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We describe a new algorithm for the automated segmentation of the
hippocampus (Hc) and the amygdala (Am) in clinical Magnetic
Resonance Imaging (MRI) scans. Based on homotopically deforming
regions, our iterative approach allows the simultaneous extraction of
both structures, by means of dual competitive growth. One of the most
original features of our approach is the deformation constraint based
on prior knowledge of anatomical features that are automatically
retrieved from the MRI data. The only manual intervention consists of
the definition of a bounding box and positioning of two seeds; total
execution time for the two structures is between 5 and 7 min including
initialisation. The method is evaluated on 16 young healthy subjects
and 8 patients with Alzheimer’s disease (AD) for whom the atrophy
ranged from limited to severe. Three aspects of the performances are
characterised for validating the method: accuracy (automated vs.
manual segmentations), reproducibility of the automated segmentation
and reproducibility of the manual segmentation. For 16 young healthy
subjects, accuracy is characterised by mean relative volume error/
overlap/maximal boundary distance of 7%/84%/4.5 mm for Hc and
12%/81%/3.9 mm for Am; for 8 Alzheimer’s disease patients, it is 9%/
84%/6.5 mm for Hc and 15%/76%/4.5 mm for Am. We conclude that
the performance of this new approach in data from healthy and
diseased subjects in terms of segmentation quality, reproducibility and
time efficiency compares favourably with that of previously published
manual and automated segmentation methods. The proposed approach
provides a new framework for further developments in quantitative
analyses of the pathological hippocampus and amygdala in MRI scans.
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Introduction

The hippocampus (Hc) and the amygdala (Am) are medial
temporal lobe grey matter structures of primary importance in
fundamental cognitive processes and are involved in neurological
and psychiatric diseases, including medial temporal lobe epilepsy
(MTLE), Alzheimer’s disease (AD) and schizophrenia. Computa-
tional studies of their anatomy are therefore crucial. These
structures form a small anatomical and functional complex with
anatomically ill-defined internal and external boundaries, and are
subject to the partial volume effect, making their delineation in
Magnetic Resonance Imaging (MRI) scans challenging.

Until recently, MRI volumetric studies of these structures have
been based on careful manual segmentation (Hasboun et al.,
1996; Pruessner et al., 2000) which is very time consuming
(usually >1 h per structure) and suffers from considerable intra-
and inter-rater variability (Bonilha et al., 2004; Free et al., 1995;
Haller et al., 1997; Hogan et al., 2000; Pantel et al., 2000;
Pruessner et al., 2000; Wieshmann et al., 1998). These factors
limit sensitivity to time-changes, disease-specific differences and
inter-site comparisons. Reducing subjectivity through automation
in the segmentation process is therefore highly desirable. Several
strategies have been proposed to palliate the fuzziness of some
boundaries.

Purely image-based methods generally rely on a manual
initialisation step. In Ashton et al. (1997), a region deformed
elastically from a line of seeds according to a constraint, where
both seeds and constraint were derived from manually segmented
contours in three orthogonal slices. An artificial neural networks
method was described by Pérez de Alejo et al. (2003), that relied
on unsupervised tissue-segmentation, followed by supervised
volume identification trained on a manually segmented sagittal
slice. A patch-based surface model was introduced by Ghanei et al.
(1998, 2001), requiring manually defined starting contours.
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Automation was implemented for the initial step for two of these
methods, with an atlas-based trained maximum likelihood
classifier (Ashton et al., 2003) and landmarks derived from rules
related to relative position with respect to global brain landmarks
(Siadat et al., 2004).

Statistical information derived from a learning base, as in
atlas-based methods or deformable templates, has led to some
fully automatic methods, with built-in constraints. Shape or
appearance models have been used in several methods.
Statistically learned deformation modes were combined with
elastic deformations of Hc, constrained by intensity profiles in
Kelemen et al. (1999). A level-set method, constrained by
statistical priors on shape and neighbour-relations between
anatomical structures (Yang et al., 2004) or intensity (Yang and
Duncan, 2004), was proposed to simultaneously segment Hc and
Am. In Duchesne et al. (2002), an atlas matching method was
guided by an active appearance model to segment Hc and Am,
which was refined in Klemenčič et al. (2004), with another
registration algorithm to build the model for Hc only. Atlas-
based, fully automated methods for the segmentation of several
structures (amongst which Hc and Am), have used spatial
information either implicitly, as in Fischl et al. (2002) from an
anatomical probabilistic atlas, or explicitly, as in Zhou and
Rajapakse (2005) modelling intensity, spatial location and spatial
relationships in a fuzzy template.

Some methods have combined manually and statistically
derived constraints. Shen et al. (2002) deformed a shape model
with geometrical and statistical priors, introducing at least 50
manually identified landmarks for segmenting Hc. A computa-
tionally expensive high-dimensional brain mapping technique
(Haller et al., 1997; Hogan et al., 2000) used a fluid registration
to segment Hc and required 28 landmarks to be identified
manually. We note that this algorithm is unique among those with
user interaction to have been subjected to a thorough evaluation of
reproducibility. A semi-automated post-processing step was
required in the hybrid method proposed in Pitiot et al. (2004);
initialised by the registration of an hybrid MRI/structure atlas on
the target image, a group of templates was then deformed
according to image, shape, distance and texture constraints in a
rule-controlled framework.

In this work, we present a new Markovian dual deformation
method for the simultaneous segmentation of Hc and Am. The new
method can be seen as an extension of the region-growing
algorithm proposed in Mangin et al. (1995) and Poupon et al.
(1998) for the segmentation of the cortex and the major basal
ganglia. Furthermore, the method relies on a dual segmentation
embedding a competition framework at the interface between Hc
and Am, to ensure a correct behaviour in the unclear area between
Hc and Am.

In order to be more applicable to data from both young controls
and AD patients, it does not include statistical shape priors, which
could bias the segmentation in atrophic cases. In fact, although
there have been demonstrations of the usefulness of statistical prior
knowledge in segmentation algorithms applied to data from normal
subjects, such methods could be sub-optimal for the segmentation
of diseased structures. Using a disease-specific atlas can lead to
segmentation performance improvements compared to general
atlases, as shown on data from AD or Mild Cognitive Impairment
(MCI) patients (Carmichael et al., 2005); this result highlights the
influence on the final segmentation of the type of subject used in
the atlas.
In a preliminary study on a restricted sample of controls and
patients (Chupin et al., 2006), we have observed that segmentation
is rendered particularly difficult in cases with AD, due to
degeneration of Hc which results in a large atrophy in patients
even in early stages of the disease, and to loss of image contrast.
We propose introducing a constraint in the segmentation to
overcome this problem while retaining execution speed with
minimal user input (to increase reproducibility) and limiting bias
in relation to atrophy. In the new method, prior anatomical
knowledge is explicitly considered, based on local systematic
properties around automatically retrieved landmarks at the border
of the structures. As opposed to statistical shape priors, anatomical
knowledge gives information which is less variable and less
sensitive to atrophy than shape and size (Bloch et al., 2005).
These priors can use explicit knowledge, which is based on an
anatomical description of the structures (topology, position,
distances) and their relationships; this information is formalised
by simple rules on position, geometry and intensity (Barra and
Boire, 2001). In order to be introduced as a constraint in a
segmentation algorithm, anatomical knowledge can be modelled
in fuzzy maps (Barra and Boire, 2001; Bloch et al., 2005) or in the
energy/force guiding the deformation process (Yang et al., 2004;
Pitiot et al., 2004); in our method, the constraint is introduced in
the energy.

Finally, we wanted to address a difficulty with regard to the
evaluation of the algorithm performance in the current literature.
An extended evaluation of the method is thus proposed, based on a
range of commonly used measures in order to facilitate
comparisons with published manual segmentation and automated
methods.

Following the method’s detailed description, we will present
evidence of its validity and potential usefulness by comparing
its outcome with manually segmented structures in MRI data
from 16 representative healthy controls and 8 AD patients using
both quantitative measures of agreement, with volume, region
overlap and boundary distance measures, and thorough qualitative
evaluation.

Algorithm

Principle

The algorithm is an iterative competitive deformation process
between two objects, OHc (for Hc) and OAm (for Am), in a back-
ground BGHcAm. Regions deform following local topology-
preserving transformations from an initial offset of seeds; as in
Mangin et al. (1995) and Poupon et al. (1998), it derives from a
Markovian model. We define a voxel front as the set of voxels at
the border of a deforming object. The growth proceeds by alternate
iterative deformations of OHc and OAm through the re-classification
of voxels in the vicinity of the current voxel front. This is achieved
by minimising a global energy functional, built following a
Bayesian framework in order to embody data attachment and
composite priors. At each step, classification optimisation is
carried out using the Iterated Conditional Modes (ICM) algorithm
(Besag, 1989), a robust deterministic method for classifiers based
on Markov random fields, widely used for image segmentation
(Dubes et al., 1990). The segmentation process stops when stability
is reached.

A competitive scheme is needed because the anatomical border
between Hc and Am – both grey matter structures – is very difficult
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to determine on MRI scans. This border consists of the alveus, a
thin white matter structure, sometimes combined with cerebro-
spinal fluid (CSF) of the lateral ventricle. It is only partly visible on
routine MRI scans such as those used in this work, and is therefore
an unreliable feature to block the segmentation of Hc alone. In our
algorithm, the current OHc–OAm interface is automatically detected
at the beginning of each deformation step; competition is
introduced in the voxel re-classification process by considering
an interface-specific optimisation and dual regularisation (inter-
face–non-interface) for Hc. Voxels detected as part of the interface
(IHcAm) can be reclassified as either OHc or OAm; the fact that IHcAm
includes only voxels previously classified either as OHc or OAm,
reduces the risk of including background voxels in one of the
objects.

Neuroanatomical landmarks, derived from the alveus, para-
hippocampal gyrus, temporal horn of the lateral ventricle and
isthmus are used to build priors to further constrain the
segmentation process. These structures are considered for the
basis of the anatomical priors, because they are commonly used by
neuroanatomists during manual delineation, both at the interface
and at the other borders of the two structures. During the iterative
segmentation process, 11 sets of landmarks are automatically
retrieved at the border of OHc and OAm, corresponding to 11
patterns. These follow rules defined locally in accordance with the
Markovian formalism. These rules are derived from formal
empirical descriptions of patterns in brain anatomy, as seen on
MRI scans, and described in Appendix A. These patterns can also
be retrieved in atrophied structures. The segmentation is then
constrained through regularisation: each landmark’s 26-neighbour-
hood is divided into several likelihood zones, defined according to
prior anatomical likelihood of their voxels to belong to Hc and Am.
The computation of the energy is modified for these regions, to act
on the deformations according to the anatomical likelihood, as
detailed in Appendix B.
Outline

The three main operational steps of the segmentation process
are summarised here and presented in detail in the following
section. The first step is manual, its influence being discussed in
Performance evaluation; the following steps are fully automatic.

Initialisation:

• Definition of a bounding box delimiting the region of interest
(ROI) including Hc and Am;

• Placement of one seed in each structure (Hc and Am).

Alternate deformations:

• Resetting of landmarks to NULL set.
1 Brainvisa and The Anatomist are available at http://brainvisa.info/,
under a license CeCILL licence version 2.
Homotopic deformation of Hc voxel front.

• Selection of ‘candidates’ to re-classification in the neighbour-
hood of the voxels of the Hc front;

• Detection of interface voxels, landmarks and likelihood zones,
ICM initialisation;

• Voxel re-classification (ICM energy optimisation): at each
iteration, for each voxel candidate, re-classification in the
object leading to the smaller local energy:
▪ for non-interface voxels, re-classification is restricted to
either OHc or BGHcAm;

▪ for interface voxels, re-classification is restricted to either
OHc or OAm.
Homotopic deformation of Am voxel front.
• Selection of ‘candidates’ to re-classification in the neighbour-
hood of the voxels of the Am front;

• Detection of interface voxels, landmarks and likelihood zones,
ICM initialisation;

• Voxel re-classification (ICM energy optimisation):
▪ for non-interface voxels, re-classification is restricted to
either OAm or BGHcAm;

▪ for interface voxels, re-classification is restricted to either
OAm or OHc.
Convergence criterion and stopping.
Detailed algorithm description

Initialisation
The algorithm is implemented in the Brainvisa environment1

(Cointepas et al., 2001), the complete 3D visualisation being
handled by The Anatomist software (Rivière et al., 2000). No pre-
or post-processing is used.

A region of interest (ROI) is defined manually using a mouse-
driven cursor in a dedicated graphical interface for each subject and
for each hemisphere. This contained Hc (about 2500 voxels) and
Am (about 1250 voxels); the dimensions of the ROI are normally
approximately 30×50×20 voxels. The purpose of this parallele-
piped ROI is to significantly decrease memory load (Duchesne et
al., 2002; Hogan et al., 2000). The ROI is defined by six bounding
slices according to the following rules, illustrated in Fig. 1.

1) the medial limit corresponds to the sagittal slice immediately
medial to the uncus and the lateral limit to the sagittal plane
containing the CSF ellipsoid of the temporal horn of the lateral
ventricle;

2) the anterior limit corresponds to the coronal slice after which a
grey matter mass appears in the uncal white matter, just after the
isthmus and the posterior limit to the slice after the grey matter
mass under the crus fornicis disappears;

3) the inferior limit corresponds to the axial slice below which grey
matter disappears inside the white matter of the parahippocam-
pal gyrus and the superior limit to the slice above which grey
matter is no longer visible along the fornix.

Two seeds are positioned in the extracted ROI, according to two
rules: the seeds are located near the centre of Am and the head of
Hc (HHc); they are both placed approximately at the same distance
from the interface. The starting point of the automated segmenta-
tion process consists of three objects; two 5×5×5-voxel cubes
centred on the seeds (initial OHc and OAm), and all other voxels
within the ROI classified as BGHcAm.
Alternate deformations
The OHc and OAm growth follows an alternate iterative

procedure; the Hc front is considered first, followed by the Am
front. Each voxel front is scanned to identify voxel re-classification
candidates and only voxels identified as simple points in the
26-neighbour vicinity of the current voxel front are considered. A
point is defined as simple for a given object if the topological

http://brainvisa.info/


Fig. 1. Bounding box: the outermost slices defining the region of interest are
shown. An extra slice is added to reduce its direct influence.
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properties (one connected component, no holes) of this object do not
change when the point is added to or removed from the object. It is
determined by computing the number of connected components on
the 26-neighbourhood of the current point for the object (in 26-
connectivity) and for the background (in 6-connectivity) according
to the rules defined in Malandain et al. (1993). This condition
ensures that each resulting deformation step will be homotopic, and
thus maintain the topology of the two objects.

The interface IHcAm is considered as a meta-region during the
deformation process. A meta-region is defined as a sub-region
associated with a specific regularisation. It is automatically
detected as the set of voxels from one object that are candidates
to be re-classified as the other object.

Anatomical priors. Landmarks (segmentation priors) are de-
tected according to intensity and relational characteristics in the 26-
neighbourhood of voxel candidates. Intensity and geometric
properties are modelled through invariant patterns respectively in
the MRI data and the label volume. Both types of patterns model
information on relative positions of structures in the vicinity of Hc
and Am. Three meta-regions can then be derived with respect to
the detected landmarks: low likelihood zones for Hc (ZHc

LL) and Am
(ZAm

LL ), and high likelihood zone for Hc (ZHc
HL).

The landmark detection process is described in detail in
Appendix A. In summary, the process is hierarchical, reflecting
the relative empirical importance of each landmark as a constraint
for the segmentation. Eleven sets of landmarks are detected
following prior knowledge. Two are located at the interface between
Hc and Am—based on the alveus and the temporal horn of the
lateral ventricle. Three are defined for Hc only—two based on the
alveus and one on the Hc sulcus. Five are defined for both Hc and
Am – based on the parahippocampal gyrus and the temporal horn of
the lateral ventricle – and used accordingly for each structure.
Finally, one is defined for Am only—based on the isthmus of the
temporal lobe. Each of these sets of landmarks is detected according
to a set of intensity and positional rules defined with a 2D 3×3-
voxels pattern (see Appendix A), empirically derived from
anatomical knowledge. This pattern is composed of specific
neighbours of a voxel candidate v, and rules modelling relational
radiometric and geometric knowledge are derived around it. The
landmarks and zones of high and low likelihood are illustrated in
Fig. 2. Their influence on the results of the segmentation is studied in
Performance evaluation.

Voxel re-classification. An iteration of front deformation is
achieved through re-classification of the voxel candidates as
belonging to either OHc, OAm or BGHcAm. It proceeds through the
minimisation of EROI, the energy of the voxels in the ROI. EROI is
defined as the sum of the local energies at every voxel, mR=
{IHcAm; ZHc

LL; ZAm
LL ; ZHc

HL} being the set of meta-regions introduced
in the process:

EROI ¼
X

maOHc�mR

EOHcðmÞþ
X

maOAm�mR

EOAm ðmÞþ
X

maBGHcAm

EBGHcAmðmÞ
" #

þ
X
RamR

X
maOHc\R

EOHc\RðmÞ þ
X

maOAm\R
EOAm\RðmÞ

" #
: ð1Þ

Energy functional. The local energy E(v) consists of five terms:
global data attachment (EG), modelling average intensity char-
acteristics, local data attachment (EL), modelling edges and context
terms dedicated to Markovian regularisation (EI), volume (EV) and
surface (ES) control.

EOðmÞ ¼ EG
OðmÞ þ EL

OðmÞ þ EI
OðmÞ þ EV

OðmÞ þ ES
OðmÞ: ð2Þ

Detailed descriptions of the energy terms, which are different for
objects O (OHc and OAm) and BGHcAm, are given in Appendix B.

Optimisation. Following initialisation – re-classification of all
voxel candidates according to global data attachment only – the
full energy functional is minimised on the set of voxel candidates
with an ICM algorithm.

At each iteration, EROI is computed for the two possible
classifications for each voxel candidate. Voxels are considered
sequentially, which makes re-classification equivalent to comparing
local energies for each voxel and classifying the voxel in the object
minimising its local energy. For example, considering an iteration of
the deformation of OHc, for a voxel candidate vCg IHcAm,
minimising EROI follows the scheme:

if DEðmCÞV0; mCaOHc; else mCaBGHcAm

with DEðmCÞ ¼ E if mCaOHc
ROI � E if mCaBGHcAm

ROI

¼ EOHcðmCÞ � EBGHcAmðmCÞ: ð3Þ



Fig. 2. Landmarks and associated likelihood zones. In each row, previously defined landmarks are kept and new ones are added. Left column shows corresponding
segmentation in the same slice. THVL=Temporal Horn of the Lateral Ventricle. Landmarks were illustrated in the orientation in which they are defined, except for
those derived from the parahippocampal gyrus, for which sagittal slices are more illustrative. In each case, the selected slice was chosen according to the number of
voxels representing the illustrated landmark.
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The ICM process stops when the deforming object is no longer
modified, or when the number of changes is small enough during
three consecutive ICM-iterations.

Convergence and stopping criterion
The overall deformation process ends when the number of

changes in both objects is smaller than 2% of their surface for three
iterations in a row.

Performance evaluation

We characterised performances by applying the algorithm in
data from healthy subjects and AD patients, scanned in conditions
representative of routine clinical investigations. Segmentation
results were evaluated in three ways: (1) accuracy: automated
results were compared visually and quantitatively to manually
segmented objects; (2) reproducibility: intra-observer and inter-
observer reliability was considered in relation to inter-observer
reliability of manually drawn results; (3) efficacy of the anatomical
priors.

Material

MRI data
Sixteen young healthy volunteers (S1–S16, age <35) and eight

patients with probable AD (P1–P8, mean age 74 (range: 66–81),
mean MMSE (Mini Mental State Examination) 21 (6–28)) were
scanned with a 1.5 Tesla Signa scanner (GE Medical Systems,
Milwaukee, WI, USA). The acquisition parameters are sum-
marised in Table 1. Image quality was characterised by the
contrast to noise ratio (CNR) and the contrast to noise and artefact
ratio (CNAR), which were defined as follows: contrast being the
difference between white and grey matter modes of the brain
signal intensity histogram; CNR=[contrast] / [intensity standard
deviation on a region of scan background without visible
artefacts]; CNAR [contrast] / [intensity standard deviation on the
whole background, including noise and visible artefacts (motion,
wrap-around, pulsation)]. For S1–S16, CNAR=15±2 (13–19) and
CNR=20±3 (16–25). For P1–P8, CNAR=11±3 (8–15) and
CNR=15±4 (10–23). The slightly larger range of values for
patients could reflect the different sets of acquisition parameters
(Li and Mirowitz, 2004).

Gold standard: manual segmentation
The manual segmentation protocol was established by a highly

trained neuroanatomist (Hasboun et al., 1996), and adapted to a
voxel-based display environment. Images were manipulated with
Table 1
Acquisition parameters for the images used in the evaluation process

TR TE TI Flip angle

S1–S8; S10–S16 14.3 ms a 6.3 ms a 600 ms 10°
P1–P4; S9 10.3 ms 2.1 ms 600 ms 10°
P5–P6 12.2 ms 5.3 ms 450 ms 15°
P7–P8 9.2 ms 1.98 ms 600 ms 10°
a TR=10.5 ms and TE=2.2 ms for S15.
b Slice thickness of 1.5 mm for S7–S8.
c 256×256 matrix for S15.
d Coronal plane for P3.
the ROI-drawing module of The Anatomist software (Rivière et al.,
2000). The boundaries of the two structures are described in detail
in Appendix C and were principally determined on coronal slices
with checks on simultaneous sagittal and axial views through a
linked cursor.

The degree of atrophy in P1–P8 was obtained from manual
segmentations by expressing the difference between the volume of
each structure and the mean volume of this structure for the young
healthy controls (YHC) (VHc

YHC=2.89 cm3, VAm
YHC=1.40 cm3), in

units of standard deviation (σHc
YHC=0.34 cm3, σAm

YHC=0.16 cm3).
For Hc, the atrophy was [2.9±1.2 (0.9–4.4)] ·σHc

YHC and, for Am,
the atrophy was [2.2±1.8 (−1.7–4.4)] ·σAm

YHC, which corresponded
to limited to severe atrophy.

Based on automated segmentation results, the volume statistics
for the young healthy controls were VHc

YHC=2.98 cm3 and
VAm
YHC=1.51 cm3, and the standard deviation σHc

YHC=0.36 cm3 and
σAm
YHC=0.21 cm3. For Hc, the atrophy was [3.1±1.5 (0.4–4.8)] ·

σHc
YHC and, for Am, the atrophy was [2.5±1.1 (0.2–4.5)] ·σAm

YHC.

Design
The simultaneous segmentation of Hc and Am took less than 1

min on a 1 GHz workstation with 512 MB RAM, developed in
C++, in The Anatomist environment. The total segmentation
process with ROI determination and seed positioning for both
structures in both hemispheres (4 structures) took between 10 and
15 min.

Four automated segmentations were performed: A1
MC and A2

MC,
initialised by operator MC on two different occasions, A1

RM,
initialised by operator RM, and AnoAP

MC with the same ROI and seeds
as A1

MC but without the anatomical priors. Two manual segmenta-
tions were performed:M1

MC, by operator MC andM1
DH, by operator

DH (S1–S6 only) or M1
RM, by operator RM (P1–P8 only). The

results were qualitatively evaluated through 3D renderings and
visualisation of sagittal slices and quantitatively evaluated using 9
indices defined in Appendix D: relative volume error (RV), spatial
overlap (K1, K2), False Positive rate (FP), False Negative rate (FN),
Misclassified Interface Voxels (MIV), boundary distance (Dm,
DM, D95).

For illustration purposes, we identified the best and worst
results according to the composite index CGQ which summarises
the various aspects of the quantitative indices (accuracy and
reproducibility), computed for comparisons A1

MC vs.M1
MC and A2

MC

vs. A1
MC (see Appendix D, Eq. (40)).

Local performance was evaluated by computing the relevant
accuracy indices, RV, K1, K2, FP, FN, DM and D95, for three
sub-regions of Hc and two of Am, defined based on the partition
of the antero-posterior axis – from the first coronal slice which
Slice thickness Voxel size Orientation Matrix

1.3 mmb 0.9375 mm Axial 256×192 c

1.5 mm 0.9375 mm Axial d 256×192
1.5 mm 0.976562 mm Coronal 256×192
1.3 mm 0.9375 mm Coronal 256×256
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contains the manually segmented structure to the last one – into
three equal segments for Hc, approximating head, body and tail
and two segments (anterior third and the remaining two thirds)
for Am.

The performance of landmark detection and landmark-derived
constraints was also studied. The detection performance was
characterised by the stability during deformations (number of
landmarks which were detected at some early iteration of the
deformations but no longer in the last iteration), the stability and
accuracy of the final set of landmarks (number of landmarks for
each type, correct and incorrect detection of low likelihood zones
outside the manually segmented objects and high likelihood
zones inside the manually segmented objects). The effect of the
priors on performance was assessed by comparing the perfor-
mance of the algorithm for A1

MC and AnoAP
MC , and analysing the

improvement of CGQ.
Note that all the parameters described in Appendix B were first

tuned on S1–S4, and refined on S5–S8 and P1–P4, on which only
radiometric parameters could be tuned. No adjustment to the
algorithm was made for application to S9–S16 and only the
anisotropy parameters were modified for P5–P8.
Fig. 3. 3D rendering for manual and automated segmentations
Evaluation on young healthy controls

Qualitative analysis
Manual and automated segmentations were inspected visually

for each subject and both hemispheres to assess their quality and
localise any discrepancy. In general, automated segmentation
tended to slightly over-estimate volume compared to manual one.
Global shapes and some surface details were correctly recovered,
while the main differences were in the tail and the head of Hc.

3D renderings of the best (S1 right hemisphere, S1R) and
worst (S9 left hemisphere, S9L) results are displayed in Fig. 3 for
M1

MC, A1
MC, A2

MC, A1
RM and AnoAP

MC . The shapes derived from
manual and automated segmentations matched well for both
objects. Furthermore, 3D renderings for S1R indicate that surface
details extracted manually were also retrieved with the automated
segmentation. Comparisons of the results with (A2

MC) and without
(AnoAP

MC ) anatomical priors demonstrated their usefulness. Compar-
isons of A1

MC, A2
MC and A1

RM revealed a reproducible behaviour of
the segmentation.

To localise false positives, false negatives and overlap, a few
sagittal slices are displayed for S1R and S9L (Fig. 4). For S1R,
for Am and Hc, for S1R and S9L. See text for details.



Fig. 4. Overlap between some pairs of the six segmentations for six sagittal slices (in the bounding box), for S1R and S9L for Seg vs. Ref. See text for details.
Final likelihood zones for A1

MC are displayed in the “AP” rows with the same colour code as Fig. 2.
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automated segmentations were almost identical. For S9L, the major
problems were in the Am–Hc interface region. Differences bet-
ween the automated segmentations with and without anatomical
priors were clear for both.
Quantitative evaluation of segmentation quality
The results are summarised in Table 2. Accuracy of the

automated method A1
MC vs. M1

MC was close to manual reproduci-
bility M1

MC vs. M1
DH as revealed by the error on volume (RV=7%

(0–14) for Hc and 12% (1–27) for Am, compared to RV=7% (1–
17) for Hc and 10% (1–24) for Am), the overlap (K1=84% (78–89)
for Hc and 81% (69–88) for Am, compared to K1=90% (87–92)
for Hc and 85% (81–92) for Am) and the maximal distance error
(DM=4.5 mm (2.5–9) for Hc and 3.9 mm (2.8–6) for Am,
compared to DM=3.7 mm (2.3–6.2) for Hc and 3.1 mm (2.1–3.9)
for Am). Automated intra (A2

MC vs. A1
MC) and inter (A1

RM vs. A1
MC)-

rater reproducibility was better than manual reproducibility
(RV=2% (intra) and 4% (inter) for Hc and 9% (intra) and 8%
(inter) for Am, K1=97% (intra) and 95% (inter) for Hc and 93%
(intra) and 92% (inter) for Am and DM=2.5 mm (intra) and
2.9 mm (inter) for Hc and 2.8 mm (intra and inter) for Am). The
relative segmentation error was greater for Am than for Hc. Note
that the error at the interface (MIV) is negligible compared to the
global overlap error; the overlap error is roughly distributed around
the interface, as indicated by the average and maximal distance
errors.

Segmentation quality index values for the subparts of Hc and
Am are given in Table 3. RV, K1 and Dmax values revealed that the
segmentation was more accurate in the body and less accurate in



Table 2
Quantitative indices for comparison between pairs of segmentations for S1–S16

Object Index A1
MC vs. M1

MC A2
MC vs. A1

MC A1
RM vs. A1

MC AnoAP
MC vs. M1

MC A1
DH vs. M1

MC

Hc RV (%) 7±4 (0–14) 2±2 (0–6) 4±4 (0–15) 22±8 (4–37) 7±5 (1–17)
K1 (%) 84±3 (78–89) 97±1 (94–99) 95±2 (91–99) 74±4 (66–85) 90±1 (87–92)
K2 (%) 72±4 (64–79) 94±3 (88–99) 91±4 (83–98) 59±5 (49–74) 82±2 (76–84)
FP (%) 15±3 (10–20) 3±2 (1–7) 5±4 (1–12) 29±4 (15–36) 6±2 (3–9)
FN (%) 13±5 (4–21) 3±2 (0–8) 3±3 (0–15) 12±4 (6–24) 12±3 (8–19)
MIV (%) 1.1±1 (0–3.7) 0.2±0.3 (0–1.1) 0.9±1.2 (0–4.2) 5.4±3.2 (0–12) 0.3±0.5 (0.0–1.9)
Dm (mm) 0.5±0.1 (0.4–0.8) 0.1±0.1 (0–0.2) 0.2±0.1 (0–0.5) 1.1±0.3 (0.4–1.8) 0.3±0.1 (0.2–0.5)
DM (mm) 4.5±1.5 (2.5–9) 2.5±0.8 (1.3–4.4) 2.9±0.9 (1.6–6) 7.4±2.6 (4–16) 3.7±1.2 (2.3–6.2)
D95 (mm) 4±1.5 (1.9–8.5) 2.3±0.8 (1.3–4.2) 2.6±0.9 (1.6–5.5) 6.6±2.6 (3.4–15) 3.3±1.1 (1.9–5.4)

Am RV (%) 12±7 (1–27) 9±7 (0–30) 8±5 (0–19) 16±10 (2–41) 10±7 (1–24)
K1 (%) 81±4 (69–88) 93±4 (78–99) 92±4 (80–99) 74±7 (53–88) 85±3 (81–92)
K2 (%) 69±6 (53–78) 87±7 (64–98) 85±6 (67–97) 59±9 (36–79) 74±5 (68–85)
FP (%) 19±6 (6–32) 4±4 (0–15) 7±5 (1–22) 27±7 (14–44) 14±6 (6–26)
FN (%) 13±5 (5–25) 9±8 (0–29) 8±5 (0–21) 14±6 (6–31) 12±6 (4–21)
MIV (%) 1.5±1 (0.3–3.8) 0.9±1.6 (0–6.6) 0.5±0.7 (0–2.6) 3.7±3.8 (0.1–17) 2.8±2.4 (0.4–7.1)
Dm (mm) 0.7±0.2 (0.4–1.2) 0.3±0.2 (0–0.9) 0.3±0.1 (0–0.7) 1±0.4 (0.4–2.2) 0.5±0.1 (0.2–0.7)
DM (mm) 3.9±0.9 (2.8–6) 2.8±1.2 (0.9–5.9) 2.8±0.7 (0.9–4.3) 5.4±1.5 (2.8–9.9) 3.1±0.5 (2.1–3.9)
D95 (mm) 3.5±0.8 (2.5–5.2) 2.6±1.2 (0.9–5.6) 2.5±0.7 (0.9–4.3) 5±1.5 (2.5–8.8) 2.9±0.6 (1.9–3.9)

Values=average±standard deviation (minimum–maximum).
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the tail for Hc (largest maximal distance error: 9 mm), whereas it
was less accurate in the anterior part of Am than in any other
subpart.

Finally, the usefulness of the anatomical priors can be seen by
comparing the first column of Table 2 to the fourth, which reveals
an important increase of the overlap between automatic and manual
segmentations. The performance and influence of landmark
detection are detailed in Fig. 5. The improvement brought by the
anatomical priors was inversely correlated with the quality of
AnoAP
MC , as shown in Fig. 5a ((Corr[CGQ(A1

MC)−CGQ(AnoPA
MC ),CGQ

(AnoPA
MC )]=−0.91). Fig. 5b shows that the landmarks tended to be

robustly detected during deformations. Note that the largest
changes in detected landmarks across iterations were for the
temporal horn of the lateral ventricle superior–anterior to Hc and
the parahippocampal gyrus medial to Am; important changes for
the parahippocampal gyrus medial and lateral to Hc occurred
during three times more iterations than for the other landmarks.
The size of the final low and high likelihood zones appeared to be
related to the size of the underlying structures they were built from
(Fig. 5c); the incorrect detections were generally negligible, except
for the parahippocampal gyrus medial to Hc.

Evaluation on Alzheimer’s patients

Qualitative analysis
The manual and automated segmentations were again inspected

visually for each subject and both hemispheres. In general, as for
Table 3
Quantitative indices on subparts of both structures for the accuracy for S1–S161

Index Hc head Hc body H

RV (%) 13±8 (1–36) 12±7 (1–26)
K1 (%) 83±5 (70–91) 85±3 (79–93)
K2 (%) 71±7 (54–84) 75±5 (65–87)
FP (%) 14±5 (3–23) 18±4 (9–26)
FN (%) 15±9 (2–37) 8±4 (2–18)
DM (mm) 4±1.4 (2.3–7.8) 2.8±0.6 (1.5–4.5) 3
D95 (mm) 3.7±1.4 (1.6–7.4) 2.5±0.6 (1.5–4.1) 3

Values=average±standard deviation (minimum–maximum).
controls, global shapes and some surface details were correctly
recovered, while the main differences were in the tail and the head
of Hc. Comparison of automated segmentations with and without
anatomical priors confirmed their usefulness in pathological data.

Three-dimensional renderings for the best (P4 right hemisphere,
P4R) and worst (P5 right hemisphere, P5R) results for comparisons
between A1

MC, A2
MC, A1

RM, AnoAP
MC and M1

MC are displayed in Fig. 6.
Comparisons of A1

MC, A2
MC and A1

RM revealed good reproducibility
for Hc. For the worst result, the tail of Hc was incomplete.

To visualise false positives, false negatives and overlap for and
between the two structures, a few sagittal slices are displayed for
P4R and P5R (Fig. 7). False positives and false negatives tended to
be homogeneously distributed, except in the anterior part of Am
and the Am–Hc interface. As expected, inter-rater reproducibility
was worse than intra-rater. For both subjects, problems could be
observed in the Am–Hc region.

Quantitative evaluation
Segmentation results were evaluated with the nine quantitative

indices as summarised in Table 4. The accuracy of the automated
method was close to manual reproducibility, as revealed by the
error on volume (RV=9% (0–21) for Hc and 15% (1–42) for Am,
compared to RV=8% (2–18) for Hc and 13% (3–34) for Am), the
overlap (K1=84% (78–88) for Hc and 76% (60–87) for Am,
compared to K1=87% (83–89) for Hc and 80% (72–85) for Am)
and the maximal distance error (DM=6.5 mm (4.1–14) for Hc and
4.5 mm (3.1–5.7) for Am, compared to DM=3.7 mm (2–6.3) for
c tail Am anterior Am posterior

13±12 (0–46) 26±15 (6–62) 11±10 (1–38)
81±6 (65–90) 78±6 (59–87) 85±4 (76–92)
69±9 (48–82) 64±8 (42–77) 74±6 (61–85)
15±7 (4–32) 27±11 (6–51) 10±4 (3–20)
16±9 (4–42) 9±6 (2–24) 17±7 (7–34)

.3±1.4 (1.6–9) 3.8±1 (2.6–6) 3.2±0.7 (2.1–4.7)

.1±1.3 (1.6–8.5) 3.5±0.8 (2.1–5.4) 3±0.6 (1.9–4.6)



Fig. 5. Characterisation of landmark detection for S1–S16: (a) global improvement vs. global quality of AnoAP
MC ; (b) total number of landmarks and number of

landmarks not detected in the final iteration (minimal, average and maximal value at each iteration of the deformation of A1
MC); (c) size of the final likelihood

zones A1
MC, with correct and incorrect classification compared to M 1

MC.
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Hc and 4.3 mm (2.6–6.6) for Am). Automated intra- and inter-rater
reproducibility was better than manual reproducibility (RV=6%
(intra) and 7% (inter) for Hc and 12% (intra) and 21% (inter) for
Am, K1=95% (intra) and 94% (inter) for Hc and 90% (intra) and
82% (inter) for Am and DM=2.5 mm (intra) and 2.6 mm (inter)
for Hc and 2.6 mm (intra) and 3.8 mm (inter) for Am). Mean
values and standard deviations for volume indices remained
comparable with those obtained for controls.

Segmentation quality index values for the subparts of Hc and
Am are indicated in Table 5. RV, K1 and DM values revealed that
the segmentation was more accurate in the body and less in the tail,
for Hc, with a largest maximal distance error of 14 mm. For Am,
both parts showed similar accuracy.

Again, the values demonstrated the usefulness of the anatomical
priors, and the improvement was inversely correlated with the
quality of AnoAP

MC (Corr[CGQ(A1
MC)−CGQ(AnoAP

MC ),CGQ(AnoAP
MC )]=

−0.99), as shown in Fig. 8a. The robustness of landmark detection
during the deformations was comparable to that obtained for young
healthy controls (Fig. 8b). Note that the largest changes in detected
landmarks across iterations were for the temporal horn of the



Fig. 6. 3D rendering for manual and automated segmentations for Am and Hc, for P4R and P5R. See text for details.
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lateral ventricle superior–anterior to Hc and inferior–posterior to
Am; the changes for the other landmarks were very small. Finally,
Fig. 8c shows a different repartition of the likelihood zones
compared to the young healthy controls, which reflects the effect
of atrophy (the alveus at the interface was less recovered, because
of large pools of CSF between Hc and Am, and the enlargement of
the sulcus of Hc due to atrophy resulted in a larger detection of
landmarks for the sulcus of Hc).
Discussion

We have presented a new competitive region growing method
for the automated segmentation of the hippocampus and the
amygdala. We introduced anatomical priors derived from systema-
tic geometrical knowledge modelled as patterns that could be
identified in both healthy subjects and patients. The method was
evaluated in healthy subjects and patients with AD, qualitatively
and using a set of quantitative indices characterising important
aspects of the segmentation: volume, shape and position.
A previous version of the method was described in Chupin
et al. (in press, in French), with limited evaluation on data from 8
young healthy controls, and its application on data from 4 patients
with AD (Chupin et al., 2006). In this present work, improved
anatomical priors and regularisation anisotropy were used and their
full description is given for the first time; the method’s perfor-
mance is evaluated in a larger number of healthy controls and
patients with extended evaluation design.

In the data from young healthy controls, the segmentation
results were visually satisfactory with regard to both global shape
and local details for both structures and their interface. The inter-
rater reproducibility of the automated method surpassed that of
manual segmentation, thereby justifying the proposed approach.
Furthermore, the results demonstrated clearly that the anatomical
priors improved the segmentation, the improvement being larger
for results which were initially worse. Mean values of the
quantitative indices for the sixteen young healthy controls showed
a good agreement with manual segmentation, with a K1 value of
84% for Hc and 81% for Am, and RV values of 7% for Hc and
12% for Am. The number of misclassified voxels could be directly



Fig. 7. Overlap between some pairs of the six segmentations for five sagittal slices (in the bounding box), for P4R and P5R for Seg vs. Ref. See text for details.
Final likelihood zones for A1

MC are displayed in the “AP” rows with the same colour code as Fig. 2.
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characterised through the computation of 1−K2. Nevertheless, this
index is very sensitive, as shown by the translation study in
Appendix D; in summary, we found a mean of 18% of
misclassified voxels between manual segmentations, 28% between
automated and manual segmentations and 9% between automated
segmentations, for Hc. The computation of the average distance
(0.3 mm, 0.5 mm and 0.2 mm, respectively) shows that these
misclassified voxels tend to be located close to the Hc–Am
interface. The segmentation results were less accurate in the
anterior part of Am and the tail of Hc. A possible explanation is the
fuzziness of the anterior border of Am and noise blurring the
transition from body to tail for Hc. This ill-definition of the anterior
border of Am could also explain the higher sensitivity of the
segmentation to the definition of the anterior border of the ROI,
compared to the other borders.
Visually, our results for AD patients generally matched the
manual segmentation, with RV=9% and K1=84% for Hc. Indices
values for manual reproducibility were also less good than for
controls, reflecting the difficulty of segmenting atrophied struc-
tures. Atrophy characterisation showed very similar volumes for
manual and automated segmentations for controls. The same trend
was also found for the atrophy of Hc in AD patients. For Am,
automated volumes showed atrophy in all cases whereas manual
volumes showed a hypertrophy in some cases. This emphasised the
difficulty of the segmentation of Am on the available MRI scans.

Comparison with other methods

Regarding the manual gold standard, we noted that the protocol
for manual segmentation was not always described in published



Table 4
Quantitative indices for comparison between pairs of segmentations for P1–P8

Object Index A1
MC vs. M1

MC A2
MC vs. A1

MC A1
RM vs. A1

MC AnoAP
MC vs. M1

MC M1
RM vs. M1

MC

Hc RV (%) 9±7 (0–21) 6±8 (1–31) 7±8 (0–24) 66±31 (14–142) 8±5 (2–18)
K1 (%) 84±3 (78–88) 95±4 (82–100) 94±4 (86–100) 55±13 (27–74) 87±2 (83–89)
K2 (%) 72±4 (64–79) 92±8 (70–99) 89±8 (75–100) 39±13 (15–58) 76±3 (72–80)
FP (%) 12±4 (5–17) 5±7 (0–28) 6±7 (0–22) 47±18 (1–68) 15±3 (8–22)
FN (%) 16±5 (8–24) 4±4 (0–17) 5±5 (0–17) 14±19 (2–84) 8±3 (5–13)
MIV (%) 0.8±1.6 (0–6.3) 0.3±0.3 (0–1.1) 0.4±0.5 (0–1.4) 18±14 (0–36) 2.5±2.7 (0.5–10)
Dm (mm) 0.7±0.2 (0.4–1.2) 0.2±0.3 (0–1.1) 0.2±0.2 (0–0.6) 2.9±1.8 (1.1–8.9) 0.4±0.1 (0.2–0.6)
DM (mm) 6.5±2.4 (4.1–14) 2.5±1.6 (1–7.7) 2.6±1.2 (0–4.4) 13±4.5 (6.5–26) 3.7±1.2 (2–6.3)
D95 (mm) 6±2.3 (3.9–13) 2.3±1.3 (1–6.7) 2.4±1.1 (0–4.1) 12±4.6 (5.2–25) 3.2±1 (1.9–5.5)

Am RV (%) 15±13 (1–42) 12±12 (1–44) 21±18 (1–78) 97±80 (0–200) 13±8 (3–34)
K1 (%) 76±7 (60–87) 90±6 (76–98) 82±9 (57–90) 43±33 (0–83) 80±4 (72–85)
K2 (%) 62±9 (43–77) 82±9 (61–96) 70±11 (40–83) 32±27 (0–71) 67±6 (56–73)
FP (%) 17±10 (2–36) 9±10 (0–37) 19±13 (4–57) 12±15 (0–46) 21±6 (11–35)
FN (%) 21±8 (12–39) 9±7 (1–27) 10±10 (0–33) 55±39 (4–100) 12±5 (5–23)
MIV (%) 4±3.3 (0–10) 0.2±0.8 (0–3.1) 0.4±1 (0–3.5) 2.9±4.3 (0–12) 1±1.1 (0–3.8)
Dm (mm) 0.8±0.3 (0.4–1.3) 0.4±0.3 (0.1–1.1) 0.7±0.4 (0.3–2) 3.8±3.3 (0.5–10) 0.7±0.2 (0.5–1.1)
DM (mm) 4.5±0.9 (3.1–5.7) 2.6±0.9 (1.6–4.5) 3.8±1.2 (2.6–6.7) 9.3±4.5 (3.6–18) 4.3±1.1 (2.6–6.6)
D95 (mm) 4.2±0.8 (2.5–5.6) 2.4±0.8 (1.5–4.2) 3.6±1.1 (2.4–6) 8.6±4.2 (3.3–17) 3.7±1.1 (2.4–6.4)

Values=average±standard deviation (minimum–maximum).
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material and furthermore, in some studies, it consisted in the whole
Hc–Am complex (Ashton et al., 1997; Kelemen et al., 1999)
thereby making performance comparisons difficult. Previously
published results are summarised in Table 6, with indications on
quantitative indices and performances. Our results in young
controls were superior or comparable to previously published
studies. Similar values were reported for Hc in Hogan et al. (2000),
but, as noted previously, this method required a preliminary
manual placement of 28 landmarks and a computation time of 2 h.
In Shen et al. (2002), the overlap appears to be slightly better, but
the method required the preliminary manual placement of 50
landmarks. Two other methods dealt with the segmentation of both
structures. The values reported in Fischl et al. (2002) were slightly
inferior for Hc and substantially inferior for Am. Finally, the
overlap values obtained by Duchesne et al. (2002) were inferior for
both Hc and Am, but no volume error estimates were given; an
overlap value of K1=80% was reported for Hc (N=28) in
Klemenčič et al. (2004), with an improved version of the method
reported by Duchesne. Some studies gave distance errors only
(Yang et al., 2004; Pitiot et al., 2004), but these were difficult to
compare with our results as they were based on surfaces and not
voxel-regions, and the definition of distance differs from between
surface points to between border voxel centres.

Note that, with regard to inter-rater reproducibility for manual
segmentation in healthy controls, our results compare favourably to
those reported by Hogan et al. (2000) and Shen et al. (2002) for
Table 5
Quantitative indices on subparts of both structures for the accuracy for P1–P8

Index Hc head Hc body

RV (%) 19±11 (2–39) 18±10 (1–33)
K1 (%) 82±7 (67–92) 88±4 (81–93)
K2 (%) 69±10 (51–86) 78±6 (68–87)
FP (%) 10±4 (3–20) 19±7 (7–30)
FN (%) 21±11 (5–37) 3±2 (1–9)
DM (mm) 4.6±1.8 (1.9–8.5) 3.2±1.1 (1.9–6)
D95 (mm) 4.3±1.7 (1.9–8) 2.9±1 (1.9–6)

Values=average±standard deviation (minimum–maximum).
Hc. Inter-rater reproducibility of the automated segmentation was
only studied in Hogan et al. (2000) for Hc, and the values we report
in this study were slightly better.

Of the segmentation methods constrained by shape priors, only
the method of Hogan et al. (2000) was evaluated on patients (Hsu
et al., 2002) based on volumetry. Comparisons between automated
and manual segmentations were not reported because the protocols
used to define the atlas and the manual gold standards differed.
Nonetheless, the agreement between automated and manual
segmentation for Hc in 5 schizophrenic patients was: RV=9%
and K1=74% (Haller et al., 1997); in 5 MTLE patients with mono-
lateral Hc sclerosis, it was: RV=11% and K1=75% (Hogan et al.,
2000).

Validation data on the segmentation of Hc in AD patients are
limited and difficult to compare because of the differences in
atrophy. In Carmichael et al. (2005), a comparative analysis of
several atlas-based segmentations was proposed on three cohorts:
20 AD patients, 19 MCI and 15 healthy subjects. The performance
of one fully deformable, three semi-deformable and three affine
methods, with MNI, Harvard or cohort atlases, was evaluated by
comparing manual and automated segmentation results. The best
performance was obtained with the fully deformable method with a
cohort-based atlas: K2~60% for all subjects (better in healthy and
MCI subjects than AD patients). In Crum et al. (2001), the warping
of manually segmented structures onto repeat scans (average
18 months inter-scan) was compared to manual segmentation in 15
Hc tail Am anterior Am posterior

22±14 (1–57) 26±17 (2–66) 20±16 (2–45)
82±6 (68–91) 77±8 (56–86) 75±8 (59–89)
69±8 (52–83) 63±10 (39–76) 61±11 (42–81)
7±4 (3–19) 22±14 (1–54) 12±9 (3–34)

23±10 (8–46) 15±11 (3–38) 27±9 (8–39)
5.2±3 (1.9–14) 3.8±1 (2.1–5.6) 4.2±0.9 (2.5–5.7)
5±2.9 (1.8–13) 3.6±1 (2.1–5.6) 4±0.8 (2.5–5.3)



Fig. 8. Characterisation of landmark detection for P1–P8: (a) global improvement vs. global quality of AnoAP
MC ; (b) total number of landmarks and number of

landmarks not detected in the final iteration (minimal, average and maximal value at each iteration of the deformation of A1
MC); (c) size of the final likelihood

zones A1
MC, with correct and incorrect classification compared to M 1

MC.
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controls and 12 AD patients with the following results: RV=1%,
K2=90%,2 and 5 subjects amongst the 27 had RV>5% and
K2<85%.
Methodological and data issues

The use of data acquired in a purely clinical context, therefore
potentially sub-optimal compared to research data, is particularly
2 The definition of K2 utilised is unconventional.
interesting to test the algorithm’s robustness. The choice of the
different sequences used here was mainly dictated by previously
defined protocols. We also wanted to test the algorithm on data
acquired according to more recent protocols, for which larger data
sets were available. Some of the scans were discarded due to large
motion artefacts that rendered them un-interpretable.

Coronal orientation is usually preferred when studying Hc
because the internal intricate details of Hc are better seen, and
scans may even be acquired already reformatted perpendicular to
the long axis of Hc (Hasboun et al., 1996). Scans in our data set
were mainly acquired in the axial plane commonly used in non-Hc-



Table 6
Summary comparison of our findings with previously published methods for automated segmentation of Hc and Am

A/M A/A M/M Sample
size

Cpu time Manual
interaction

Qualitative
evaluation

Manual
protocol

RV K1 Hm RV K1 Hm RV K1 Hm

Chupin H 7 84 0.5 4 95 0.2 7 90 0.3 32 <1 min Hc+Am Low Correct Precise
A 12 81 0.7 8 92 0.3 10 85 0.5

Hogan H 6 83 5 94 10 81 5 2 h Hc Medium Correct Precise
A

Schen H 6 88 3 86 20 High Smooth Precise
A

Fischl H 10 80 15 80 14 30 min Unclear
A 15 65 25 75

Duchesne H 68 60 20 min Low Unclear Precise
A 63

Yang H 1.8 12 1 h per object Unclear Unclear
A 1.6

Pitiot H 2.1 20 6 min, 4 objects High Unclear Precise
A

A/M: accuracy.
A/A: inter-observer automated reproducibility.
M/M: inter-observer manual reproducibility.
Sample size: number of structures of each kind in the evaluation.
Cpu time: computation time.
Manual interaction: importance of the manual input in the method.
Qualitative evaluation: aspect of the 3D renderings or overlap slices.
Manual protocol: description of the protocol used in the manual segmentation to create the reference.
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specific clinical routine, because it covers the whole brain with
nearly isotropic voxels with good resolution and reduced scanning
time. The alveus at the interface between Hc and Am is less blurred
by partial volume effect on axial scans, which makes the automated
discrimination between Hc and Am more robust in 3D.

The parameters used in themethodwere first tuned on S1–S4 and
the radiometric parameters were refined on S5–S8 and P1–P8. In
order to evaluate the influence of parameter tuning on the results and
the applicability of the method on ‘new’ (i.e. non tuning) data sets,
accuracy results are given in Table 7 for S1–S8 and S9–S16 only and
for P1–P4 and P5–P8, showing that the values obtained for new data
sets are similar to those obtained for the tuning data sets.

For controls, the worst result was obtained for S9, which was
acquired with different acquisition parameters, with 1.5 mm axial
slices and had the lowest CNR in the control group. Note that this
acquisition was also used for P1–P4. In quantitative results, the
systematic difference between Hc and Am could be explained
partly by the fact that Am, which is roughly half the size of Hc, has
blurred boundaries, and there was a significant pulsation artefact
across its anterior part in 10 subjects (Fig. 9).
Table 7
Influence of the training set for parameter setting: statistics on S1–S8 (“tuning s
quantitative indices for the accuracy

Index S1–S8 S9–S16

Hc RV (%) 7±4 (1–13) 7±5
K1 (%) 84±3 (80–89) 83±2
MIV (%) 1.1±0.9 (0–3.2) 1.2±1.2
DM (mm) 4.2±1.6 (2.5–9) 4.8±1.5

Am RV (%) 11±6 (2–21) 13±7
K1 (%) 83±3 (77–88) 80±5
MIV (%) 1.5±1.1 (0.4–3.7) 1.5±0.9
DM (mm) 3.5±0.5 (2.8–4.6) 4.3±1

Values=average±standard deviation (minimum–maximum).
For AD patients, the two largest RV values for Hc for A1
MC vs.

M1
MC were obtained for P2, for which the mean ROI grey matter

intensity was consistently higher than the mean brain grey matter
intensity, which was not the case for the other scans (except P7 left
hemisphere). This difference could be explained by the high level
of atrophy of the whole region and the under-representation of Hc
grey matter in the ROI histogram grey matter mode, resulting in an
incorrect estimation of the average intensity of the hippocampus.
Note that the largest RV values for Hc for A2

MC vs. A1
MC and A1

RM

vs. A1
MC were obtained for highly atrophic Hc (manual atrophy: 4.4

σHc
YHC and 4.2 σHc

YHC, respectively). The worst result, according to
the combination of indices, was obtained for P5, for which the
CNAR is the largest with a large amount of artefact. It can explain
propagation problems towards the tail of Hc and the high
variability of the segmentation for Am. Segmentation problems
at the interface region and distance errors larger than for controls
can be explained by the level of atrophy: when atrophy was severe,
the grey matter in the head of Hc was reduced to a one-voxel
ribbon against the white matter of the alveus and the parahippo-
campal gyrus (Fig. 10). Partial volume effect and noise made it
et”), S9–S16 (“test set”), P1–P4 (“tuning set”) and P5–P8 (“test set”) for

P1–P4 P5–P8

(0–14) 10±8 (0–21) 8±6 (0–15)
(78–88) 83±2 (78–84) 85±3 (80–88)
(0–3.7) 0±0.1 (0–0.3) 1.5±2 (0–6.3)
(3–7.8) 6±1.2 (4.9–8.5) 7±3.2 (4.1–14)
(1–27) 13±14 (1–42) 18±12 (1–35)
(69–85) 77±5 (71–87) 76±9 (60–86)
(0.3–3.8) 5.1±2.6 (0–8.9) 2.9±3.8 (0–10)
(2.9–6) 4.6±0.9 (3.1–5.7) 4.4±0.9 (3.1–5.4)



Fig. 9. Pulsation artefact in the anterior part of the amygdala (arrow) on an axial slice for S11.
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appear as a white matter thread on coronal slices, and the
propagation was disturbed. These errors were not reflected in the
volume measurement, since they concerned only a small number of
voxels, but were reflected in the distance measurements and in the
indices computed on the head of Hc.

The landmarks were correctly detected, except the parahippo-
campal gyrus points in the head of Hc; this was due to the internal
structure of Hc being occasionally visible, resulting in the
detection of white matter voxels inside Hc as landmarks. About
25% of the results showed notable false detections of these
landmarks in control scans, whereas only limited false detections
were present in patient scans. False detection did not occur for the
lower quality scans, as internal details were blurred. The impact of
detection errors on the final segmentation results was small. A
multi-scale approach could reduce sensitivity to spurious internal
details. More generally, the large variance observed for some
landmarks may be due to noise and partial volume effect.
Differences between controls and patients may come from
differences in voxel sizes, acquisition parameters and orientation,
and the level of atrophy (modification of the shape of the sulcus of
Hc). Regarding detection robustness, some landmarks detected at
the first stages of the growth could be detected otherwise or
rejected in later stages; this can be explained by spurious signal
inside Hc and Am due to internal sub-structures and noise. Note
that, due to the aspect of the Hc–Am interface, voxels erroneously
detected as landmarks for the parahippocampal gyrus medial to
Am at the beginning of the growth can be correctly detected later
as landmarks for the alveus at the interface; this process is less
likely to happen for AD patients because of the larger pool of CSF
at the interface.

A possible limitation of our method is the deterministic sub-
optimal algorithm (ICM) used to minimise the global energy, as
there is no certainty that a local minimum will not be encountered
during the deformations. Nevertheless, we found the search of the
solution space with an ICM algorithm to be efficient and it was
previously shown to be robust (Dubes et al., 1990). A stochastic
algorithm, such as the Simulated Annealing (SA) algorithm
(Geman and Geman, 1984) which would reduce the likelihood
of convergence to local minima, would be computationally
expensive (for an easier problem, namely a 64×64 2D image,
the computation time was 6 s with ICM and several hours with SA
on a Sun 4/280, as indicated in Dubes et al., 1990).
Fig. 10. Effect of the atrophy in the h
Another problem related to the ICM algorithm could arise from
the predefined sequential order in which voxel candidates were
considered for each ICM iteration. However, the results were on
average equivalent to those with the fixed sequential order when
voxel candidates were selected at random (see Table 8).
Furthermore, to preserve the topological characteristics of the
object, re-classification could only be considered for simple points
(see definition in section Alternate Deformations). This property
had to be checked for each ICM-iteration, as the objects were
continuously modified making it necessary to take into account the
current classification of all voxels.

Future work

The above considerations suggest that the quality of the results
largely reflected that of the data. The influence of MR sequence
parameters (TR, TE, TI, flip angle, acquisition matrix) on
segmentation performances could be investigated more system-
atically (Clark et al., 2006; Li and Mirowitz, 2004). Furthermore,
the necessity to use specific algorithmic parameters for AD
patients could be attributed to lower CNR, linked to differences in
the acquisition parameters or loss of contrast due to age. This
problem requires further consideration, and in particular the
investigation of optimal acquisition parameters suitable for clinical
use. In addition, radiometric parameter settings could be
automatically associated with specific pre-defined characteristics
of the brain intensity histogram.

A new way to determine intensity parameters is being
considered, in order to reduce sensitivity to ROI selection. Various
degrees of automation of the initialisation step are also under study.
A possibility would be to introduce probabilistic atlas-derived
knowledge, in order first to extract the ROI automatically and also
possibly to determine seeds from this atlas, and to assess the value of
this approach in a pathological context. Segmentation errors are
generally greater in the head and tail of the hippocampus and at the
anterior limit of the amygdala and therefore the use of more
landmarks is being investigated. Introducing a multi-scale Bayesian
formalism in landmark detection and constraint could allow more
flexibility in the process.

Finally, the accuracy of the algorithmwas evaluated by comparing
the automated segmentation with themanual one. However, the use of
manual segmentation as a reference would still require an evaluation
ead of Hc for two AD patients.



Table 8
Statistics (on S1–S16) for quantitative indices for the accuracy with fixed order, average result, and best and worst indices values for random order (voxel front
and voxel candidates) on 20 trials

Index Fixed Average random Best random Worst random

Hc RV (%) 7±4 (0–14) 8±4 (1–15) 6±4 (0–13) 11±6 (2–30)
K1 (%) 84±3 (78–89) 84±3 (78–89) 84±3 (80–89) 83±3 (75–88)
MIV (%) 1.1±1 (0–3.7) 1.2±1.1 (0–3.7) 0.8±0.8 (0–3.5) 1.7±1.4 (0–4.9)
DM (mm) 4.5±1.5 (2.5–9) 4.5±1.3 (2.4–8) 4±1 (2.1–6.5) 5.3±2.2 (3.1–14)

Am RV (%) 12±7 (1–27) 12±7 (1–28) 10±7 (0–25) 15±7 (2–30)
K1 (%) 81±4 (69–88) 81±5 (69–88) 82±4 (72–89) 80±5 (65–87)
MIV (%) 1.5±1 (0.3–3.8) 1.6±1 (0–3.8) 1.2±0.8 (0–3.6) 2.3±1.7 (0.4–6)
DM (mm) 3.9±0.9 (2.8–6) 3.9±0.9 (2.8–6) 3.7±0.8 (2.8–6) 4.2±1 (2.8–6.4)

Values=average±standard deviation (minimum–maximum).
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with histological comparison. This difficult problem is a limitation of
all MR-based segmentation of the hippocampus and amygdala and
remains to be properly addressed.
Conclusion

We have presented a new automated hippocampus and
amygdala MRI segmentation method. The competitive deforming
region algorithm was constrained by priors derived from anatomical
knowledge in the vicinity of landmarks that are automatically
detected in healthy and diseased subjects. The algorithm’s
performance in terms of quality, reproducibility and computation
time compared favourably to that of manual segmentation and other
automated methods.
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Appendix A. Landmark definitions and detection

The detection of the landmarks follows a hierarchical order,
defined in Fig. 11. The detection rules are detailed in the following
paragraphs. Each is given in the form: if {set of conditions} then
{set of actions}, in which all the conditions must be fulfilled. The
six intensity thresholds used in the rules are derived from the
automatically estimated average intensities and tolerances for Hc,
Am and the composite object HcAm. Their setting is given in
Appendix B, section B.5.

A.1. Alveus at the interface between Hc and Am

The alveus is a thin (~1 mm) white matter structure. Its anterior
part is between Hc and Am. To detect the location of the alveus at the
interface and use the complementary information that Am is superior
detecting the landmarks.
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and anterior to Hc, we compare the 2D neighbourhood pattern of the
voxel in the sagittal slice with the following pattern:

P sagittal interfaceðmÞ ¼
mAm mAm
mAm m mHc

mHc mHc

2
4

3
5: ð4Þ

For the determination of the unlikely or likely zones for Hc and
Am, the detection rules on the sagittal slice are:

if

card fmHcaOHcgz2 & card fmAmaOAmgz2

iðmÞz i alv
card fmAm ; with iðmAmÞV i alvg ¼ 3

8><
>:

9>=
>;;

then

mHcaZ LL
Am & mHcaZ HL

Hc

mAmaZ LL
Hc

maZ HL
Hc

8><
>:

9>=
>;:

ð5Þ

The intensity threshold ialv is derived from the characteristics
for Hc. Voxels vAm are not likely to belong to Am because of a
possible presence of CSF between the alveus and Am.

A.2. Temporal horn of the lateral ventricle between Hc and Am

The temporal horn of the lateral ventricle (THLV) at the
interface appears as a dark CSF zone between Hc and Am; again,
complementary information is deduced from the anatomical
position of Am, superior and anterior to Hc. Psagittal_interface is
used. When considering this interface, the corresponding detection
rules become:

if
card fmHcaOHcgz2 & card fmAmaOAmgz2

iðmÞV iTHLV

� �
;

then

mHcaZ LL
Am

mAmaZ LL
Hc

maZ LL
Hc & maZ LL

Am

8><
>:

9>=
>;:

ð6Þ

When considering Hc, the detection rules are:

if
card fmHcaOHcgz2 & card fmAmaOHcgV1

iðmÞV iTHLV

� �
;

then

mHcaZ LL
Am

mAmaZ LL
Hc

maZ LL
Hc & maZ LL

Am

8><
>:

9>=
>;:

ð7Þ

When considering Am, the detection rules are:

if
card fmAmaOAmgz2 & card fmHcaOAmgV1

iðmÞV iTHLV

� �

then

mHcaZ LL
Am

mAmaZ LL
Hc

mHcaZ LL
Hc & maZ LL

Am

8><
>:

9>=
>;:

ð8Þ

The intensity threshold iTHLV is derived from the characteristics
for HcAm.
A.3. Alveus superior to Hc

The alveus also appears on the superior border of Hc. The 2D
pattern is defined on sagittal slices:

Psagittal superiorðmÞ ¼
m� m�

m
m* mþ mþ

2
4

3
5; ð9Þ

and the detection rules are:

if

cardfmþaOHc;m*aOHcg ¼ 3& cardfm�aOHcg ¼ 0

iðmÞzialv
iðm�ÞVialv & jiðm�Þ � iðmÞjzralv

8><
>:

9>=
>;;

then

m�aZ LL
Hc

mþaZ HL
Hc

maZ HL
Hc

8><
>:

9>=
>;:

ð10Þ

The intensity tolerance σalv is derived from the characteristics
for Hc.

A.4. Alveus lateral to Hc

The alveus also appears on the lateral-superior border of Hc. The
2D pattern is defined on coronal slices (displayed for the right side of
the brain, in radiological convention; left side defined symmetrically):

Pcoronal lateral−superiorðmÞ ¼
m� m�

m� m mþ

mþ mþ

2
4

3
5; ð11Þ

and the detection rules are:

if

card fmþaOHcgz2 & card fm�aOHcg ¼ 0

iðmÞzialv
jiðm�Þ � iðmÞjzralv

8><
>:

9>=
>;;

then

m�aZ LL
Hc

mþaZ HL
Hc

maZ HL
Hc

8><
>:

9>=
>;:

(12)

A.5. Sulcus of Hc

The sulcus of Hc has variable size and shape in normal and
diseased population. It appears on sagittal slices as a thin CSF
space in the head of Hc, roughly oriented in an anterio-posterior
direction. The 2D pattern is defined on sagittal slices:

Psagittal middleðmÞ ¼
mP

mA m mP

mA

2
4

3
5; ð13Þ

and the detection rules are:

if

iðmÞV i sulcus
cardfmA; with mAgOHc & iðmAÞV isulcusgz1

cardfmP; with mPgOHc & iðmPÞV isulcusgz1

8><
>:

9>=
>;;

then

maZ LL
Hc

8mP; if fiðmPÞV isulcusg; then fmPaZ LL
Hc g

8mA; iffiðmAÞV i sulcusg; then fmAaZ LL
Hc g

8><
>:

9>=
>;:

ð14Þ
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The intensity threshold isulcus is derived from the characteristics
for HcAm.

A.6. Parahippocampal gyrus medial to Hc or Am

The parahippocampal gyrus white matter appears partly as a
white structure on the medial-inferior border of Hc and Am. The
2D pattern is defined on coronal slices (displayed for the right
side of the brain, in radiological convention; left side defined
symmetrically):

Pcoronal medial−inferiorðmÞ ¼
mþ mþ

mþ m m�

m� m� m�

2
4

3
5; ð15Þ

and the detection rules are, for Hc:

if

card fmþaOHcg ¼ 3 & card fm�aOHcg ¼ 0

iðmÞz iGPH
card fiðm�Þz iGPHgz1

8><
>:

9>=
>;;

then

m�aZ LL
Hc

m�aZ LL
Am

maZ LL
Hc

8><
>:

9>=
>;:

ð16Þ

and for Am:

if

card fmþaOAmg ¼ 3 & card fm�aOAmg ¼ 0

iðmÞz iGPH
card fiðm�Þz iGPHgz1

8><
>:

9>=
>;;

then
m�aZ LL

Am

m�aZ LL
Am

( )
:

ð17Þ

The intensity threshold iGPH is derived from the characteristics
for HcAm.
A.7. Parahippocampal gyrus lateral to Hc or Am

The parahippocampal gyrus white matter also appears as a
white structure on the lateral-inferior border of Hc and Am. The
2D pattern is defined on coronal slices (displayed for the right
side of the brain, in radiological convention; left side defined
symmetrically):

Pcoronal lateral−inferiorðmÞ ¼
mþ mþ

m� m mþ

m� m� m�

2
4

3
5; ð18Þ

and the detection rules are, for Hc:

if

card fmþaOHcg ¼ 3 & card fm�aOHcg ¼ 0

iðmÞz iGPH
card fiðm�ÞziðmGPHgz1

8><
>:

9>=
>;;

then

m�aZ LL
Hc

m�aZ LL
Am

maZ LL
Hc

8><
>:

9>=
>;:

ð19Þ
and for Am:

if

card fmþaOAmg ¼ 3 & card fm�aOAmg ¼ 0

iðmÞz iGPH
card fiðm�Þz iGPHgz1

8><
>:

9>=
>;;

then
m�aZ LL

Am

m�aZ LL
Am

( )
:

ð20Þ

A.8. Temporal lobe isthmus for Am

The isthmus is a white matter bridge on the lateral-superior
border of Am. Pcoronal_lateral-superior is used. The detection rules are:

if
cardfmþaOHcg ¼ 3 & cardfm�aOHcg ¼ 0

iðmÞz i isthmus

� �
;

then
m�aZ LL

Am

maZ LL
Am

( )
:

ð21Þ

The intensity threshold i isthmus is derived from the character-
istics for HcAm.

A.9. Low likelihood zones propagation

ZHc
LL and ZAm

LL are grown amongst candidate voxels following
rules that were used to create them, except for the sulcus of Hc,
for which no propagation was considered. ZHc

HL could not be
propagated in the same way, due to the convex shape of Hc. The
propagation followed the following hierarchical order: alveus at
the interface, alveus superior to Hc, the four parahippocampal
gyrus landmarks together, alveus lateral to Hc (when considering
the Hc front) or isthmus (when considering the Am front), and
THLV.

Appendix B. Energy functional

B.1. Global data attachment term

The term for the objects O, EO
G (v), is based on global

characteristics of the structure’s intensity distribution. The intensity
value at voxel v, i(v), is compared with ĩO, the average intensity
value of O, with σO

G a standard deviation characterising the
intensity range around ĩO. The energy term for BGHcAm is defined
to exclude the intensities of both Hc and Am, defined as a single
object OHcAm; intensity and tolerance for OHcAm are the average of
those for OHc and OAm. Therefore:

EG
O mð Þ ¼ iðmÞ � ĩO

rG
O

� �2

EG
BGHcAm

mð Þ ¼ 1

EG
O HcAm

þ e

;

8>>><
>>>:

ð22Þ

with e << 1
r G
O

� �2
introduced to ensure numerical stability when

i(v)= ĩO.
Fig. 12 illustrates the effect of data attachment terms on a

schematic drawing. The desired segmentation is delineated on the



Fig. 12. Segmentation of a 2D simulation image, showing the influence of the data attachment terms on the result of the segmentation: (a) ground truth, (b)
segmentation with EG alone, (c) segmentation with EG and EL without truncation, and (d) segmentation with EG and EL with truncation.
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sample image Fig. 12a. In Fig. 12b, the segmentation using EG

only is shown.
B.2. Local data attachment term

Using the local intensity properties of the 26-neighbourhood
of the current voxel, EL enables the detection of voxels creating
high intensity gradients with O and avoids their addition to O.
Low and high gradient patterns are defined with respect to σO

L, a
local intensity range around îO(v), the local average intensity
value of O (average of the intensity values of O-labelled
neighbours of v).

The result of incorporating EG and EL into the global energy
function is illustrated in Fig. 12. To reduce the bias towards lower
gradients, EO

L is truncated to restrict its effect to intensity values
within the local intensity range, îO(v)±σO

L. The effect of the
truncated EO

L is illustrated in Fig. 12d. The local data attachment
term are thus defined as:

if ji mð Þ � iˆO mð ÞjzrL
O;E

L
O mð Þ ¼ iðmÞ � iˆOðmÞ

rL
O

� �2

; else; E L
O mð Þ ¼1

E L
BGHcAm

mð Þ ¼ 1

E L
O HcAm

þ e

:

8>>><
>>>:

ð23Þ

The difference i(v)− îO(v) is a first order approximation of the
local intensity gradient at v.

B.3. Regularisation term

The third term is a Markovian regularisation term, modelling
local classification continuity between the voxel and its neighbours
in 26-connectivity, to minimise voxel wires and holes in the
segmented object. It emerges from the Ising regularisation scheme
(Geman and Geman, 1984; Dubes et al., 1990). It is locally
expressed as the comparison of the number of O-labelled
neighbours of v, NO(v), and a standard number of neighbours Ñ
characterising regularity, with σI a standard deviation around Ñ. To
penalise the most irregular configurations, a non-linear function is
used:

E I
O mð Þ ¼ Ñ � gOðmÞdNOðmÞ

rI

� �5

: ð24Þ
γO is introduced to influence the classification process in
the likely (γO=2) and unlikely (γO=0.5) meta-regions defined
with respect to the sets of anatomical priors (otherwise,
γO=1).

NOHc
(v) is computed in an anisotropic way, in order to model

the curved shape of Hc. As the seed is placed in the middle of
the head of Hc (HHc), the deformations roughly follows a
rostro-caudal propagation towards the tail of Hc (THc) and
caudo-rostral propagation towards the anterior tip of HHc. It has
been observed that, during deformations, the current voxel v
should be classified in OHc to ensure a correct propagation when
some of its voxel neighbours are already classified in OHc. This
observation allows the definition of systematic patterns in
coronal orientation (symmetrically for right and left hemispheres)
characterising correct propagation in THc and HHc. For
propagation towards THc, the coronal neighbourhood pattern
for the right-hand side of the brain (in radiological conventions)
is made of four points in the coronal slice anterior to the current
voxel v:

P 4
THcðmÞ ¼ mHc mHc

mHc mHc

2
4

3
5

anterior

m

2
4

3
5

current

2
4

3
5

posterior

: ð25Þ

For propagation towards HHc, the coronal neighbourhood
pattern for the right-hand side of the brain (in radiological
conventions) is made of three points (two in the coronal slice
posterior to v, and one in the same coronal slice as v):

P 3
HHcðmÞ ¼

2
4

3
5

anterior

m mHc

2
4

3
5

current

mHc mHc

2
4

3
5

posterior

: ð26Þ

When one of these patterns is detected in the 26-neighbour-
hood of the current voxel v, v is more likely to belong to OHc.
NOHc

(v) is modified to increase the weight of the neighbours in
the patterns:

N anisotropic
OHc

ðmÞ ¼ N isotropic
OHc

ðmÞ þ aTHcddOHcðP 4
THcðmÞÞ

þ aHHcddOHcðP 3
HHcðmÞÞ; ð27Þ

where δO is the characteristic function of O for each pattern
(δO(P)=card(P) when all the voxels in the set P are classified in
O and 0 otherwise), and αTHc and αHHc, two parameters adjusting
the anisotropic effect.
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B.4. Surface and volume terms

These two terms are introduced to prevent O from growing
when the volume (number of voxels in O, VO(v)) and surface
(number of surface voxels of O, SO(v)) reach unrealistically
large values above given thresholds (VO* and SO*). These terms
should not influence the deformation process while volume and
surface are under their associated thresholds. Since these
geometric characteristics are meaningless for BGHcAm, a pressure
term is used instead (θ positive value) to favour growth; this
pressure term influences re-classification of voxel candidates
otherwise undecided and prevents unsatisfactory behaviours
when the objects O stop growing because of a slight local
minimum.

if VO mð Þ < V*O ; E
V
O mð Þ ¼ 0; else; EV

O mð Þ ¼ VOðmÞ � V*O
rV
O

 !2

EV
BGHcAm

ðmÞ ¼ h

;

8><
>:

ð28Þ
and

if SO mð Þ < S*O ;E
S
O mð Þ ¼ 0; else; E S

O mð Þ ¼ SOðmÞ � S*O
rSO

 !2

ES
BGHcAm

ðmÞ ¼ h

;

8><
>:

ð29Þ

with σO
V (or σO

S ) a standard deviation characterising volume (or
surface) range.
B.5. Parameter setting

The value of the 13 parameters used in the energy functional
was either calculated automatically or fixed in the program as
described in Table 9.
B.5.1. Radiometric parameters
Mean intensity values, ĩO, and intensity ranges, σO

G and σO
L, are

related to the scan properties and therefore computed from the data
using sequence dependant factors. They were derived from the
mean intensity and standard deviation of grey matter on the ROI
(GM and σGM); these were automatically retrieved from a histogram
analysis on the ROI. For Hc, the mean intensity was empirically set
at ĩHc=0.95.ĩGM. Our observation showed that Hc was to be
Table 9
Settings of the parameters used in the energy functional

Parameter σG ĩ σL ε σL αTHc

Setting PSC/PSS PSC PSC/PSS PSF PSF PSF/PS
Hc – – – 0.001 2 1, 2 or
Am – – – 0.001 2

PSS=sequence dependant.
PSC=computed in the program.
PSF=fixed in the program.
PSL=derived from the literature.
considered slightly brighter than Am to ensure correct competition.
To force this difference between the two average intensity values,
ĩAm=0.9.ĩGM.

For Hc, the global intensity range was empirically set at
σHc
G =2σGM for controls’ scans and σHc

G =2.5σGM for patients’
scans. For Am, it was empirically set at σAm

G =1.4σGM. The local
intensity range, σL, was set to σO

L =0.4σO
G for the controls’ scans

and σO
L =0.5σO

G for the patients’ scans; this ratio was inferred from
the fact that the local intensity characterisation had to be more
acute than the global one. The difference between sequence-
dependant factors came from contrast decrease in patients’ scans,
which were of lesser quality.

Intensity thresholds for the detection of landmarks were empiri-
cally derived from ĩHc and ĩAm: ialv= ĩHc+0.4σHc

G , σalv=0.4σHc
G ,

iTHLV= ĩHcAm−1.5σHcAm
G , isulcus = ĩHcAm−σHcAm

G , iGPH= ĩHcAm+
0.7σHcAm

G and iisthmus= ĩHcAm+σHcAm
G .

B.5.2. Geometric parameters
Ising parameters were derived from geometrical considerations

on the 26-neighbourhood (Ñ and σI). Ñ was set as half the
neighbourhood size. The standard deviation σI was set to 2 to
avoid irregularities such as wires (high risk if v was included but
had less than 10 neighbours) or holes (high risk if v was excluded
but had more than 16 neighbours). The two parameters adjusting
anisotropic regularisation for Hc appeared to be sensitive to
noise, and thus to be sequence-dependent and were tuned
accordingly. Note that for P7 the anisotropy parameters were
adapted on the left-hand side to compensate for low contrast and
high noise.

Surface and volume terms were necessary to prevent the objects
from growing further than reasonable sizes. Thresholds, VO* and
SO*, and ranges, σO

V and σO
S , were thus set to control the relative

influence of EV and ES in the energy functional. VO* and SO* values
were derived from average values obtained from manual segmen-
tations of a sample of young controls; we checked that volume
averages corresponded to the values given in the literature, with
equivalent manual protocols (Pruessner et al., 2000), but there was
no data available for the surface values. Ranges were set large
enough to allow variations larger than the typical inter-individual
variability. Thus, the constraint derived from the thresholds would
influence the deformation process when VO≥VO*+σO

V and SO≥SO*+
σO
S , high above average values. These terms were not modified for

patient data, so that the algorithm could be used without knowing
the diagnostic. The enlargement of the Hc sulcus was likely to
modify the ratio volume/surface, but this did not influence the
segmentation performance. The parameter θ was set to a small
value; the pressure force was efficient only in cases for which the
classification was unresolved by the other energy terms.
αHHc Ñ V* σV S* σS θ

S PSF/PSS PSF PSL PSL PSL PSL PSF
3 0 or 2 13 2750 700 1950 500 0.1

13 1250 600 900 450 0.1
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Appendix C. Manual segmentation protocol

The cornu amonis, the dentate gyrus, the alveus, the fimbria, and the part of the subiculum directly inferior to the cornu amoniswere included
in Hc. The medial limit was geometrically derived from the fimbria. If this structure was not visible on a slice, we used the junction between the
lateral curved part and the medial flat part of the subiculum, as it appeared on coronal slices. The most anterior and posterior coronal slices were
given by the alveus and the disappearance of grey matter under the crus fornicis, respectively.

As for Am, the superior limit was determined following the endorhinal sulcus. The medial limit, when not entirely defined by the white
matter of the uncal and entorhinal gyri, was drawn by prolonging it. The lateral limit was given by the white matter of the isthmus. The
posterior limit was defined by the alveus, and the most anterior coronal slice was found by scrolling backward until a grey matter mass
appeared in the white matter of the uncal gyrus, with reference to sagittal slices.

Appendix D. Segmentation quality indices

They compare the segmentation result Seg with the gold standard Ref. Nine indices were used to quantify the accuracy of the method and
facilitate comparison with published values (Gerig et al., 2001).

RV is the relative error on volume; it compares volumes for segmented object OSeg and reference object ORef, relatively to the average of
both:

RV O Seg;ORef
� 	 ¼ 2

jVO Seg � VO Ref j
VO Seg þ VO Ref

: ð30Þ

The optimal value for this index is 0%. Five measures are then used to quantify the number of properly classified voxels. The first two
characterise overlap between OSeg and ORef; they correspond to two ways in which the similarity index can be computed. K1 is written:

K1 OSeg;ORef
� 	 ¼ 2

VO Seg\O Ref

VO Seg þ VO Seg
: ð31Þ

This index, largely used in the literature, characterises the number of properly classified voxels, without taking into account the number of
ill-classified voxels. It is thus less discriminative than K2:

K2 OSeg;ORef
� 	 ¼ VO Seg\O Ref

VO Seg[O Ref
: ð32Þ

The optimal value for both indices is 100%. The numbers of false positives, FP, and false negatives, FN, are computed here relatively to
the number of voxels labelled as OSeg or ORef:

FP OSeg;ORef
� 	 ¼ VO Seg � VO Seg[O Ref

VO Seg\O Ref
; ð33Þ

FN O Seg;ORef
� 	 ¼ VO Ref � VO Seg\O Ref

VO Seg[O Ref
ð34Þ

Both are optimal when equal to 0%. They can be related to the overlap index through:

FPðOSeg;ORef Þ þ FNðOSeg;ORef Þ ¼ 1� K2ðOSeg;ORef Þ ð35Þ
Finally, we introduce a new index, called Misclassified Interface Voxels (MIV), which quantifies the number of voxels labelled as O1 in

the segmentation and as O2 in the reference:

MIV OSeg
1 ;ORef

1 ;ORef
2

� �
¼ 2

VO Seg
1 \O Ref

2

VO Seg
1

þ VO Ref
1

: ð36Þ

Its optimal value is 0%.
In order to estimate the sensitivity of these indices, one can compute them for simple deformations of a manual segmentation of Hc and

Am. Let ORef+T be ORef translated by a vector T. If T=(1,1,1), the values of the overlap ratios were: for Hc, K1(O
Ref +T, ORef)=64% and

K2(O
Ref +T, ORef)=47%; for Am, K1(O

Ref +T, ORef)=71% and K2(O
Ref +T, ORef)=55%; for the misclassified interface voxels, for Hc, MIV

(ORef−T, ORef)=7.7% and for Am, MIV(ORef +T, ORef)=16.4%. Let ORef.M be ORef morphologically eroded (M=E) or dilated (M=D)
with a 1-voxel element. The values of the error on volume were: for Hc, RV(ORef.E, ORef)=36% and RV(ORef.D, ORef)=29%; for Am,
RV(ORef.E, ORef)=44% and RV(ORef.D, ORef)=34%.

The local behaviour on the boundary can be characterised by its surface voxels (defined as the voxels of O with at least one 26-neighbour
outside of O). The distance between the centre of the surface voxels of OSeg and those of ORef is considered in three ways. First, the average
symmetric distance on the whole boundary, Dm, is computed:

DmðOSeg;ORef Þ ¼ max½hðOSeg;ORef Þ;hðORef ;OSegÞ�; ð37Þ
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with

h A;Bð Þ ¼ 1
NA

X
aaA

d a;Bð Þ:

Second, the maximum of the symmetric distance (Hausdorff distance), DM, is considered:

DMðOSeg;ORef Þ ¼ max½HðO Seg;ORef Þ;HðORef ;OSegÞ�; ð38Þ
with

HðA;BÞ ¼ max
aaA

½dða;BÞ�; ð39Þ

with d the Euclidian distance.
Finally, the last index is used to discard sporadic errors, by considering the distance which explains the 95 percentile of DM, and it was

called D95. All distances are expressed in millimetres.
A composite index, GCQ, is defined which synthesises the various information brought by the above indices. GCQ is a combination of

global quality indexes, GQ(O,Seg), built from four quantitative indices, for Hc and Am:

GQðO;SegÞ ¼ 100:ðRVðO Seg;ORef Þ þ 1� K1ðOSeg;ORef Þ þ 2:MIVðOSeg;ORef ÞÞ þ 5:DMðO Seg;ORef Þ
CGQðSegÞ ¼ 3:GQðOHc;SegÞ þ GQðOAm;SegÞ :

�
ð40Þ

The optimal value for this global index is 0.
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