minimum. Many different terms in the energy

functional may be used to achieve different effects or employ

domain knowledge for the problem. The main problems with

level set methods are difficulty of implementation (often

requiring specification of several free parameters) and

difficulty in fixing an incorrect solution, especially if the

desired contour does not correspond to a local energy

minimum. Although the early paper by Kass et al. [17]

incorporated user interaction, the active contours/level sets

community appears to have trended away from this aspect.

From a theoretical standpoint, these methods are defined in

the continuum and achieve a local energy minimum, leading

to difficulties in trying to theoretically predict or understand

the properties of a practical solution.
The graph cuts [18], [19] technique has been developed as a

method for interactive, seeded, segmentation. As with

intelligent scissors, graph cuts views the image as a graph,

weighted to reflect intensity changes. A user marks some

nodes as foreground and others as background and the

algorithm performs a max-flow/min-cut analysis to find the

1770 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 28, NO. 11, NOVEMBER 2006

Fig. 1. Illustration of the approach to segmentation. With three seed points representing three different labels (denoted L1; L2; L3), alternately fix the
potential of each label to unity (i.e., with a voltage source tied to ground) and set to zero (i.e., ground) the remaining nodes. The electric potentials
calculated represent the probability that a random walker starting at each node first reaches the seed point currently set to unity. Fig. 1a shows the
initial seed points and the segmentation resulting from assigning each node the label that corresponds to its greatest probability. For illustration, all
the weights (resistors) were set to unity. In the case of an image, these resistors would be a function of the intensity gradient. The reader can verify
that the probabilities at each node sum to unity (up to rounding). (a) Seed points with segmentation. (b) Probability that a random walker starting from
each node first reaches seed L1. (c) Probability that a random walker starting from each node first reaches seed L2. (d) Probability that a random
walker starting from each node first reaches seed L3.

minimum-weight cut between the source and the sink. A
feature of this algorithm is that an arbitrary segmentation
may be obtained with enough user interaction and it
generalizes easily to 3D and beyond. However, although
performing well in many situations, there are a few concerns
associated with this technique. For example, since the
algorithm returns the smallest cut separating the seeds, the
algorithm will often return the cut that minimally separates
the seeds from the rest of the image, if a small number of seeds
are used. Therefore, a user may need to continue placing
seeds in order to overcome this “small cut” problem.
Additionally, the K-way graph cuts problem is NP-Hard,
requiring use of a heuristic to obtain a solution. Although one
may find a solution within a bound of the optimal multiway
cut [20], the problem becomes more difficult and one cannot
be sure that the optimal cut is achieved. Finally, multiple
“smallest cuts” may exist in the image that are quite different
from each other. Therefore, a small amount of noise
(adjusting even a single pixel) could cause the contour
returned by the algorithm to change drastically. Mathema-
tically, we note that the present algorithm may be considered
as a relaxation of the binary values of the potential function in
graph cuts. Although this may appear to constitute a minor
modification of graph cuts, in fact, the motivation, theoretical
properties, practical behavior, and method of solution are all
quite different. The graph cuts approach of [18] differs from
the present work by including a priors term on the intensity of
the foreground and background (with a consequent addi-
tional parameter). Although we will not further discuss it
here, such a modification to the random walker algorithm
may also be achieved [21].

The graph cuts segmentation algorithm has been extended
in two different directions in order to address issues of speed,
color images, and the user interaction. The first type of
extension to the graph cuts algorithm has focused on speed
increases by coarsening the graph before applying the graph
cuts algorithm. This coarsening has been accomplished in
two manners: 1) by applying a standard multilevel approach
and solving subsequent, smaller graph cuts problems in a
fixed band to produce the final, full-resolution segmentation
[22] and 2) by applying a watershed algorithm to the image
and treating each watershed basin as a “supernode” in a
coarse graph to which graph cuts in applied [23]. We note that
the Lazy Snapping approach of [23] additionally proposes
interactive tools for dividing watershed basins that may have
incorrectly merged the foreground and background regions.
The primary goal of these two approaches is to increase the
computational speed of graph cuts by intelligently reducing
the number of nodes in the graph. As stated in [22], the
objective is to produce the same segmentation result as
regular graph cuts by introducing a heuristic that greatly
speeds the computation. Therefore, the benefits and difficul-
ties of the graph cuts algorithm listed above also apply to
these approaches, with an added uncertainty about the role of
the coarsening operator in the final result (i.e., the final
segmentation is no longer guaranteed to be the minimum
cut). Additionally, both approaches to increasing the compu-
tational speed of graph cuts could equally be applied to the
present algorithm with similar computational gains.

The second direction of extension to the graph cuts
algorithm followed from the iterative estimation of a color
model with the graph cuts algorithm [24]. This iterative color
model was later coupled with an alteration of the user
interface to create the GrabCuts algorithm [25]. The GrabCuts
approach asks the user to draw a box around the object to be
segmented and employs the color model as priors (“t-links”)
to obviate the need for explicit specification of foreground
seeds. The added color model is of clear value in the
application of color image segmentation and the “box-
interface” requires less user interaction. Although the
approach does perform well in the domain of color image
segmentation, the iterative nature of the algorithm does
increase the computational burden of the algorithm (requir-
ing a solution to the max-flow/min-cut problem on each
iteration) and there is no longer a guarantee of optimality (the
algorithm is terminated when the iterations stagnate). For
gray-scale images, the GrabCuts system essentially becomes
standard graph cuts with a changed user interface. However,
it appears that the “box-interface” is not always sufficient to
capture the desired object, since further editing of the results
with standard graph cuts is often required. As with the
multilevel extensions described above, it would be possible to
merge the novel aspects of the GrabCuts system (the iterative
color image model and “box-interface”) with the random
walker algorithm described here. Since the graph cuts
algorithm of [18] forms the heart of the GrabCuts system,
and fulfills the same role as the present approach, we will
focus on the relative strengths and weaknesses of these two
algorithms.

2.2 Graph-Based Methods of Image Segmentation

Early papers of Zahn [26] and Wu and Leahy [27] are among
the first approaches to apply graph theory to problems in
image analysis. However, recent interest largely appears to
have been spurred by Shi and Malik’s introduction of the
normalized cuts algorithm [14]. Most subsequent algorithms
have focused on the spectral properties of the graph (e.g., [28],
[29]), although the isoperimetric algorithm [30] and the
Swendsen-Wang algorithm [31] are notable exceptions.

2.3 Random Walks and Combinatorial Harmonic
Functions

Harmonic functions defined on graphs with given Dirichlet
boundary conditions have seen recent interest in many
applications, including image filtering [32], image color-
ization [33], and machine learning [34]. Although purely
combinatorial harmonic functions were studied as early as
1945 by Eckmann [35], the earliest use of combinatorial
harmonic functions that the author is aware of was an
application to circuit layout given by Kodres [36].
Combinatorial harmonic functions were also famously
employed by Tutte for graph drawing [37]. For an excellent
collection of current knowledge on combinatorial harmonic
functions, see [10].

Random walks first appeared in computer vision in the
early work of Wechsler and Kidode for texture discrimina-
tion [38]. More recently, the average hitting time of a
random walk from an object boundary has been studied as a
measure to characterize object shape [39]. The isoperimetric
graph partitioning algorithm introduced in [40] was shown
to have an interpretation in terms of random walks in the

GRADY: RANDOM WALKS FOR IMAGE SEGMENTATION 1771

sense that hitting times are computed from all nodes to a
designated node and these values are thresholded to
produce a partition that has various beneficial theoretical
properties. This approach was recently applied to automatic
image segmentation [30] by choosing the designated node
randomly and recursively partitioning until a measure of
partition quality is violated.

Recently, various steady-state properties of random walks
have also been used to define automatic clustering algo-
rithms. Harel and Koren [41] employ the notion of escape
probabilities on subgraphs to iteratively weaken graph edges
and eventually break the graph into disconnected compo-
nents. Yen et al. [42] use the notions of average first-passage
time and average commute time to replace traditional
shortest-path distances between nodes in a graph and show
that standard clustering algorithms (e.g., K-means) produce
better results when applied to these reweighted graphs. Both
of these methods represent automatic clustering algorithms
(as opposed to the seeded method here) and require either
extensive computations to produce pairwise random walk
quantities for each pair of nodes, or employ a heuristic
method of employing subgraphs to restrict the computation.
The advantage of examining the probabilities that random
walkers first arrive at predefined traps (given by the seed
points) considered here is that the probabilities may be
computed quickly and the various properties of noise
robustness and harmonic functions (e.g., mean-value theo-
rem, etc.) examined in Section 4.3 may be used to characterize
the algorithm’s behavior. Furthermore, these approaches
require the specification of additional free parameters
beyond what are necessary in the present approach.

Newman uses concepts from random walks to introduce
a notion of “betweenness” on the nodes on a graph by
considering a node’s “betweenness” measure to be equal to
how often a random walk starting at any pair of nodes
passes through the node, averaged across all pairs [43].
Such a measure is shown to offer more intuitive behavior
over other methods of “betweenness” computation at the
cost of an expensive matrix inversion.

3 EXPOSITION OF THE ALGORITHM

Although the random walker algorithm was motivated in
Section 1 by placing random walkers at pixels and noting
which seeds they first arrive at, such a method of
computation would be completely impractical. Fortunately,
established connections between random walks and poten-
tial theory (or circuit theory, on a graph) provide us with a
simple, convenient method for analytically computing the
desired probabilities. This section describes three aspects of
the algorithm: generating the graph weights, establishing
the system of equations to solve the problem, and the
practical details of implementation.

We begin by defining a precise notion for a graph. A graph

[44] consists of a pairG ¼ ðV ;EÞwith vertices (nodes) v 2 V
and edges e 2 E � V � V . An edge, e, spanning two vertices,
vi and vj, is denoted by eij. A weighted graph assigns a value
to each edge called a weight. The weight of an edge, eij, is
denoted by wðeijÞ or wij. The degree of a vertex is di ¼P
wðeijÞ for all edges eij incident on vi. In order to interpretwij

as the bias affecting a random walker’s choice, we require that
wij > 0. The following will also assume that our graph is
connected and undirected (i.e., wij ¼ wji).

3.1 Edge Weights

In order to represent the image structure (given at the
pixels) by random walker biases (i.e., edge weights), one
must define a function that maps a change in image
intensities to edge weights. This is a common feature of
graph-based algorithms for image analysis and several
weighting functions are commonly used in the literature
[14], [20], [45]. Additionally, it was proposed in [46] to use a
function that maximizes the entropy of the resulting
weights. In this work, we have preferred (for empirical
reasons) the typical Gaussian weighting function given by

wij ¼ exp ð��ðgi � gjÞ2Þ; ð1Þ

where gi indicates the image intensity at pixel i. The value
of � represents the only free parameter in this algorithm.
We have found it useful to normalize the square gradients
gi � gj
� �2 8eij 2 E before application of (1). Of course, (1)
could be modified to handle color or general vector-valued
data by replacing ðgi � gjÞ2 with jjgi � gjjj2 for a vector-
valued gi. Additionally, for problem-specific domains, (1)
could be modified to apply to texture information, filter
coefficients or other image features.

3.2 Combinatorial Dirichlet Problem

In the introduction, we noted that the combinatorial
Dirichlet problem has the same solution as the desired
random walker probabilities [4], [5], [10]. In this section, we
review the combinatorial Dirichlet problem and show how
to find its solution.

The Dirichlet integral may be defined as

D½u� ¼ 1

2

Z
�

jruj2d�; ð2Þ

for a field u and region � [6]. This integral arises in many
physical situations, including heat transfer, electrostatics,
and random walks.

A harmonic function is a function that satisfies the
Laplace equation

r2u ¼ 0: ð3Þ

The problem of finding a harmonic function subject to its
boundary values is called the Dirichlet problem. The
harmonic function that satisfies the boundary conditions
minimizes the Dirichlet integral since the Laplace equation
is the Euler-Lagrange equation for the Dirichlet integral [6].

Define the combinatorial Laplacian matrix [47] as

Lij ¼
di if i ¼ j;
�wij if vi and vj are adjacent nodes;
0 otherwise;

8<
: ð4Þ

where Lij is indexed by vertices vi and vj.
Define the m� n edge-node incidence matrix as

Aeijvk ¼
þ1 if i ¼ k;
�1 if j ¼ k;
0 otherwise;

8<
: ð5Þ

for every vertex vk and edge eij, where each eij has been
arbitrarily assigned an orientation. As with the Laplacian
matrix above, Aeijvk is used to indicate that the incidence

1772 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 28, NO. 11, NOVEMBER 2006

matrix is indexed by edge eij and node vk. As an operator, A
may be interpreted as a combinatorial gradient operator and
AT as a combinatorial divergence [48], [8] by virtue of the
equivalent role ofA and Grad as the coboundary operator on
the space of 0-cochains or 0-forms, respectively (see [49] for
more information).

We define the m�m constitutive matrix, C, as the
diagonal matrix with the weights of each edge along the
diagonal. As in the continuum setting, the isotropic
combinatorial Laplacian is the composition of the combina-
torial divergence operator with the combinatorial gradient
operator, L ¼ ATA. The constitutive matrix may be inter-
preted as representing a metric in the sense that it defines a
weighted inner product on the vector space of 1-cochains
(i.e., functions defined on the edge set). In this sense, the
combinatorial Laplacian generalizes to the combinatorial
Laplace-Beltrami operator [50] via L ¼ ATCA. The case of a
trivial metric, (i.e., equally weighted, unit valued, edges)
reduces to C ¼ I and L ¼ ATA.

With these definitions in place, we can determine how to
solve for the harmonic function that finds probabilities/
potentials on unseeded nodes, while keeping the seed nodes
fixed. A combinatorial formulation of the Dirichlet integral
(2) is

D½x� ¼ 1

2
ðAxÞTCðAxÞ ¼ 1

2
xTLx ¼ 1

2

X
eij2E

wijðxi � xjÞ2; ð6Þ

and a combinatorial harmonic is a function x that minimizes
(6). Since L is positive semidefinite, the only critical points
of D½x� will be minima.

Partition the vertices into two sets, VM (marked/seed
nodes) and VU (unseeded nodes) such that VM [VU ¼ V and
VM \ VU ¼ ;. Note that VM contains all seed points,
regardless of their label. We may assume without loss of
generality that the nodes in L and x are ordered such that
seed nodes are first and unseeded nodes are second.
Therefore, we may decompose (6) into

D½xU � ¼
1

2
xTMx

T
U

� � LM B

BT LU

� �
xM

xU

� �

¼ 1

2
xTMLMxM þ 2xTUB

TxM þ xTULUxU
� �

;

ð7Þ

where xB and xU correspond to the potentials of the seeded
and unseeded nodes, respectively. Differentiating D½xU �
with respect to xU and finding the critical point yields

LUxU ¼ �BTxM; ð8Þ

which is a system of linear equations with jVU j unknowns. If
the graph is connected, or if every connected component
contains a seed, then (8) will be nonsingular [51].

Denote the probability (potential) assumed at node, vi, for
each label, s, by xsi . Define the set of labels for the seed points
as a function QðvjÞ ¼ s; 8vj 2 VM , where s 2 ZZ; 0 < s � K.
Define the jVM j � 1 vector (where j � j denotes cardinality) for
each label, s, at node vj 2 VM as

ms
j ¼

1 if QðvjÞ ¼ s;
0 if QðvjÞ 6¼ s:

�
ð9Þ

Therefore, for label s, the solution to the combinatorial
Dirichlet problem may be found by solving

LUx
s ¼ �BTms; ð10Þ

for one label or

LUX ¼ �BTM; ð11Þ

for all labels, where X has K columns taken by each xs and
M has columns given by each ms. Since the probabilities at
any node will sum to unity, i.e.,

X
s

xsi ¼ 1; 8vi 2 V ; ð12Þ

only K � 1 sparse linear systems must be solved, where K
is the total number of labels.

3.3 Circuit Analogy

Although the algorithm was motivated in terms of random
walks, it is well-known that there are many equivalences
between random walks and electrical circuits [5]. Specifi-
cally, as illustrated in Fig. 1, the solution to (10) may be
interpreted as a circuit simulation. Consider the three
fundamental equations of circuit theory (Kirchhoff’s current
and voltage law and Ohm’s law), which may be written in
the above notation as

ATz ¼ f ðKirchhoff 0s Current LawÞ; ð13Þ
Cp ¼ z ðOhm0s LawÞ; ð14Þ
p ¼ Axþ b ðKirchhoff 0s Voltage LawÞ; ð15Þ

for a vector of branch currents, z, current sources, f , voltage
sources, b, and potential drops (voltages), p. These three
equations may be combined into the linear system

ATCAxþATCb ¼ f; ð16Þ
Lx ¼ f �ATCb; ð17Þ

which is equivalent to (10), with f ¼ 0 (no current sources)
and the role of the voltage sources taken by the user-defined
seeds. We note that (6) may also be interpreted as power in the
circuit theory context and (17) represents the resulting
minimization performed by the physical world.

3.4 Relationship to Diffusion

Since diffusion processes have such a significant history in
computer vision and such a process may be described by a
random walk (i.e., Brownian motion), it is useful to examine
the relationship between a diffusion process and the present
approach.

The fundamental difference between a diffusion equa-
tion and the Laplace equation of (28) is that diffusion
represents a transient process occurring in time, while a
Laplace equation describes a steady-state distribution. This
straightforward relationship is illustrated by examining the
equations together:

du

dt
¼ r2u ðDiffusion equationÞ; ð18Þ

0 ¼ r2u ðLaplace equationÞ: ð19Þ

In fact, a circuit analogy of the diffusion process also appears
in Perona and Malik’s classic paper [13]. The two circuit

GRADY: RANDOM WALKS FOR IMAGE SEGMENTATION 1773

formulations differ in that the voltage sources (used to define

the steady-state potentials) are replaced by capacitors

charged to values representing an initial condition (used to

define the transient potentials after a predefined amount of

time has passed). In the case of two labels (i.e., a single

source/ground pair) and infinite time the two formalisms can

be made to give the same results (up to a shift and scale) if one

seed is taken as an infinite source of random walkers

(diffusive particles) and the other seed as an infinite sink of

random walkers (diffusive particles).
Despite the mathematical similarities between the La-

place and diffusion equations, these algorithms are very

different. Specifically, diffusion is typically employed as an

image enhancement algorithm in which the original gray-

scale values are taken as initial conditions and the solution

is stopped after a predetermined amount of time. In

contrast, we describe a seeded segmentation algorithm that

makes no use of initial conditions and examines the steady-

state distribution of potentials in order to define segmenta-

tion boundaries.

3.5 Image Model

In contrast to several popular image segmentation algo-

rithms (e.g., [11]), the random walker segmentation

approach presented here is not derived explicitly from an

image model. However, an implicit image model exists in

the approach and it is therefore useful to examine the

algorithm from this standpoint.
Piecewise constant image models have existed from the

earliest days of computer vision. In such a model, each

object in the image is expected to be of constant value (e.g.,

intensity, color, and texture). Although simplistic, such

models remain popular and surprisingly effective. How-

ever, three problems immediately present themselves:

1. The image may be corrupted with noise.
2. Neighboring (touching) objects may have the same

value, resulting in low-contrast or absent boundaries.
3. Ambiguity exists when there are more piecewise

constant regions than seed groups (labels) in the
image.

The random walker algorithm may be viewed as a

proposal to address these issues. Almost any image

segmentation approach (even region growing or threshold-

ing) may be used to localize correct segments in a piecewise

constant image that does not suffer from the above

problems. Clearly, in such an image, the random walker

algorithm introduced here would also produce the correct

segmentation. However, the behavior of the random walker

algorithm in the presence of the three difficulties outlined

above distinguishes it from other approaches. The behavior

of the algorithm in response to these three confounding

factors is detailed in Section 4.
The weighting function of (1) implies that the image has

piecewise constant intensity. Although such a simple model

is reasonable in many gray-scale images, other models such

as a piecewise constant texture or color may be used to

define the affinities in place of (1) where appropriate.

3.6 Numerical Practicalities

Many good sources exist on the solution to large, sparse,

symmetric, linear systems of equations (e.g., [52]). A direct

method, such as LU decomposition with partial pivoting

has the advantage that the computation necessary to solve

(11) is only negligibly increased over the amount of work

required to solve (10). Unfortunately, current medical data

volumes frequently exceed 256� 256� 256 � 16e6 voxels

and, hence, require the solution of an equal number of

equations. Furthermore, there is no reason to believe that

the resolution will not continue to increase. The memory

capabilities of most contemporary computers do not have

enough memory to allow an LU decomposition with such a

large number of equations.
The standard alternative to the class of direct solvers for

large, sparse systems is the class of iterative solvers [53]. These

solvers have the advantages of a small memory requirement

and the ability to represent the matrix-vector multiplication as

a function. For a lattice, the matrixLU has a circulant nonzero

structure (although the coefficients are changing), one may

avoid storing the matrix entirely. Instead, a vector of weights

may be stored (or computed on the fly, if memory is at a

premium) and the operation LUx
s
U may be performed very

cheaply. Furthermore, sparse matrix operations (like those

required for conjugate gradients) may be efficiently paralle-

lized [54], [55], e.g., for use on a GPU [56], [57]. Because of the

relationship of (10) to a finite differences approach to solving

the Dirichlet problem on a hypercube domain, the techniques

of numerical solution to PDEs may also be applied. Most

notably, the algebraic multigrid method [58], [59] achieves

near-optimal performance for the solution to equations like

(10). Additionally, use of a small world topology [60] might

significantly improve the computation speed.
The Graph Analysis Toolbox [61] for MATLAB may be

used to easily build weighted image graphs and solve the

requisite system of linear equations. Specialty code to

perform the random walker segmentation will be made

available upon publication on the author’s Web page.

Although MATLAB has efficient, C++ (MEX), direct solvers

for sparse linear systems, the preconditioned conjugate

gradient method is written in highly inefficient MATLAB

code. Therefore, for research purposes, we recommend using

the MATLAB code provided (sufficient for 512� 512 images,

on present-day technology). A more industrial use will

require implementation of conjugate gradients or multigrid

code in C++. Fortunately, good references exist for these

methods (with source code) [52] that allow for a straightfor-

ward implementation. Using MATLAB’s direct solver,

solution of (10) for a 256� 256 image with two randomly

placed seed points required 2.5 seconds on an Intel Xeon

2.40GHz processor with 1GB of RAM.

3.7 Algorithm Summary

To summarize, the steps of the algorithm are:

1. Using (1), map the image intensities to edge weights
in the lattice.

2. Obtain a set, VM , of marked (labeled) pixels with
K labels, either interactively or automatically.

1774 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 28, NO. 11, NOVEMBER 2006

3. Solve (11) outright for the potentials or solve (10) for
each label except the final one, f (for computational
efficiency). Set xfi ¼ 1�

P
s<f x

s
i .

4. Obtain a final segmentation by assigning to each
node, vi, the label corresponding to maxs ðxsi Þ.

Code is available (in MATLAB) on the author’s Web page

at: http://www.cns.bu.edu/~lgrady/random_walker_

matlab_code.zip.
We note that other options might be explored for

assigning a label to each pixel based on the potentials

(e.g., applying a clustering algorithm to the K-dimensional

vectors at each node). Fig. 2 displays all of the steps in this

process from seed acquisition to calculation of the potentials

(probabilities) and the resulting segmentation.
If interactive editing of the segmentation were needed

(i.e., through the addition/deletion of seeds), one could

start at Step 2 in the above procedure with the new seed set

and use the previous solution as the starting point for an

iterative matrix solver for the new system (10). In general,

the previous solution will be “close” to the desired solution,

requiring much less time to compute.

4 THEORETICAL PROPERTIES OF THE ALGORITHM

Although a new technique was presented for interactive
image segmentation, it is necessary to explore what may be
predicted about its behavior, both analytically and practi-
cally. In this section, we examine theoretical properties of the
algorithm, exploring connectedness and the expected beha-
vior in the presence of noise. Specifically, we will show that
the segments will be connected and that one can generally
expect the algorithm to behave robustly in the presence of
noise. We begin by detailing four mathematically equivalent
ways of viewing how the algorithm assigns labels to each
unseeded pixel and then employ the most convenient
analogy to prove the desired theoretical propositions.

4.1 Analogies

There are four mathematically equivalent ways of viewing
how the random walker algorithm assigns an unseeded
pixel to a label, given a weighted graph:

1. If a random walker leaving the pixel is most likely to
first reach a seed bearing label s, assign the pixel to
label s.

2. If the seeds are alternately replaced by grounds/unit
voltage sources, assign the pixel to the label for

GRADY: RANDOM WALKS FOR IMAGE SEGMENTATION 1775

Fig. 2. Overview of segmentation computation. (a) Original image to be segmented. (b) User-placed seeds indicating a desired segmentation into four
objects. (d), (e), (f), and (g) Probabilities (potentials) obtained by solving (10) for each label. (c) Segmentation obtained by assigning each pixel to the
label for which a random walker is most likely to reach first. Each system required less than three seconds to solve using MATLAB. (a) Original.
(b) Seeds indicating four objects. (c) Resulting segmentation. (d) Label 1 probabilities. (e) Label 2 probabilities. (f) Label 3 probabilities. (g) Label 4
probabilities.

which its seeds being “on” produces the greatest
electrical potential.

3. Assign the pixel to the label for which its seeds have
the largest effective conductance (i.e., smallest
effective resistance) with the pixel.

4. If a 2-tree is drawn randomly from the graph (with
probability given by the product of weights in the
2-tree), assign the pixel to the label for which the
pixel is most likely to remain connected to. See
Section 4.2 for definition of a 2-tree.

The first way of viewing the algorithm provides the
motivation and the second provides the implementation, as
illustrated in Fig. 1. We examine the third and fourth
analogies in the next section.

4.2 Effective Conductance and 2-Trees

The effective conductance between nodes vi and vj, �ði; jÞ,
equals the current flow between nodes vi and vj when a unit
voltage is applied across nodes vi; vj. Alternately, the
Dirichlet integral of (6) equals the effective conductance
between nodes labeled “1” (i.e., “on”) and those labeled “0”
(i.e., “off”) [10]. Therefore, given a solution to (8) with nodes
vi; vj used as the source/sink, the effective conductance
between vi and vj, �ði; jÞ, may be computed conveniently by
D½x� ¼ �ði; jÞ ¼ xTLx, where x is intended to include both xM
and xU from (7).

It was shown in [10] that the effective conductance
between two nodes, vi; vj is given by

�ði; jÞ ¼ �

�ði; jÞ ; ð20Þ

where � is a constant for the graph defined as

� ¼
X

All trees

Y
e2T

wðeÞ; ð21Þ

where T is a set of edges defining a connected tree and the
sum is over all possible trees in the graph. Note that � does
not depend on the choice of nodes vi; vj. The term �ði; jÞ is
defined as

�ði; jÞ ¼
X

All TTði;jÞ

Y
e2TT ði;jÞ

wðeÞ; ð22Þ

where TT ði; jÞ is used to represent the set of edges defining a
2-tree, such that node vi is in one component and vj is in
another. A 2-tree is defined to be a tree with one edge
removed. It should not be surprising that there exists an
analogy with a tree algorithm, since trees have been a major
part of circuit theory dating all the way back to Kirchhoff [62].

In addition to solution by (8), it is known [10] that the
potential of a node vt, given f0; 1g labels at nodes vi and vj,
respectively, may also be computed (albeit impractically) via

xjt ¼
�ði; jÞ�	ði; j; tÞ

�
; ð23Þ

where

�	ði; j; tÞ ¼
X

All TT ði;j;tÞ

Y
e2 TT ði;jÞ

wðeÞ ð24Þ

is taken over the sum of all 2-trees such that vi and vj are
in different components and vt is in the same component

as vj. Therefore, we note that �	ði; j; tÞ ¼ �ði; jÞ � �ðj; tÞ.
For a fixed vi; vj, it is clear that � , �ði; jÞ, and �ði; jÞ are
constants, regardless of whether or not it is vi or vj that
are “on” or “off.” Denoting xit and xjt as the probabilities
obtained (e.g., via solution to (8)) for vi set to unity and vj
set to unity, respectively (while the other node is set to
zero), then the above equations yield that the following
expressions are equivalent

�ðj; tÞ > �ði; tÞ; ð25Þ
xit > xjt; ð26Þ

�ði; tÞ > �ðj; tÞ: ð27Þ

Since the segmentation is computed from the potentials by
assigning the pixel to the label for which it has greatest
potential (probability), the equivalence of (26) with (25) and
(27) show that these two quantities are also sufficient to
define the same segmentation. In other words, the third and
fourth analogies given in Section 4.1 are shown to be true. In
the following sections, we use all of these viewpoints to
theoretically examine the behavior of the algorithm.

4.3 Properties

We begin by giving two properties that are combinatorial
analogues of properties of continuous harmonic functions
[6] and may be seen directly by viewing the solution to the
combinatorial Dirichlet problem as a solution to the
combinatorial Laplace equation (with Dirichlet boundary
conditions), where the potential of each unseeded node
must satisfy

xsi ¼
1

di

X
eij2E

wðeijÞxsj; ð28Þ

where the xsj 2 V (i.e., may include seed points).

1. A potential 0 � xsi � 1; 8 i; s (maximum/minimum
principle).

2. The potential of each unseeded node assumes the
weighted average of its neighboring nodes (the
mean-value theorem).

We use these properties to first examine the connected-
ness of the segmentation and show, intuitively, that the
segments are always connected to a seed. This property
demonstrates that we can expect the segmentation to avoid
the noisy or fragmented segmentations that sometimes
result from application of other algorithms.

Proposition 1. If the final segmentation is determined from the
potentials using the rule: node vi is assigned to segment, s, only if
xsi > xfi 8f 6¼ s, then each node assigned to segment s is
connected through a path of nodes also assigned to segment s to at
least one of the seed points with label s.

A restatement of this proposition is that the connected
components generated by the final segmentation must
contain at least one seed point bearing that label.

Proof. Note, this proof is similar to that given in [3] for
connectedness using the isoperimetric algorithm.

The result follows if it can be shown that any
connected subset, P � VU , assigned to segment s must
be connected to at least one node that is also labeled s.

1776 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 28, NO. 11, NOVEMBER 2006

A block matrix form of (28) may be written

LPx
s
P ¼ �RPx

s
P
; ð29Þ

where xs ¼ ½xsP ; xsP �
T , L has been decomposed into the

block form

L ¼ LP RP

RT
P LP

� �
; ð30Þ

andP denotesthesetcomplementofP inV .Forexample, in

the case of P ¼ fvig in (28), LP ¼ di and

�RPx
s
P
¼
X
eij2E

wðeijÞxsj:

If xsP > xfP 8f 6¼ s, then xsP � x
f
P > 0 and

� L�1
P RP xs

P
� xf

P

	

> 0:

The entries ofRP are nonpositive by definition ofL. SinceL

is an M-matrix, any block diagonal submatrix of an

M-matrix is also an M-matrix, and the inverse of an

M-matrix has nonnegative entries (see [63] for the previous

three facts), then �L�1
P R has nonnegative entries and,

therefore, some xsi 2 P must be greater than xfi 2 P .

Furthermore, since the entries of RP are zero for nodes

not connected toP , the nodes inP satisfying the inequality

must be connected to a node in P . tu
We note that it is possible, although it almost never

occurs in practice, that xsi ¼ x
f
i , i.e., the potentials for two

labels are equal at a node. In this case, one may enforce the

continuity property by assigning a connected component of

isopotential nodes to a label taken by a neighbor of the set.

As demonstrated in the proof of Proposition 1, the set of

(seedless) isopotential nodes must have at least one

neighbor with a potential both greater and lesser than the

isopotential nodes.
In the original conference paper, proofs of several

propositions concerning noise were given that rested on

the proof of a lemma concerning the ratio of random

variables. It has subsequently been determined that a flaw

exists in the original proof of this lemma,1 rendering the

subsequent proofs invalid. Here, we use the equivalences of

(25), (26), and (27) to provide similar statements.
If the graph weights are uniform (i.e., obtained from a

uniform image), we term the resulting segmentation the

neutral segmentation. For simplicity, we take wðeijÞ ¼
1; 8eij 2 E since multiplication of all weights by a constant

does not affect the resulting solution, as may be seen by (8).

By, (23), we know that

�it > �jt () jTT ðj; tÞj ¼ �ðj; tÞ > �ði; tÞ ¼ jTT ði; tÞj; ð31Þ

where jTT ði; tÞj indicates the number of 2-trees with vi in

one component and vt in the other and �it represents the

potential for the neutral segmentation at node vt with vi set

“on.” In the following propositions, boldface will be used to

indicate random variables.

Proposition 2. If the set of weights, wwijij, are independent random
variables with equal mean, �, then E½�ðj; tÞ�ðj; tÞ� > E½�ði; tÞ�ði; tÞ� if
and only if �it > �jt .

Proof. The variable �ði; tÞ�ði; tÞ defines a sum of the product of
N � 2 equal-mean, independent variables (i.e., for the
N � 2 edges in a 2-tree). Therefore,

E½�ðj; tÞ�ðj; tÞ� ¼ �ðN�2ÞjTT ðj; tÞj; ð32Þ

E½�ði; tÞ�ði; tÞ� ¼ �ðN�2ÞjTT ði; tÞj: ð33Þ

Consequently,

E½�ðj; tÞ�ðj; tÞ� > E½�ði; tÞ�ði; tÞ�; ð34Þ

holds if and only if

jTT ðj; tÞj > jTT ði; tÞj; ð35Þ

which is known to hold for the neutral segmentation
by (31). tu
Consequently, in the expected case, the segmentation

will be the same as for the neutral segmentation. Since the
same technique as above may be used to verify the
following two propositions, the proofs are left to the reader.

Proposition 3. If the set of weights, wijwij, are independent
random variables with corresponding means �ij, then
E½�ðj; tÞ�ðj; tÞ� > E½�ði; tÞ�ði; tÞ� if and only if xit > xjt when the
weights are set to wij ¼ �ij.

Proposition 4. If wij ¼ kijyijyij, where the kij are (not
necessarily equal) constants and yijyij are independent random
variables, such that yijyij > 0 and E½yijyij� ¼ �; 8eij 2 E, then
E½�ðj; tÞ�ðj; tÞ� > E½�ði; tÞ�ði; tÞ� if and only if xit > xjt when the
weights are set to wij ¼ kij.
Proposition 3 suggests that the means of random weights

provide an indicator of the expected segmentation and
Proposition 4 indicates that equal-mean, multiplicative
noise (of the weights) is not expected to disrupt the
solution. We also consider use of the means of random
weights to provide an initial guess for a problem with noise.

Proposition 5. Given a solution to LUx
s ¼ �Bms with wij ¼

kij for some, not necessarily equal, constants k, this solution
provides an expected residual of zero for the graph where the
weights are random variables, yijyij, with means E½yijyij� ¼ kij.

Proof. Denote the terms of (8) obtained by setting wij ¼ �ij
as LUx ¼ �Bm (where the label s has been ignored since
it is assumed to be fixed) and the terms of (8) in the
randomized case as LULUxx ¼ �BBm. Then,

LULUðx� xxÞ ¼ ð�BBmÞ � LULUx ¼ rr; ð36Þ

where rr represents the residual. Since neither m nor x are
random, E½BBm� ¼ �Bm, and E½LULUx� ¼ LUx ¼ �Bm.
Consequently, E½rr� ¼ 0 and the proposition holds. tu
We note that Proposition 5 applies to arbitrary random

variables. Although it is well-known that a small residual
does not necessarily indicate a small error [52], it is usually
a reasonable indicator and, more importantly, forms the
stopping criterion for many iterative solvers. Therefore, we
can conclude that, if one has obtained a nonrandom

GRADY: RANDOM WALKS FOR IMAGE SEGMENTATION 1777

1. The author would like to thank Dr. Kurt Majewski for bringing this to
his attention.

solution to (8), it will generally provide a good starting
point for solving the system after noise has been added.

5 BEHAVIORAL PROPERTIES

In this section, we demonstrate three pragmatic properties of

the random walker algorithm—weak boundary detection,
noise robustness, and the assignment of ambiguous regions.

5.1 Weak Boundaries

We will prefer the term object boundary to the traditional
computer vision term edge (“edge detection”) to avoid
confusion with the edge set of the graph (e.g., eij 2 E). Unlike
region growing approaches, one aspect of the random walker
motivation for this algorithm is that weak object boundaries

will be found when they are part of a consistent boundary.
This behavior may be explained by considering Fig. 3. On a
four-connected lattice, consider the walker staring its walk at
the center of the four arrows in Fig. 3. This walker has three
initial steps that keep it on one side of the boundary and only
one step that crosses the boundary. Since other nodes on that
side of the boundary are all very likely to reach seed one (filled
circle), this walker is also very likely to first reach seed one.
For the same reasons, a walker on the other side of the weak
boundary is also very likely to first reach seed two (open
circle). Consequently, the walker at the arrows finds the first
seed (filled circle) and the walker on the opposite side of the
boundary weakness finds seed two (open circle). This
behavior may also be explained from a circuit perspective.
Although the resistance in the boundary weakness is low,
nearly all the current from one seed to the other must pass
through the boundary weakness, resulting in a large voltage
drop over the resistor (by Ohm’s Law). Practical behavior of
the algorithm in response to weak boundaries is displayed in
Figs. 3 and 4. Fig. 4 shows the segmentation obtained for a
synthetic image with four areas of varying sizes and
convexity with missing boundary sections and few seeds.
We note that no obvious “metrication artifacts” are present,
despite the fact that these results were obtained using a
4-connected lattice as the underlying structure.

The graph cuts algorithm of [18] is also capable of finding
weak boundaries. However, since graph cuts searches for the
minimum cut, the graph cuts algorithm is more susceptible to
the “small cuts” problem in the presence of weak (i.e., costly)
boundaries. Fig. 5 compares the graph cuts and random
walker algorithms in a simple, foreground/background
segmentation with a weak boundary and small seeds. In
contrast to graph cuts, the random walker algorithm also
provides a “confidence” value of the segmentation in terms of
the random walker probabilities, as Fig. 5 also illustrates.

1778 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 28, NO. 11, NOVEMBER 2006

Fig. 4. Demonstration of the algorithm response to weak boundaries of different types, large/small regions and nonconvex regions on a synthetic
image consisting of only black and white pixels. (a) A synthetic image was created to designate four areas of different size, shape, and convexity by
drawing black lines. Sections of the line were then completely erased to remove all contrast at those locations. (b) Seeding and resulting
segmentation (visualized by shaded regions). Despite missing boundary information, the algorithm accurately localizes the boundaries. Note that a
4-connected lattice was employed as the underlying graph. (a) Original. (b) Segmentation.

Fig. 3. Illustration of why the segmentation obeys weak image
boundaries. Consider the 16� 7 image consisting of just one hard
boundary with a hole, represented by the thick black line, and two seed
points placed at the white and black circles at the far ends of the image.
A random walker starting at the pixel next to the weakness in the
boundary (the center of the arrows) has three out of four chances on its
initial step to enter into the region that is likely to be labeled as belonging
to the black circle. Since the same holds true on the other side of the
weak boundary, there will be a sharp drop in the probabilities and,
consequently, the segmentation will respect the boundary, even though
it is weak.

5.2 Noise Robustness

The theoretical results of Section 4.3 detail how the expected

probabilities (and hence, the resulting segmentation) should

behave in response to i.i.d. randomness of the weights.

Although the weighting function (1) does not translate i.i.d.

randomness of the pixel values to i.i.d. randomness of the

weights, the behavior of the segmentations empirically

behaves as if the weights were i.i.d. This practical behavior

might be explained by Proposition 5, which applies to

arbitrary (e.g., nonindependent) random variables.
Fig. 6 characterizes the response of the algorithm to noise.

In this experiment, an image consisting of two nested spirals

was seeded with one seed in each spiral and background

seeds placed in the center (outside the spirals). Increasing

amounts of additive noise was then introduced into the

image and the response of the algorithm was tracked. For

each noise level, 100 experiments were run in which the

GRADY: RANDOM WALKS FOR IMAGE SEGMENTATION 1779

Fig. 5. Comparison of random walker algorithm to graph cuts for a weak boundary with small seeds. Note that a 4-connected graph was used in

these experiments. (a) Original (synthetic) image created with a diagonal black line with a section completely erased. (b) Graph cuts solution—Since

surface area of seeds is smaller than the weak boundary, the smallest cut minimally surrounds the seeds. (c) Random walker solution.

(d) Probabilities associated with the random walker algorithm offer a notion of segmentation confidence at each pixel.

Fig. 6. This figure shows the characteristic response of the algorithm to noise. (a) Original image. An image consisting of two nested spirals was
seeded with one seed in each spiral and two background seeds in the center (outside the spirals). (b) Original segmentation. The initial (correct)
segmentation. Increasing amounts of additive noise were then introduced into the image and the response of the algorithm was tracked. For each
noise level, 100 experiments were run in which the corrupted image was generated and the results were recorded. Top: A representative corrupted
image, Middle: The “average” segmentation obtained from application of the algorithm. Bottom: The segmentation variability. An “average”
segmentation was calculated by assigning the pixel to the label for which it was most often assigned over the 100 trials. Segmentation variability of a
pixel was measured by calculating the percentage of the trials for which the pixel was assigned the label from the “average” segmentation, with high
percentage mapped to high intensity (white) and low percentage mapped to low intensity (black).

corrupted image was generated and the results were
recorded. Fig. 6 shows three images for each noise level:
1) A representative corrupted image, 2) the “average”
segmentation obtained from application of the algorithm,
and 3) the segmentation variability. An “average” segmenta-
tion was calculated by assigning the pixel to the label for
which it was most often assigned over the 100 trials.
Segmentation variability of a pixel was measured by
calculating the percentage of the trials for which the pixel

was assigned the label from the “average” segmentation,

with high percentage mapped to high intensity (white) and

low percentage mapped to low intensity (black).

5.3 Ambiguous Unseeded Regions

The analytical properties of the random walker algorithm

may be used to examine its behavior in deciding ambiguous

cases in which the number of piecewise constant regions

exceeds the number of seed/label groups (i.e., unseeded

1780 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 28, NO. 11, NOVEMBER 2006

Fig. 7. This figure shows how ambiguous, unseeded regions are assigned to neighboring regions. (a) and (d) If the ambiguous region shares more
surface area with one region, it is assigned to that region. (b) and (e) If the ambiguous region is closer in intensity to a neighboring region, it is
assigned to that region. (c) and (f) If the ambiguous region is precisely centered between two regions with respect to both surface area and intensity,
that region is divided in half. If more ambiguous regions are present (in a piecewise constant image), the ambiguous region will have the average
probability of its neighbors, weighted by shared surface area and intensity difference.

Fig. 8. Examples of segmentations on medical and nonmedical images. We stress that the edge weights are based upon intensity differences alone,
although more advanced intensity/texture analysis could be used in a particular problem domain. The thick, gray lines (chosen to maximize contrast)
represent the seed points and the thick black lines represent the segment boundaries. Note that the processed images were whitened in order to
accentuate the seeds and the segmentation boundary. The same parameter value (� ¼ 900) and 4-connected lattice topology were used for all
segmentations.

piecewise constant regions must be each assigned a label). In

the case where no piecewise constant region has multiple

seed/label groups, we may make the simplifying (and

reasonable, e.g., Fig. 2) assumption that all pixels in a

piecewise constant region may be treated as having the same

potential/probability in the solution to (8). By the mean-value

property of harmonic functions, the potential/probability

inside an unseeded region will be the average of its

neighboring regions, weighted by the contrast between the

regions and the level of shared surface area. Therefore, an

ambiguous region that shares an equal surface area with two

seeded regions will be assigned to the region for which it has a

lower contrast. However, if an ambiguous regionhas the same

contrast with two seeded regions, it will be assigned to the

seeded region with which it shares a greater boundary. If the

contrast and the shared surface area of an ambiguous region

with two seeded regions are equal, the simplifying assump-

tion of an equipotential within the region breaks down. In

such a case, the ambiguous region would be divided in half

with respect to the two labels. Fig. 7 illustrates the behavior of

the random walker algorithm in these three scenarios.

6 ALGORITHMIC RESULTS

6.1 Segmentation of Real Images

Fig. 8 shows the segmentation results on several medical
and nonmedical images. Only gray-scale images were
considered here for ease of publication clarity, but color
images could be easily handled by modifying (1) to reflect
color changes instead of intensity changes. The images and
seeds were chosen to demonstrate the general applicability
of the interactive segmentation approach on objects of
varying uniformity, size, shape, and contrast. In each
segmentation, the value of the one free parameter, � in
(1), was kept constant, despite the different characteristics
of the images. Fig. 9 shows the results of applying the
segmentation algorithm to a 3D cardiac CT data set.

We note that a systematic study of the sensitivity of the
segmentation to the seed locations/quantities was under-
taken in a recent conference paper [64]. The overall result of

this study was that the segmentation results were generally
stable to perturbations of the seed locations/quantities.

Intuitively, perturbations had a greater effect when the
image “seemed difficult” to segment (e.g., the image
included a large amount of noise and/or had missing or

low-contrast boundaries) and showed a lesser effect when
the segmentation task “seemed straightforward” to segment
(i.e., the image exhibited greater conformity to the piece-

wise constant model). However, even for images that
“seemed difficult” to segment, the algorithm exhibited

generally stable behavior to seed locations/quantities.

7 CONCLUSION

We have presented a novel algorithm for general image
segmentation based on a small set of prelabeled pixels. These

prelabeled pixels may be given either interactively or
generated automatically for a particular purpose. The
algorithm functions by assigning each unseeded pixel to the

label of the seed point that a random walker starting from that
pixel would be most likely to reach first, given that it is biased

to avoid crossing object boundaries (i.e., intensity gradients).
Since the algorithm is formulated on a general graph and
produces segmentations based on the separation of quantities

defined at the nodes (i.e., potentials), the graph (lattice) may
represent any dimension or topology.

We have demonstrated this approach on real images and

shown that it provides a unique, quality, solution that is
robust to weak object boundaries and that the solution
respects the user’s prelabeling choices. Furthermore, there

is only a single free parameter, � in (1), and all of the
segmentations shown in this paper were produced with the

same choice of that parameter. Of course, this approach
could also be combined with prefilters (e.g., median) or
postfilters (e.g., clustering the probabilities) to produce

enhanced, problem-specific results. Finally, the algorithm
simply requires solution to a sparse, symmetric, positive-
definite system of equations, which is straightforward to

implement and performs efficiently. Additionally, inter-
active editing of the segmentation generally results in even

faster computation time since the previous solution may be
used as an initial solution for an iterative matrix solver.

The connections between random walks, combinatorial
potential theory, Trees, and electric circuits allowed us to

prove that the segments are guaranteed to be connected
(i.e., unfragmented), and that noise robustness may be

expected. Furthermore, the direct correspondence with
analog electric circuits opens the possibility for a hardware
(e.g., VLSI) implementation of the algorithm, where the

physics of the circuit perform the same “computation” as
the standard CPU, except at the extremely fast speed of the
physical world. Finally, since our variational problem is

formulated on a graph, there are no concerns about
discretization errors or variations in implementation that

sometimes cause problems for other variational approaches.
Future work will concentrate on a specialty solver, user

validation, the use of prior information in the segmentation,
and leveraging the theoretical results to produce a more

effective weighting function.

GRADY: RANDOM WALKS FOR IMAGE SEGMENTATION 1781

Fig. 9. Segmentation on a 3D, 6-connected, lattice without any
modification of the algorithm. Seeds were placed on a single slice,
consisting of a mark inside the aorta and a ring of background seeds
around the outside. (a) Original cardiac CT volume. (b) Segmentation of
the aorta is shown in high-intensity pixels with the foreground/
background seeds shown in black and white, respectively.

ACKNOWLEDGMENTS

The author would like to thank Gareth Funka-Lea and Yuri
Boykov for their advice, criticism, and encouragement
during the development of this algorithm. This work is
dedicated to the author’s father, Dr. Leo J. Grady, who’s
advice, criticism, and encouragement extended far beyond
the development of this algorithm.

REFERENCES

[1] L. Grady and G. Funka-Lea, “Multi-Label Image Segmentation for
Medical Applications Based on Graph-Theoretic Electrical Poten-
tials,” Proc. Workshop Computer Vision and Math. Methods in Medical
and Biomedical Image Analysis, pp. 230-245, May 2004.

[2] R. Wallace, P.-W. Ong, and E. Schwartz, “Space Variant Image
Processing,” Int’l J. Computer Vision, vol. 13, no. 1, pp. 71-90, Sept.
1994.

[3] L. Grady, “Space-Variant Computer Vision: A Graph-Theoretic
Approach,” PhD dissertation, Boston Univ., 2004.

[4] S. Kakutani, “Markov Processes and the Dirichlet Problem,” Proc.
Japanese Academy, vol. 21, pp. 227-233, 1945.

[5] P. Doyle and L. Snell, Random Walks and Electric Networks, no. 22,
Washington, D.C.: Math. Assoc. of Am., 1984.

[6] R. Courant and D. Hilbert, Methods of Math. Physics, vol. 2. John
Wiley and Sons, 1989.

[7] R. Hersh and R.J. Griego, “Brownian Motion and Potential
Theory,” Scientific Am., vol. 220, pp. 67-74, 1969.

[8] F.H. Branin Jr., “The Algebraic-Topological Basis for Network
Analogies and the Vector Calculus,” Proc. Conf. Generalized
Networks, pp. 453-491, Apr. 1966.

[9] P. Tetali, “Random Walks and the Effective Resistance of
Networks,” J. Theoretical Probability, vol. 4, no. 1, pp. 101-109, 1991.

[10] N. Biggs, “Algebraic Potential Theory on Graphs,” Bull. London
Math. Soc., vol. 29, pp. 641-682, 1997.

[11] Z. Tu and S.-C. Zhu, “Image Segmentation by Data-Driven
Markov Chain Monte Carlo,” IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 24, no. 5, pp. 657-673, May 2002.

[12] S.C. Zhu, Y. Wu, and D. Mumford, “Filters, Random Field and
Maximum Entropy (FRAME),” Int’l J. Computer Vision, vol. 27,
no. 2, pp. 1-20, Mar./Apr. 1998.

[13] P. Perona and J. Malik, “Scale-Space and Edge Detection Using
Anisotropic Diffusion,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 12, no. 7, pp. 629-639, July 1990.

[14] J. Shi and J. Malik, “Normalized Cuts and Image Segmentation,”
IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 22, no. 8,
pp. 888-905, Aug. 2000.

[15] E. Mortensen and W. Barrett, “Interactive Segmentation with
Intelligent Scissors,” Graphical Models in Image Processing, vol. 60,
no. 5, pp. 349-384, 1998.

[16] J.A. Sethian, Level Set Methods and Fast Marching Methods. Cam-
bridge Univ. Press, 1999.

[17] M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Active Contour
Models,” Int’l J. Computer Vision, vol. 1, no. 4, pp. 321-331, 1987.

[18] Y. Boykov and M.-P. Jolly, “Interactive Graph Cuts for Optimal
Boundary and Region Segmentation of Objects in N-D Images,”
Proc. Int’l Conf. Computer Vision, pp. 105-112, 2001.

[19] Y. Boykov and V. Kolmogorov, “An Experimental Comparison of
Min-Cut/Max-Flow Algorithms for Energy Minimization in
Vision,” IEEE Trans. Pattern Analysis and Machine Intelligence,
vol. 26, no. 9, pp. 1124-1137, Sept. 2004.

[20] Y. Boykov, O. Veksler, and R. Zabih, “A New Algorithm for
Energy Minimization with Discontinuities,” Proc. Second Int’l
Workshop Energy Minimization Methods in Computer Vision and
Pattern Recognition, pp. 205-220, July 1999.

[21] L. Grady, “Multilabel Random Walker Image Segmentation Using
Prior Models,” Proc. 2005 IEEE CS Conf. Computer Vision and
Pattern Recognition, pp. 763-770, June 2005.

[22] H. Lombaert, Y. Sun, L. Grady, and C. Xu, “A Multilevel Banded
Graph Cuts Method for Fast Image Segmentation,” Proc. Int’l Conf.
Computer Vision 2005, vol. 1, pp. 259-265, Oct. 2005.

[23] Y. Li, J. Sun, C. Tang, and H. Shum, “Lazy Snapping,” Proc. ACM
SIGGRAPH Conf., pp. 303-308, Apr. 2004.

[24] A. Blake, C. Rother, M. Brown, P. Perez, and P. Torr, “Interactive
Image Segmentation Using an Adaptic GMMRF Model,” Proc.
European Conf. Computer Vision, pp. 428-441, May 2004.

[25] C. Rother, V. Kolmogorov, and A. Blake, “‘GrabCut’—Interactive
Foreground Extraction Using Iterated Graph Cuts,” ACM Trans.
Graphics, vol. 23, no. 3, pp. 309-314, 2004.

[26] C. Zahn, “Graph Theoretical Methods for Detecting and Describing
Gestalt Clusters,” IEEE Trans. Computers, vol. 20, pp. 68-86, 1971.

[27] Z. Wu and R. Leahy, “An Optimal Graph Theoretic Approach to
Data Clustering: Theory and Its Application to Image Segmenta-
tion,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 11,
pp. 1101-1113, 1993.

[28] S. Sarkar and P. Soundararajan, “Supervised Learning of Large
Perceptual Organization: Graph Spectral Partitioning and Learn-
ing Automata,” IEEE Trans. Pattern Analysis and Machine Intelli-
gence, vol. 22, no. 5, pp. 504-525, May 2000.

[29] P. Perona and W. Freeman, “A Factorization Approach to
Grouping,” Proc. Fifth European Conf. Computer Vision, pp. 655-
670, June 1998.

[30] L. Grady and E.L. Schwartz, “Isoperimetric Graph Partitioning for
Image Segmentation,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 28, no. 3, pp. 469-475, Mar. 2006.

[31] A. Barbu and S.-C. Zhu, “Graph Partition by Swendsen-Wang
Cuts,” Proc. Ninth IEEE Conf. Computer Vision, vol. 1, pp. 320-327,
Oct. 2003.

[32] L. Grady and E. Schwartz, “Anisotropic Interpolation on Graphs:
The Combinatorial Dirichlet Problem,” Technical Report CAS/
CNS-TR-03-014, Dept. of Cognitive and Neural Systems, Boston
Univ., 2003.

[33] A. Levin, D. Lischinski, and Y. Weiss, “Colorization Using
Optimization,” Proc. ACM SIGGRAPH Conf., pp. 689-694, Aug.
2004.

[34] X. Zhu, Z. Ghahramani, and J. Lafferty, “Semi-Supervised
Learning Using Gaussian Fields and Harmonic Functions,” Proc.
20th Int’l Conf. Machine Learning, pp. 912-919, 2003.

[35] V.B. Eckmann, “Harmonische Funktionen und Randwertaufgaben
in einem Komplex,” Commentarii Math. Helvetici, vol. 17, pp. 240-
255, 1945.

[36] U.R. Kodres, “Geometrical Positioning of Circuit Elements in a
Computer,” Proc. 1959 AIEE Fall General Meeting, Oct. 1959.

[37] W.T. Tutte, “How to Draw a Graph,” Proc. London Math. Soc.,
vol. 13, no. 3, pp. 743-768, 1963.

[38] H. Wechsler and M. Kidode, “A Random Walk Procedure for
Texture Discrimination,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 1, no. 3, pp. 272-280, 1979.

[39] L. Gorelick, M. Galun, E. Sharon, R. Basri, and A. Brandt, “Shape
Representation and Classification Using the Poisson Equation,”
Proc. 2004 IEEE CS Conf. Computer Vision and Pattern Recognition
(CVPR ’04), vol. 2, pp. 61-67, July 2004.

[40] L. Grady and E.L. Schwartz, “Isoperimetric Partitioning: A New
Algorithm for Graph Partitioning,” SIAM J. Scientific Computing,
vol. 27, no. 6, pp. 1844-1866, June 2006.

[41] D. Harel and Y. Koren, “On Clustering Using Random Walks,”
Proc. 21st Conf. Foundations of Software Technology and Theoretical
Computer Science, vol. 2245, pp. 18-41, 2001.

[42] L. Yen, D. Vanvyve, F. Wouters, F. Fouss, M. Verleysen, and M.
Saerens, “Clustering Using a Random-Walk Based Distance
Measure,” Proc. 13th Symp. Artificial Neural Networks, pp. 317-
324, 2005.

[43] M.E.J. Newman, “A Measure of Betweenness Centrality Based on
Random Walks,” Social Networks, vol. 27, no. 1, pp. 39-54, Jan. 2005.

[44] F. Harary, Graph Theory. Addison-Wesley, 1994.
[45] M.J. Black, G. Sapiro, D.H. Marimont, and D. Heeger, “Robust

Anisotropic Diffusion,” IEEE Trans. Image Processing, vol. 7, no. 3,
pp. 421-432, Mar. 1998.

[46] X. Zhu, J. Lafferty, and Z. Ghahramani, “Combining Active
Learning and Semi-Supervised Learning Using Gaussian Fields
and Harmonic Functions,” Proc. ICML 2003 Workshop Continuum
from Labeled to Unlabeled Data in Machine Learning and Data Mining,
pp. 58-65, 2003.

[47] J. Dodziuk, “Difference Equations, Isoperimetric Inequality and
the Transience of Certain Random Walks,” Trans. Am. Math. Soc.,
vol. 284, pp. 787-794, 1984.

[48] J. Roth, “An Application of Algebraic Topology to Numerical
Analysis: On the Existence of a Solution to the Network Problem,”
Proc. Nat’l Academy of Science of Am., vol. 41, pp. 518-521, 1955.

[49] C. Mattiussi, “The Finite Volume, Finite Element and Finite
Difference Methods as Numerical Methods for Physical Field
Problems,” Advances in Imaging and Electron Physics, pp. 1-146,
Apr. 2000.

1782 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 28, NO. 11, NOVEMBER 2006

[50] F.R.K. Chung, Spectral Graph Theory, no. 92, Providence, R.I.: Am.
Math. Soc., 1997.

[51] N. Biggs, Algebraic Graph Theory, no. 67, Cambridge Univ. Press,
1974.

[52] G. Golub and C. Van Loan, Matrix Computations, third ed. The
Johns Hopkins Univ. Press, 1996.

[53] W. Hackbusch, Iterative Solution of Large Sparse Systems of
Equations. Springer-Verlag, 1994.

[54] J.J. Dongarra, I.S. Duff, D.C. Sorenson, and H.A. van der Vorst,
Solving Linear Systems on Vector and Shared Memory Computers.
Philadelphia: SIAM, 1991.

[55] K. Gremban, “Combinatorial Preconditioners for Sparse, Sym-
metric Diagonally Dominant Linear Systems,” PhD dissertation,
Carnegie Mellon Univ., Pittsburgh, Penn. Oct. 1996.

[56] J. Bolz, I. Farmer, E. Grinspun, and P. Schröder, “Sparse Matrix
Solvers on the GPU: Conjugate Gradients and Multigrid,” ACM
Trans. Graphics, vol. 22, no. 3, pp. 917-924, July 2003.

[57] J. Krüger and R. Westermann, “Linear Algebra Operators for GPU
Implementation of Numerical Algorithms,” ACM Trans. Graphics,
vol. 22, no. 3, pp. 908-916, July 2003.

[58] Multigrid, U. Trottenberg, C.W. Oosterlee, and A. Schuller, eds.
San Diego, Calif.: Academic Press, 2000.

[59] J.E. Dendy, “Black Box Multigrid,” J. Computational Physics, vol. 48,
pp. 366-386, 1982.

[60] L. Grady and E.L. Schwartz, “Faster Graph-Theoretic Image
Processing via Small-World and Quadtree Topologies,” Proc. 2004
IEEE CS Conf. Computer Vision and Pattern Recognition, pp. 360-365,
June-July 2004.

[61] L. Grady and E.L. Schwartz, “The Graph Analysis Toolbox: Image
Processing on Arbitrary Graphs,” Technical Report TR-03-021,
Boston Univ., Aug. 2003.

[62] G. Kirchhoff, “Über die Auflösung der Gleichungen, auf Welche
man bei der Untersuchung der Linearen Verteilung Galvanischer
Ströme Geführt Wird,” Poggendorf’s Annalen der Physik Chemie,
vol. 72, pp. 497-508, 1847.

[63] M. Fiedler, Special Matrices and Their Applications in Numerical
Mathematics. Martinus Nijhoff Publishers, 1986.

[64] L. Grady, T. Schiwietz, S. Aharon, and R. Westermann, “Random
Walks for Interactive Organ Segmentation in Two and Three
Dimensions: Implementation and Validation,” Proc. Conf. Medical
Image Computing and Computer-Assisted Intervention 2005 II,
pp. 773-780, Oct. 2005.

Leo Grady received the BSc degree in electrical
engineering from the University of Vermont in
1999 and the PhD degree from the Cognitive
and Neural Systems Department at Boston
University in 2003. Since Autumn 2003, he has
been a member of the technical staff at Siemens
Corporate Research in the Imaging and Visua-
lization Department, Princeton. His research
focuses on image segmentation, data clustering,
learning, and filtering using techniques from

graph theory, combinatorial topology, and PDEs. Other interests include
pattern/object recognition, applied mathematics, nonuniform data
processing, image registration, cellular automata, machine learning,
robotics, and emergent phenomena. He is a member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

GRADY: RANDOM WALKS FOR IMAGE SEGMENTATION 1783

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

