Fundamenta Informaticae 41 (2001) 187-228 1
10S Press

The Watershed Transform: Definitions, Algorithms and
Parallelization Strategies

Jos B.T.M. Roerdink and Arnold Meijster
Institute for Mathematics and Computing Science
University of Groningen

P.O. Bozx 800, 9700 AV Groningen, The Netherlands
Email: roe@cs.rug.nl,a.meijster@re.rug.nl

Abstract. The watershed transform is the method of choice for image segmentation in the
field of mathematical morphology. We present a critical review of several definitions of the
watershed transform and the associated sequential algorithms, and discuss various issues
which often cause confusion in the literature. The need to distinguish between definition,
algorithm specification and algorithm implementation is pointed out. Various examples are
given which illustrate differences between watershed transforms based on different definitions
and/or implementations. The second part of the paper surveys approaches for parallel
implementation of sequential watershed algorithms.

Keywords: Mathematical morphology, watershed transform, watershed definition, se-
quential algorithms, parallel implementation.

1. Introduction

In grey scale mathematical morphology the watershed transform, originally proposed by Digabel
and Lantuéjoul [9,20] and later improved by Beucher and Lantuéjoul [4], is the method of choice
for image segmentation [5,46,52]. Generally spoken, image segmentation is the process of
isolating objects in the image from the background, i.e., partitioning the image into disjoint
regions, such that each region is homogeneous with respect to some property, such as grey value
or texture [18].

The watershed transform can be classified as a region-based segmentation approach. The
intuitive idea underlying this method comes from geography: it is that of a landscape or to-
pographic relief which is flooded by water, watersheds being the divide lines of the domains of
attraction of rain falling over the region [46]. An alternative approach is to imagine the landscape
being immersed in a lake, with holes pierced in local minima. Basins (also called ‘catchment

2 J.B.T.M. Roerdink and A. Meijster / The Watershed Transform

basins’) will fill up with water starting at these local minima, and, at points where water coming
from different basins would meet, dams are built. When the water level has reached the highest
peak in the landscape, the process is stopped. As a result, the landscape is partitioned into
regions or basins separated by dams, called watershed lines or simply watersheds.

When simulating this process for image segmentation, two approaches may be used: either
one first finds basins, then watersheds by taking a set complement; or one computes a complete
partition of the image into basins, and subsequently finds the watersheds by boundary detection.
To be more explicit, we will use the expression ‘watershed transform’ to denote a labelling of
the image, such that all points of a given catchment basin have the same unique label, and a
special label, distinct from all the labels of the catchment basins, is assigned to all points of the
watersheds. An example of a simple image with its watershed transform is given in Fig. 1(a-b).
We note in passing that in practice one often does not apply the watershed transform to the
original image, but to its (morphological) gradient [26]. This produces watersheds at the points
of grey value discontinuity, as is commonly desired in image segmentation.

One of the difficulties with this intuitive concept is that it leaves room for various formal-
izations. Different watershed definitions for continuous functions have been given, which will be
briefly reviewed in Section 3.1. However, our main interest here is in digital images, for which
there is even more freedom to define watersheds, since in the discrete case there is no unique
definition of the path a drop of water would follow. Many sequential algorithms have been de-
veloped to compute watershed transforms, see e.g. [26,51] for a survey. They can be divided into
two classes, one based on the specification of a recursive algorithm by Vincent & Soille [52], and
another based on distance functions by Meyer [25]. In the context of parallel implementations
there exists a notable tendency for introducing other definitions of the watershed transform,
enabling easier parallelization. Examples are presented in Section 5.

(a) (b) (c) (d)

Figure 1. Examples of watershed segmentation by immersion (see Definition 3.2). (a): synthetic
image; (b): watershed transform of (a); (c): natural image; (d): watershed transform of (c).
Different basins are indicated by distinct grey values.

The impression which the current literature on watershed algorithms makes upon the unini-
tiated reader can only be one of great confusion. Often it is uncertain exactly which definition
for the watershed transform is used. Sometimes the definition takes the form of the specification

J.B.T.M. Roerdink and A. Meijster / The Watershed Transform 3

of an algorithm. A careful distinction between algorithm specification and implementation is in
many cases lacking. Without such a separation, correctness assessment of proposed algorithms
is impossible. Even when a specification is given, the implementation often does not adhere
to it. Ad hoc modifications are made to eliminate ‘undesirable’ consequences of a watershed
definition, but such changes tend to create new problems by solving an old one. Or ‘optimiza-
tions’ are introduced, for greater speed or memory reduction, which in the process change the
outcome of the algorithm as well, although this may often go undetected in the case of natural
images. These questions are not purely academic, since the algorithm is widely used in e.g.
medical image processing where unwanted side effects should be avoided.

The purpose of this paper is twofold. In the first part we present a critical review of several
definitions of the watershed transform and the associated sequential algorithms, emphasizing
the distinction between definition, algorithm specification and algorithm implementation. The
second part of the paper surveys the main current approaches towards parallel implementation
of watershed algorithms. An essential difficulty lies in the fact that the watershed transform
is not a local concept. The decision whether a pixel belongs to a basin cannot be based on
purely local considerations. Another problem with some algorithms is that the result depends
on the order in which pixels are treated during execution. In the sequential case, this can
be resolved by fixing the scanning order (e.g. raster scan), so that a deterministic result is
obtained. In a parallel implementation this is no longer true since the outcome depends on the
relative time instants at which different processors treat the pixels, and this is unpredictable
in the case of asynchronous processors. The emphasis in the second part is on methodology
and trends in current research. We point out the difficulties in the design of parallel watershed
algorithms. Efficiency results are quoted to some extent in order to give the reader an idea of
what is currently achievable. However, an in-depth comparison of the large body of results which
have been obtained for different watershed algorithms on different architectures with different
programming methodologies is beyond the scope of this paper.

There are a number of issues concerning the watershed transform which are not discussed
explicitly. We mention a few of them. First, there is the question of accuracy of watershed
lines. Usually, one has in mind here that the result should be a close approximation of the
continuous case. That is, the digital distances playing a role in the watershed calculation should
approximate the Euclidean distance. Chamfer distances are an efficient way to achieve accurate
watershed lines [25]. Second, the watershed method in its original form produces a severe
oversegmentation of the image, i.e., many small basins are produced due to many local minima
in the input image, see Fig. 1(c-d). Several approaches exist to remedy this, such as markers
or hierarchical watersheds [3,26]; also parallellization of marker-based watershed algorithms
has been studied [27,31]. Third, we do not consider dedicated hardware architectures for fast
computation of watershed transforms and related operations, see e.g. [19,37]. Such architectures
tend to solve a very restricted class of image processing tasks, whereas our interest here is in
medium level image processing on general purpose (parallel) architectures.

The organization of this paper is as follows. In Section 2 some preliminaries are given.
Section 3 presents definitions of the watershed transform, both for the continuous and the
discrete case. Sequential watershed algorithms are reviewed in Section 4. Section 5 contains
a survey of parallelization strategies for the watershed transform. Conclusions are drawn in
Section 6.

4 J.B.T.M. Roerdink and A. Meijster / The Watershed Transform

2. Preliminaries

This section contains some background material on graphs (see e.g. [8]) and digital images.

2.1. Graphs

A graph G = (V, E) consists of a set V' of vertices (or nodes) and a set E C V x V of pairs
of vertices. In a (un)directed graph the set E consists of (un)ordered pairs (v, w). Instead of
‘directed graph’ we will also write digraph. An unordered pair (v, w) is called an edge, an ordered
pair (v,w) an arc. If e = (v, w) is an edge (arc), e is said to be incident with (or adjacent to) its
vertices v and w; conversely, v and w are called incident with e. We also call v and w neighbours.
The set of vertices which are neighbours of v is denoted by Ng(v). A path w of length ¢ in a
graph G = (V, E) from vertex p to vertex ¢ is a sequence of vertices (pg,p1, ... ,DPe—1,pe) such
that po = p, pe = q and (p;, piy1) € E Vi € [0,¢). The length of a path 7 is denoted by length().
A path is called simple if all its vertices are distinct. If there exists a path from a vertex p to a
vertex ¢, then we say that ¢ is reachable from p, denoted as p ~ q.

An undirected graph is connected if every vertex is reachable from every other vertex. A
graph G = (V' E') is called a subgraph of G = (V,E) if V! C V, E' C E, and the elements
of E' are incident with vertices from V' only. A connected component of a graph is a maximal
connected subgraph of G. The connected components partition the vertices of G.

In a digraph, a path (po,p1,...,pe—1,p¢) forms a cycle if pyg = py and the path contains at
least one edge. If all vertices of the cycle are distinct, we speak of a simple cycle. A self-loop is
a cycle of length 1. In an undirected graph, a path (pg,p1,... ,pe—1,pe) forms a cycle if pg = py
and pi,...,pe are distinct. A graph with no cycles is acyclic. A forest is an undirected acyclic
graph, a tree is a connected undirected acyclic graph. A directed acyclic graph is abbreviated
as DAG.

A weighted graph is a triple G = (V, E,w) where w : E — R is a weight function defined on
the edges. A wvalued graph is a triple G = (V, E, f) where f : V — R is a weight function defined
on the vertices. A level component at level h of a valued graph is a connected component of the
set of nodes v with the same value f(v) = h. The boundary of a level component P at level h
consists of all p € P which have neighbours with value different from h; the lower boundary of
P is the set of all p € P which have neighbours with value smaller than h; the interior of P
consists of all points of P which are not on the boundary. A descending path is a path along
which the value does not increase. By H# (p) we denote the set of all descending paths starting
in a node p and ending in some node ¢ with f(q) < f(p). A regional minimum (minimum, for
short) at level h is a level component P of which no points have neighbours with value lower
than h, i.e. Hj{(p) = () for all p € P. A valued graph is called lower complete when each node
which is not in a minimum has a neighbouring node of lower value.

2.2. Digital grids

A digital grid is a special kind of graph. Usually one works with the square grid D C Z?, where
the vertices are called pirels. When D is finite, the size of D is the number of points in D. The
set of pixels D can be endowed with a graph structure G = (V, E) by taking for V the domain D,

J.B.T.M. Roerdink and A. Meijster / The Watershed Transform 5

and for F a certain subset of Z? x Z? defining the connectivity. Usual choices are 4-connectivity,
i.e., each point has edges to its horizontal and vertical neighbours, or §-connectivity where a
point is connected to its horizontal, vertical and diagonal neighbours. Connected components
of a set of pixels are defined by applying the definition for graphs.

Distances between neighbouring nodes in a digital grid are introduced by associating a non-
negative weight d(p, ¢) to each edge (p, ¢). In this way a weighted graph is obtained. The distance
d(p, q) between non-neighbouring pixels p and ¢ is defined as the minimum path length among
all paths from p to ¢ (this depends on the graph structure of the grid, i.e., the connectivity).

2.3. Digital images

A digital grey scale image is a triple G = (D, E, f), where (D, E) is a graph (usually a digital
grid) and f : D — N is a function assigning an integer value to each p € D. A binary image
f takes only two values, say 1 (‘foreground’) and 0 (‘background’). For p € D, f(p) is called
the grey value or altitude (considering f as a topographic relief). For the range of a grey scale
image one often takes the set of integers from 0 to 255, but we do not make this assumption in
this paper. A plateau or flat zone of grey value h is a level component of the image, considered
as a valued graph, i.e., a connected component of pixels of constant grey value h. The threshold
set of f at level h is

T, ={peD| f(p) <h}. (2.1)

2.4. Geodesic distance

Let A C &, with £ = R? or & = Z%, and a,b two points in A. The geodesic distance d(a,b)
between a and b within A is the minimum path length among all paths within A from a to b
(in the continuous case, read ‘infimum’ instead of ‘minimum’). If B is a subset of A, define
da(a, B) = MINpep(da(a,b)). Let B C A be partitioned in k connected components B;,i =
1,..., k. The geodesic influence zone of the set B; within A is defined as

iza(Bi) ={pe A|Vje[1.k]\{i} : da(p, B;) < da(p, Bj)}
Let B C A. The set IZ4(B) is the union of the geodesic influence zones of the connected
components of B, i.e.,

k

1ZA(B) = | Jiza(By)
=1

The complement of the set IZ4(B) within A is called the SKIZ (skeleton by influence zones):
SKIZ4(B) = A\IZ(B)

So the SKIZ consists of all points which are equidistant (in the sense of the geodesic distance)
to at least two nearest connected components (for digital grids, there may be no such points).
For a binary image f with domain A, the SKIZ can be defined by identifying B with the set of
foreground pixels.

6 J.B.T.M. Roerdink and A. Meijster / The Watershed Transform

3. Definitions of the watershed transform

In this section we introduce definitions of the watershed transform, which may be viewed as a
generalization of the skeleton by influence zones (SKIZ) to grey value images. We start with
the continuous case, followed by two definitions for the digital case, the algorithmic definition by
Vincent & Soille [52], and the definition by topographical distance by Meyer [25]. A discussion
of algorithms is postponed until Section 4.

3.1. Watershed definition: continuous case

A watershed definition for the continuous case can be based on distance functions. Depending
on the distance function used one may arrive at different definitions. We restrict ourselves here
to the one given in [25,36], but other choices have been proposed as well [39].

Assume that the image f is an element of the space C(D) of real twice continuously differen-
tiable functions on a connected domain D with only isolated critical points (the class of Morse
functions on D forms an example [17,35]). Then the topographical distance between points p
and ¢ in D is defined by

7y(p.0) = int [VS0 ds.
Y

where the infimum is over all paths (smooth curves) 7 inside D with v(0) = p, v(1) = ¢.
The topographical distance between a point p € D and a set A C D is defined as T¢(p, A) =
MINgea Tr(p,a). The path with shortest Ty-distance between p and ¢ is a path of steepest slope.
This motivates the following rigorous definition of the watershed transform.

Definition 3.1. (Watershed transform) Let f € C(D) have minima {my}rer, for some in-
dex set I. The catchment basin CB(m;) of a minimum m; is defined as the set of points x € D
which are topographically closer to m; than to any other regional minimum m;:

CB(m;) = {w € D |Vj € I\{i} : f(my) + Ty, my) < flmy) + Ty(x.m;)}
The watershed of f is the set of points which do not belong to any catchment basin:
Wshed(f) = DN (U CB(mZ»)) : (3.1)
i€l

Let W be some label, W ¢ I. The watershed transform of f is a mapping A : D — I U{W},
such that A\(p) =i if p € CB(m;), and X(p) = W if p € Wshed(f).

So the watershed transform of f assigns labels to the points of D, such that (i) different catch-
ment basins are uniquely labelled, and (ii) a special label W is assigned to all points of the
watershed of f.

J.B.T.M. Roerdink and A. Meijster / The Watershed Transform 7

3.2. Watershed definitions: discrete case

A problem which arises for digital images is the occurrence of plateaus, i.e., regions of constant
grey value, which may extend over large image areas. Such plateaus form a difficulty when
trying to extend the continuous watershed definition based on topographical distances to discrete
images. This nonlocal effect is also a major obstacle for parallel implementation of watershed
algorithms, see Section 5.

The next algorithmic definition automatically takes care of plateaus, because it computes
a watershed transform level by level, where each level constitutes a binary image for which a
SKIZ is computed.

7165 |4 B/ B|B|B B/ B|B/B|] IWW|B|B B/ B|B|B
8[54 |3 B/B|B|B B/ B|B/B|] IWW|B|B A|B|B|B
914|132 W|B|B|B W|W|B|B A|W|B|B A|lA|B|B
0(3|2]1 A|W|B|B AIW|B|B A|lA|B|B A|lA|B|B
(a) original (b) 4-conn. (c) 8-conn. (d) 4-conn. (e) 8-conn.

Figure 2. Watershed transform on the square grid, for different connectivity. (a): original image
(minima indicated in bold); (b-c): results according to immersion (Definition 3.2); (d)-(e):
results according to topographical distance (Definition 3.1, with 7 as defined in (3.5)).

3.2.1. Algorithmic definition by immersion

An algorithmic definition of the watershed transform by simulated immersion was given by
Vincent and Soille [51,52] (see also [46, Ch. XI, H.5] for the binary case). Let f: D — N be a
digital grey value image, with A, and hggee the minimum and maximum value of f. Define
a recursion with the grey level h increasing from A, t0 Rpaz, in which the basins associated
with the minima of f are successively expanded. Let X} denote the union of the set of basins
computed at level h. A connected component of the threshold set Tj 1 at level h + 1 (cf. (2.1))
can be either a new minimum, or an extension of a basin in Xj: in the latter case one computes
the geodesic influence zone of X} within 711 (cf. Section 2.4), resulting in an update Xp ;.
Let MINj denote the union of all regional minima at altitude h.

Definition 3.2. (Watershed by immersion) Define the following recursion:

{Xh,m = {PED[() = hmin} = Th, 52)

Xh+1 = MINp41 U IZTh+1(Xh)7 h e [hmmy hmaat)
The watershed Wshed(f) of f is the complement of Xy, .. in D:

Wshed(f) = D\ Xp,,,.

8 J.B.T.M. Roerdink and A. Meijster / The Watershed Transform

For an example of the watershed transform according to the above recurrence, see Fig. 2(a-c), in
which A and B are labels of basins, and W is used to denote watershed pixels (in this and other
figures to follow, minima pixels in the input image are indicated in bold). Note the dependence
on the connectivity.

212 31212 2|2 B|/B| [B|B|B
1 w B|B| |w|[B|B

0 B W[B w/B| [Alw]B
(a) (b) h =0 () h=1 (d) h =2 (e) h=3

Figure 3. Watershed transform by immersion on the 4-connected grid, showing relabelling of
‘watershed’ pixels. (a): Original image; (b-e): labelling steps based on (3.2).

According to the recursion (3.2), it is the case that at level h + 1 all non-basin pixels (i.e.
all pixels in Tj,11 except those in X},) are potential candidates to get assigned to a catchment
basin in step h + 1. Therefore, the definition allows that pixels with grey value h’ < h which
are not yet part of a basin after processing level h, are merged with some basin at the higher
level h 4+ 1. Pixels which in a given iteration are equidistant to at least two nearest basins
may be provisionally labelled as ‘watershed pixels’ by assigning them the label W (we will refer
to such pixels as W-pixels). However, in the next iteration this label may change again. A
definitive labelling as watershed pixel can only happen after all levels have been processed. An
example [42] is given in Fig. 3, for a 3 x 3 discrete image on the square grid with 4-connectivity.
There are two local minima (the zeroes), so there will be two basins whose pixels are labelled
A, B. The labelling according to (3.2) is shown in Fig. 3(b)-(e). This shows the phenomenon of
relabelling of W-pixels: the pixel in the second row, second column, is first labelled W, then B.

The algorithm presented by Vincent & Soille in [52] as an implementation of (3.2) in fact
does not adhere to this definition, see Section 4.1 below.

3.2.2. Watershed definition by topographical distance

We follow here the presentation in [25]. Let f be a digital grey value image. Initially, we assume
that f is lower complete, that is, each pixel which is not in a minimum has a neighbour of lower
grey value [26]. This assumption will be relaxed later.

The lower slope LS(p) of f at a pixel p, is defined as the maximal slope linking p to any of
its neighbours of lower altitude. Formally,

- f(p) — f(g)
LStr) = qENl\c/:[aﬁ{p} (d(p, q) > 7 (33)

where N¢(p) is the set of neighbours of pixel p on the grid G = (V, E'), and d(p, q) is the distance
associated to edge (p,q) (for ¢ = p the expression following the MAX-operator in (3.3) is defined
to be zero). Note that for pixels whose neighbours are all of higher grey value, the lower slope

J.B.T.M. Roerdink and A. Meijster / The Watershed Transform 9

is zero. The cost for walking from pixel p to a neighbouring pixel ¢ is defined as

LS(p) - d(p, q) if f(p) > f(q)
cost(p,q) = ¢ LS(q) - d(p,q) if f(p) < f(q)
5(LS(p) + LS(q)) - d(p,q) if f(p) = f(q)

f(p

Definition 3.3. The set of lower neighbours q of p for which the slope (f(p) — f(q))/d(p,q) is
maximal, i.e. equals the value LS(p), is denoted by T'(p). The set of pizels q for which p € T'(q)
is denoted by I'~1(p).

(3.4)

The topographical distance along a path ™ = (po, ... ,pe) between py = p and py = ¢ is defined

as
{—1

1% (p,q) = Z d(pi, pi+1) cost(pi; pi+1)-
i=0
The topographical distance between p and q is the minimum of the topographical distances along
all paths between p and ¢:
Ti(p,q) = MIN T7 , 3.5

r(p,q) Lo T (p.q) (3.5)
where the set of all paths from p to ¢ is denoted by [p ~~ ¢]. The topographical distance between
a point p € D and a set A C D is defined as T¢(p, A) = MINgeca T¥(p, a).

We call (po,p1,...,pn) & path of steepest descent from py = p to p, = ¢ if pi+1 € I'(p;) for
each i =0,... ,n — 1. A pixel ¢ is said to belong to the downstream of p if there exists a path
of steepest descent from p to g. A pixel ¢ is said to belong to the upstream of p if p belongs to
the downstream of ¢.

The topographical distance has the following property, on which the watershed definition
crucially depends.

Proposition 3.1. Let f(p) > f(q). A path w from p to q is of steepest descent if and only if
TF(p,q) = f(p) — f(q). If a path m from p to q is not of steepest descent, TF (p,q) > f(p) — f(q).
This proposition implies that paths of steepest descent are the geodesics (shortest paths) of the
topographical distance function. With the introduction of the topographical distance for digital
images, the definition of catchment basins and watersheds is the same as for the continuous case,
cf. Definition 3.1.

It is a consequence of Proposition 3.1 that C'B(m;) is the set of points in the upstream of
a single minimum m;. The watershed consists of the points p which are in the upstream of at
least two minima, i.e., there are at least two paths of steepest descent starting from p which
lead to different minima. Also, the following corollary is obvious.

Corollary 3.1. Any pizel in the upstream of a watershed pizel is itself a watershed pixel.

An example of the watershed transform according to topographical distance is given in Fig. 2(d-
e). Note that the result differs from that obtained by immersion according to Definition 3.2. A
consequence of Definition 3.1 in the digital case is the occurrence of thick watersheds, meaning
that the watershed pixels do not form one-pixel thick lines but extended areas. An example
for the case of 4-connectivity is given in Fig. 4. The result according to simulated immersion is
given for comparison; although thick watersheds also occur for this watershed definition, they
tend to be less pronounced.

10 J.B.T.M. Roerdink and A. Meijster / The Watershed Transform

5/4/3/2|3|4]|5 WIWIW|BIWWW| (WB|B|B|B|B|W
413121234 WIW|WIB|WWW |AWB|B|B/W|C
312110123 W W|W|B|WWW |AAWB|W|C|C
211]0(1]0]1/2 AlAJAW|C|C|C AlAJAIW|C|C|C
31211(0|1|2(3 Wi W|W|D | WWW |AAWD W C|C
413121234 WIWIWIDWWW |AWD|D|ID W|C
5432|345 WiwWw D WWW| (WD D D|D|D|W
(a) (b) ()

Figure 4. Watershed transform on the square grid with 4-connectivity, showing thick watersheds.
(a): original image; (b): result according to topographical distance (Definition 3.1, with T} as
defined in (3.5)); (c¢): result according to immersion (Definition 3.2).

Remark. A distance transform [43] on a digital grid (with unit distance values on the edges)
of a binary image b produces a grey value image f whose cost function equals 1 on every edge
outside the minima of f. The watershed of f therefore equals the SKIZ of b [25]. O

Next we consider images which are not lower complete.

Plateau problem

Problems arise when we try to extend the above approach to images which are not lower com-
plete. In such images non-minima plateaus with nonempty interior occur. When we directly
apply the above definitions, the topographical distance between interior pixels of a plateau
turns out to be identically zero. Therefore an additional ordering relation between such pixels
is required. The usual solution is to compute geodesic distances to the lower boundary of the
plateau. This can be formalized by first transforming the image to a lower complete image, to
which the definitions above then can be applied.

Recall that H# (p) is the set of all descending paths starting in a pixel p and ending in some
pixel ¢ with f(q) < f(p), and length(7) is the length of a path .

Definition 3.4. (Lower completion) Let f be a digital grey value image with domain D.
Define the function d: D — N by

1T () —
d(p) = { 0 Zfo(p)—Q)

MINWGH}(p)Iength(W) otherwise

Let L. = max,ep d(p). Then the lower completion frc of f is defined by

fre(p) = { L, f(i) +d(p)—1 othefwise

J.B.T.M. Roerdink and A. Meijster / The Watershed Transform 11

(a) (b) (c)

Figure 5. Image (a), lower distance image (b) and lower complete image (c).

The process of lower completion transforms the image f into a lower complete image frc.
An example is given in Fig. 5. The function d has the value zero for minima pixels, and for
all other pixels p, d(p) equals the length of the shortest path from p to the set of pixels with
grey value lower than that of p. We will refer to d(p) as the lower distance of p. If f is already
lower complete, then frc = f. An algorithm for lower completion is given in the next section
(Algorithm 4.5).

By lower completion, we can define an order relation C between pixels:

rCy <= fro(@) < fre(y). (3.6)

After lower completion, the function Ty~ with f* = frc is a proper distance function on D’ x D',
where D’ equals the domain D from which the minima are excluded.

The particular form of the lower slope and cost function was devised to ensure that steepest
descent paths would realize the smallest topographical distance. The mapping I'(p) can be used
to define a directed graph by arrowing [5,25] as follows.

Definition 3.5. Let G = (V, E, f) be a digital grey value image. The lower complete graph
G' = (V, E') is defined as follows. For points p having a lower neighbour,

(p,p) € E' <= p' €T(p) (3.7)
On the interior of plateaus, an arc is created from p to p’ if the geodesic distance to the lower
boundary of the plateau is greater for p than for p', i.e. if p' C p.
The lower complete graph is acyclic (a DAG).

Definition 3.6. (Watershed transform by topographical distance)

Let f be a grey value image, with f* = fro the lower completion of f. Let (m;);er be the
collection of minima of f. The basin CB(m;) of f corresponding to a minimum m; is defined
as the basin of the lower completion of f:

CB(m;) ={p € D [Vj e I\{i} : f*(mq) + Tp-(p,mi) < f*(my) + Ty~ (p, my)}, (3.8)
and the watershed of f is defined as in (3.1).

12 J.B.T.M. Roerdink and A. Meijster / The Watershed Transform

So, basically we define the watershed transform by topographical distance of an arbitrary
digital grey value image as the watershed transform of its lower completion.

16|15(14|13|12(13| |A|A|A|A|C|C
14|13|12|11|10|11| |A|A[A|A|C|C
15114113198 |9 AlAIAIA|C|C
1123|7638 AlAJAJA|C|C
0|7(5/4|5|0 AlA|IA|B|C|C
(a) (b)
16/15(14/13|12(13| |[B|B|B|B|W|W
14|13|12/11(10(11| ([B|B|B|B |W|W
15114113198 |9 AlA|A|BIWW
12 7 8 A|lA|/A|B|W|C
0 50|50 A|lA|B|B|W|C

(c) (d)

Figure 6. Watershed transform according to topographical distance on the square grid with
4-connectivity, showing effect of lowering minima. (a): original image; (b): watershed labelling
of (a); (¢): image (a) with all minima set to zero. (d): watershed labelling of (c).

In practice, algorithms to compute the watershed transform for images with plateaus often
do not explicitly carry out the lower completion step, but assign plateau pixels to basins in
another way. This is the case for algorithms based on so-called ordered queues. As a cautionary
note we would like to point out that such algorithmic solutions lead to results which may differ
to varying degree from the result of Definition 3.6, depending on the precise implementation.
This will be discussed in more detail in Section 4.2.

Lowering the minima values. Meyer states in [25] that the watershed lines will not change
if one replaces the values of all minima of f by the value of the deepest one. This statement is
correct for Definition 3.2 of the watershed transform based on immersion, as is easy to verify.
But for the definition based on topographical distance this property does in fact not hold, as
already observed in [50]. An example illustrating this is given in Fig. 6, where there are three
minima, two with value 0 and one with value 4. Replacing the value 4 by 0 does change the
result. Even more, the effect of lowering the value of this single minimum pixel propagates in
a global way through the entire image (the image can be enlarged arbitrarily with the effect
propagating accordingly).

‘Isolated’ regions. When computing the watershed transform, regions in the image may
arise which are completely surrounded by watershed pixels. An example is given in Fig. 7. The

J.B.T.M. Roerdink and A. Meijster / The Watershed Transform 13

center pixel with value 2 has four watershed neighbours, therefore is watershed pixel. In some
implementations of watershed transforms by topographical distance, such regions may in fact
become temporarily or permanently ‘isolated’, see [12,50]. This is a defect of the particular
implementation, since, according to Corollary 3.1, watershed pixels should be propagated. Such
‘problems’ are often solved by ad hoc modifications of the implementation, which still do not
correctly implement the definition.

010 AlW|B
1121 W|2|W
010 C|w|D
(a) original (b) labelled

Figure 7. Watershed according to topographical distance (4-connectivity). (a): original image;
(b): Output after labelling pixels with grey values 0 and 1.

3.2.3. Watersheds based on a local condition

Several watershed algorithms exist which do not construct watershed pixels, but instead assign
to each pixel the label of some minimum, so that the set of basins tessellates the image plane.
Various motivations for such an approach can be given. First of all, ‘watershed lines’ may in fact
comprise large areas (thick watersheds), see Fig. 4, although the use of a higher connectivity
alleviates the problem. Next, some implementations of the watershed transform by topographical
distance have problems with isolated regions caused by watershed pixels, see above. Another
reason is efficiency, since a correct determination of watershed pixels generally requires more
computation time and memory.

An explicit definition of a watershed transform based on topographical distance which does
not construct watershed lines was given by Bieniek et al. [6,7], by introducing a local condition.

Definition 3.7. For any image without plateaus, a function L assigning a label to each pizel is
called o watershed segmentation if:

1. L(m;) # L(mj) Vi # j, with {my}rer the set of minima of f;
2. for each pizel p with T'(p) # 0, Ip’ € T'(p) with L(p) = L(p').

Here the condition I'(p) # () means that p has at least one lower neighbour (cf. Definition 3.3).
The new element is that for a given input image, many labellings exist which qualify as a
watershed segmentation. Pixels which would have been labelled as watershed points according
to Definition 3.6, are now merged by random choice with a basin belonging to some minimum
my. For an example, see Fig. 8.

The meaning of ‘locality’ in this definition is that one may subdivide an image in blocks, do a
labelling of basins in each block independently, and make the results globally consistent in a final
merging step. Such increased locality is very advantageous for parallel implementation of the

14 J.B.T.M. Roerdink and A. Meijster / The Watershed Transform

watershed transform, which is exactly the context in which this local condition was proposed.
Note however that locality should not be misinterpreted as saying that the watershed transform
now has become a purely local operation: in the merging step, basins in local blocks have to
be made consistent, and the resulting global basins can again extend over large regions of the
image (for a fuller discussion, see Section 5.2.3).

5(4|5 WIWIW| |[A|AA B|B|B
4134 WIWIW| |A|A]A B|B|B
6126 A|IW|B A|lA|B A|B|B
0/1/0 AlW|B AlA|B A|B|B

(a)

—~
=5
-
—
g
-
—
(o8
=

Figure 8. Watershed transform on the 4-connected square grid. (a): original image; (b): result
according to topographical distance (Definition 3.6); (c-d): two watershed labellings consistent
with the local condition (Definition 3.7).

For an input image which would contain watershed pixels according to Definition 3.6, the
output of a watershed algorithm based on Definition 3.7 is no longer deterministic, but will
depend on the order in which pixels are treated during execution of the algorithm. Whereas
in the sequential case a deterministic result can be obtained by fixing the scanning order (e.g.
raster scan), this is no longer true for parallel implementation, since in that case the outcome
depends on the relative time instants at which different processors treat the pixels, and this
is unpredictable in the case of asynchronous processors. Therefore, in principle considerable
differences among watershed labellings computed in different runs of the same algorithm may
occur, although the effect may be small for natural images.

4. Sequential watershed algorithms

Generally spoken, existing watershed algorithms either simulate the flooding process, or directly
detect the watershed points. In some implementations, one computes basins which touch, i.e.,
no watershed pixels are generated at all.

4.1. Watershed algorithms by immersion
4.1.1. Vincent-Soille algorithm

An implementation of the watershed transform of Definition 3.2 was presented by Vincent &
Soille [52]. Since we want to discuss this implementation in some detail, we reproduce their
algorithm here in pseudocode, see Algorithm 4.1. In this algorithm there are two steps: (i)
sorting the pixels w.r.t. increasing grey value, for direct access to pixels at a certain grey level; (ii)
a flooding step, proceeding level by level and starting from the minima. The implementation uses
a FIFO queue of pixels, that is, a first-in-first-out data structure on which the following operations

J.B.T.M. Roerdink and A. Meijster / The Watershed Transform 15

can be performed: fifo_add(p, queue) adds pixel p at the end of the queue, fifo_remove(queue)
returns and removes the first element of the queue, fifo_init(queue) initializes an empty queue,
and fifo_empty(queue) is a test which returns true if the queue is empty and false otherwise.

The algorithm assigns a distinct label lab] | to each minimum and its associated basin by
iteratively flooding the graph using a breadth-first algorithm [8], as follows. In the flooding
step, all nodes with grey level h are first given the label MASK. Then those nodes which have
labelled neighbours from the previous iteration are inserted in the queue, and from these pixels
geodesic influence zones are propagated inside the set of masked pixels. If a pixel is adjacent
to two or more different basins, it is marked as a watershed node by the label WSHED. If the
pixel can only be reached from nodes which have the same label, the node is merged with the
corresponding basin. Pixels which at the end still have the value MASK belong to a set of new
minima at level h, whose connected components get a new label. As shown in [52], the time
complexity of Algorithm 4.1 is linear in the number of pixels of the input image.

Algorithm 4.1 Vincent-Soille watershed algorithm [52].

1: procedure Watershed-by-Immersion
2: INPUT: digital grey scale image G = (D, E,im).
3: OUTPUT: labelled watershed image lab on D.
4: Ftdefine INIT — 1 (*xinitial value of lab image *)
5: #define MASK — 2 (* initial value at each level x)
6: #define WSHED 0 (xlabel of the watershed pixels *)
7: #define FICTITIOUS (—1,—1) (* fictitious pixel & D)
8: curlab«—0 (* curlab is the current label x)
9: fifo_init(queue)
10: for all p € D do
11: lablp] < INIT ; dist[p] <0 (xdist is a work image of distances x)
12: end for
13: SORT pixels in increasing order of grey values (minimum Ay, maximum Ay,qq)
14:
15: (x Start Flooding *)
16: for h = h,,in t0 Apmae do (* Geodesic SKIZ of level h — 1 inside level h %)
17: for all p € D with im[p] = h do (*mask all pixels at level h x)
18: (x these are directly accessible because of the sorting step *)
19: lablp] « MASK
20: if p has a neighbour ¢ with (lab[g] > 0 or lablg] = WSHED) then
21: (+ Initialize queue with neighbours at level h of current basins or watersheds *)
22: dist[p] <1 ; fifo_add(p, queue)
23: end if

24: end for
25: curdist — 1 ; fifo_add(FICTITIOUS, queue)

26: loop (x extend basins *)
27: p « fifo_remove(queue)

28: if p = FICcTITIOUS then

29: if fifo_empty(queue) then
30: BREAK

31: else

32: fifo_add (FICTITIOUS, queue) ; curdist «— curdist + 1 ;

16 J.B.T.M. Roerdink and A. Meijster / The Watershed Transform

33: p < fifo_remove(queue)

34: end if

35: end if

36: for all ¢ € Ng(p) do (xlabelling p by inspecting neighbours)
37: if dist[q] < curdist and (lablg] > O or lablg] = WSHED) then
38: (* ¢ belongs to an existing basin or to watersheds *)

39: if lablg] > 0 then

40: if lab[p] = MASK or lab[p] = WSHED then

41: lab[p] < lab|q]

42: else if lab[p] # lab[q] then

43: lablp] < WSHED

44: end if

45: else if lab[p| = MASK then

46: lab[p] + WSHED

47: end if

48: else if lablg] = MASK and dist[q] = 0 then (* g is plateau pixel)
49: dist|q] < curdist + 1 ; fifo_add(q, queue)

50: end if

51: end for

52: end loop

53: (xdetect and process new minima at level h x)

54: for all p € D with im[p] = h do

55: dist[p] <0 (xreset distance to zero)

56: if lab[p] = MASK then (*p is inside a new minimum)
57: curlab — curlab+1 ; (* create new label %)

58: fifo_add(p, queue) ; lablp] — curlab

59: while not fifo_empty(queue) do

60: q < fifo_remove(queue)

61: for all r € Ng(q) do (* inspect neighbours of ¢ *)
62: if lab[r] = MASK then

63: fifo_add(r, queue) ; lab[r] — curlab

64: end if

65: end for

66: end while

67: end if

68: end for

69: end for

70: (xEnd Flooding *)

The Vincent-Soille algorithm in fact does not implement the recursion (3.2), for the following
reasons (the line numbers mentioned refer to the pseudocode of Algorithm 4.1).

1. At level h only pixels with grey value h are masked for flooding (line 17), instead of
all non-basin pixels of level < h, as the definition would require (see the discussion in
Section 3.2.1).

2. Not only labels of catchment basins are propagated, but also labels of WSHED-pixels (line
20). The need for this is a consequence of the previous point. Since the algorithm tries
to classify pixels as WSHED-pixels at the current grey level, watershed labels have to be

J.B.T.M. Roerdink and A. Meijster / The Watershed Transform 17

propagated, because it may be the case that pixels with grey value h only have WSHED-
pixels in their neighbourhood.

3. A pixel which is adjacent to two different basins, and therefore initially gets labelled
WSHED, is allowed to be overwritten at the current grey level by the label of another
neighbouring pixel, if that pixel is part of a basin (lines 40-41). The motivation given
in [52] is that otherwise ‘deviated’ watershed lines may result. This statement is probably
based on an intuitive expectation for the case of functions in continuous space. From our
point of view, an assessment of the correctness of the implementation should be based
solely on agreement with the definition.

It is not very difficult to modify Algorithm 4.1 in order to implement the recursion (3.2)
exactly. In line 17 all pixels with im[p] < h have to be masked, the queue has to be initialized
with basin pixels only (drop the disjunct lablg] = WSHED in line 20), the resetting of distances
(line 55) has to be done in line 19, and the propagation rules in lines 36-51 have to be slightly
changed. Note, however, that the theoretical time complexity would change from linear to
quadratic in the number of pixels of the input image, due to repeated processing of ‘watershed’
pixels, although in practice the number of such pixels may actually be rather small.

@ (b) (©

Figure 9. (a) input image. (b) labelled level components. (c) components graph, with grey
values of the nodes indicated.

Remark. In [42] we tried to formalize what the Vincent-Soille algorithm computes by defining
a modified recursion as follows:

{Xhmm = {pe D| f(p) = hunin} (4.1)

Xh+1 = XU MINp 41 U (IZTthl (Xh)\Th), h e [hmim hmax)

The ‘\T}’ term in (4.1) was introduced to ensure that at level h + 1 only pixels with grey value
h + 1 are added to existing basins. In the example of Fig. 3, the pixel in the second row, second
column remains labelled as WSHED according to (4.1). However, also this modified recursion
does not always correctly represent the implementation of Algorithm 4.1: it is possible that a
catchment basin becomes disconnected by the ‘\7}’ term. In fact, we have been unable to find
a recursion which formalizes what actually is computed by Algorithm 4.1. O

18 J.B.T.M. Roerdink and A. Meijster / The Watershed Transform

4.1.2. Components graph algorithm

A straightforward parallel implementation of the Vincent-Soille algorithm is difficult when
plateaus occur. Therefore, an alternative approach was proposed in [21], in which the im-
age is first transformed to a directed valued graph with distinct neighbour values, called the
components graph of f. On this graph the watershed transform can be computed by a simplified
version of the Vincent-Soille algorithm, where FIFO queues are no longer necessary, since there
are no plateaus in the graph. The steps are as follows.

Algorithm 4.2 Watershed transform w.r.t. topographical distance based on image integration
via the Dijkstra-Moore shortest paths algorithm.
1: procedure ShortestPathWatershed;
INpPUT: lower complete digital grey scale image G = (V, E,im) with cost function cost.
OutpuT: labelled image lab on V.
#define WSHED 0 (xlabel of the watershed pixels x)
(x Uses distance image dist. On output, dist[v] = im|v], for all v € V. %)

for allv € V do (* Initialize *)

lab[v] <0 ; dist[v] « oo
end for
for all local minima m; do

for all v € m; do

lab[v] —i ; dist[v] < im[v] (* initialize distance with values of minima x)

end for
: end for
: while V # () do
u«— GetMinDist(V) (#find w € V with smallest distance value dist[u] *)
Ve V\{u}
for all v € V with (u,v) € E do

if distlu] + costlu,v] < dist[v] then

dist[v] < dist[u] + cost(u,v)

21: lablv] < labu]
22: else if lab[v] # WSHED and dist[u] + cost[u,v] = dist[v] and lab[v] # lab[u] then
23: lab[v] = WSHED
24: end if
25: end for
26: end while

D) = o s e s e e
SO X AIPTAERY 2O

1. Consider the input image as a valued graph (V, E, f), where f(p) denotes the grey value
of pixel p, p € V. Transform this to the components graph (V*, E*, f*) defined as follows.
All pixels of a level component C}, at level h are represented by a single node v € V*:
v={peVlpe Cy}, with f*(v) = h. A pair (v, w) of level components is an element of

E* if and only if 3(p € v,q € w: (p,q) € E N f(p) < f(q)), cf. Fig. 9.
. Compute the watershed transform of the directed graph.
3. Transform the labelled graph back to an image. Pixels corresponding to a watershed node

are coloured white, the other pixels black. This yields a binary image with plateaus repre-
senting watersheds of the original image. Thin watersheds can be obtained by computing
a skeleton of this image, for which different skeleton algorithms can be used.

[\V)

J.B.T.M. Roerdink and A. Meijster / The Watershed Transform 19

Algorithm 4.3 Watershed transform w.r.t. topographical distance by hill climbing.
: procedure Hill Climbing

INPUT: lower complete digital grey scale image (V, E,im).

OuTPUT: labelled image lab on V.

#define WSHED 0 (xlabel of the watershed pixels *)

LabelInit (* initialize image lab with distinct labels for minima *)
(x and special label MASK for all other pixels x)

S«—{p € V|3q € Ng(p) : im[p] # im|q]} (* interior pixels of minima excluded x)
while not empty(S) do

select point p € S with minimal grey value
11: remove p from S
12: forallge ' !(p)n S do (xlabel steepest upper neighbours of p *)
13: if lab[g] = MASK then

,_.
e

14: lablq] < lab[p]

15: else if lablq] # WSHED and lab[q] # lab[p] then
16: lablq] = WSHED

17: end if

18: end for
19: end while

4.2. 'Watershed algorithms by topographical distance

Several shortest paths algorithms for the watershed transform with respect to topographical
distance can be found in the literature [5,25,26].

Ordered algorithms. The nodes for which the shortest topographical distance is known
are ordered w.r.t. their distance. These methods are based upon the shortest paths algorithm
associated with the names of Dijkstra [10] and Moore [34].

a. integration: this algorithm is based on integration of the lower slope of the image, by
propagating distances starting from the regional minima. The distances are related to the lower
slope of the image through the cost function (3.4). On output, the distance value of a pixel p
equals f(p), where f is the input image. The pseudocode is given in Algorithm 4.2, which is
described in more detail in Section 4.2.2.

b. hill climbing: The geodesics between points of a basin and the corresponding minimum are
paths of steepest descent. This relation may be inverted as follows. Label all minima with
distinct labels. Starting from the boundary pixels of the minima, label all pixels ¢ in the set
I'~!(p) of all steepest upper neighbours of the current pixel p by the label of p, unless q is already
labelled and the label differs from that of p, in which case ¢ is classified as a watershed pixel.
The pseudocode is given in Algorithm 4.3, see Section 4.2.3 for details.

Unordered algorithms. The shortest path algorithm of Berge [2] assumes no order on the
treatment of pixels, so that classical raster scanning modes can be used. This algorithm can be
adapted for flooding from the minima and solving the eikonal equation [49]. The implementation
is based on an iterative algorithm [25] which integrates the lower slope of the input image, see

20 J.B.T.M. Roerdink and A. Meijster / The Watershed Transform

Algorithm 4.4. In [25] a variant is mentioned based on propagation of labelled pixels to steepest
upper neighbours, as in hill climbing.

Algorithm 4.4 Watershed transform w.r.t. topographical distance by sequential scanning based
on image integration.
1: procedure Sequential scanning
INPUT: lower complete image im on a digital grid G = (D, F) with cost function cost.
OuTpPUT: labelled image lab on D.
#define WSHED 0 (xlabel of the watershed pixels *)
(x Uses distance image dist. On output, dist[v] = im[v], for all v € D. %)

for all v € D do (* Initialize *)
lab[v] <0 ; dist[v] « o0
end for
for all local minima m; do
for all v € m; do
lab[v] 1 ; dist[v] — im[v] (xinitialize distance with values of minima x)
end for
: end for
: stable < true (* stable is a boolean variable %)
: repeat
for all pixels u in forward raster scan order do
Propagate (u)
end for
for all pixels v in backward raster scan order do
Propagate (u)
end for
: until stable

I I R R I N B e S S e e
A N e T A A S A ol el

: procedure Propagate (u)

: for all v € Ng(u) in the future (w.r.t. scan order) of u do

27 if distlu] + cost[u,v] < dist[v] then

28: dist|v] « dist[u] + cost(u,v)

29: lab[v] < lablu]

30: stable — false

31: else if lab[v] # WSHED and dist[u] + cost[u,v] = dist[v] and lab[v] # lablu] then
32: lab[v] = WSHED

[N}
(=2}

33: stable « false
34: end if
35: end for

In [25] slightly different versions of the above algorithms are presented which do not produce
watershed labels (lines 21-22 in Algorithm 4.2, lines 14-15 in Algorithm 4.3 and lines 30-32 in
Algorithm 4.4 are omitted), and therefore are not exact implementations of Definition 3.6. All
pixels are merged with some basin, so that, dependent on the order in which pixels are treated,
different results may be produced. Unfortunately, a discussion of this point is missing in [25].
In fact, those algorithms are in agreement with the local definition of the watershed transform,
as discussed in Section 3.2.3.

J.B.T.M. Roerdink and A. Meijster / The Watershed Transform

21

Algorithm 4.5 Algorithm for lower completion using a FIFO queue.
1: procedure LowerCompletion
2: INPUT: digital grey scale image G = (D, E,im).
3: OUTPUT: lower complete image G’ = (D, E, lc).
4:
5: fifo_init(queue)
6: for all p € D do (* Initialize queue with pixels that have a lower neighbour)
7. le[p] <0
8: if p has a lower neighbour then
9: fifo_add(p, queue)
10: le[p] — —1
11: end if
12: end for
13: dist—1 (x dist is an integer variable %)
14: fifo_add(FICTITIOUS, queue) (*xinsert fictitious pixel *)
15: while not fifo_empty(queue) do
16: p< fifo_remove(queue)
17: if p = FICTITIOUS then
18: if not fifo_empty(queue) then
19: fifo_add (FICTITIOUS, queue)
20: dist «—dist + 1
21: end if
22: else
23: lelp] < dist
24: for all g € Ng(p) with (im[g] = im[p] and Ic[¢] = 0) do
25: fifo_add(q, queue)
26: lefg) — —1 (*to prevent from queueing twice)
27: end for
28: end if
29: end while
30:
31: for all p € D do (* Put the lower complete values in the output image *)
32: if le[p] # 0 then
33: le[p] = dist - im[p] + le[p] — 1
34: else
35: lelp] = dist - im]p]
36: end if
37: end for

22 J.B.T.M. Roerdink and A. Meijster / The Watershed Transform

To solve the plateau problem, the image may first be made lower complete. This can be
done by a linear-time breadth-first algorithm using a FIFO queue [8] to propagate distances, cf.
Algorithm 4.5. In the case of the ordered algorithms, an alternative to lower completion as
preprocessing is to use ordered queues. This will be discussed in more detail below. But first
we consider the initial step which is necessary in these algorithms, i.e., detection of the minima.

4.2.1. Minima detection

Usually a flooding algorithm based on FIFO queues is used for minima detection [22,29, 32].
However, the UNION-FIND algorithm for implementing disjoint sets [48], see also [8,47], can be
used for computing connected components, and therefore for minima detection, as well. In
practice the UNION-FIND algorithm outperforms the flooding algorithm.

Algorithm 4.6 Computing level components by breadth-first search using a FIFO queue.

1: procedure Level Components
2: INPUT: digital grey scale image G = (V, E,im).
3: OUTPUT: image lab on V| with labelled level components.
4: #define INIT — 1 (*initial value of lab image *)
5:
6: for all p € D do
7 lab[p] « INIT
8: end for
9: curlab+—1 (* curlab is the current label x)
10: fifo_init(queue)
11:
12: for all p € V' with lab[p| = INIT do

13: lab[p] < curlab
14: fifo_add(p, queue)
15: while not fifo_empty(queue) do

16: s« fifo_remove(queue)

17: for all ¢ € Ng(s) with im[s] = im[q] do
18: if lab[q] = INIT then

19: lablq] < curladb

20: fifo_add(q, queue)

21: end if

22: end for

23: end while
24: curlab <« curlab+1
25: end for

FIFO algorithm. Standard ‘flooding’ (breadth-first) implementations use a FIFO queue to
find the level components, i.e. the connected components of pixels of constant grey value, cf. Al-
gorithm 4.6. For each component a pixel is stored in an empty FIFO queue, followed by a flooding
process which runs until the queue is empty. The flooding process consists of removing a pixel
from the queue, and inserting into the queue its neighbours with the same grey value that have
not been labelled yet. The time complexity is linear in the number of edges of the graph. In

J.B.T.M. Roerdink and A. Meijster / The Watershed Transform 23

practice, the image is a graph with a fixed connectivity k, so that the complexity of the algorithm
is linear in the number of pixels of the image. We cannot construct an algorithm with a better
time complexity. However, the minimally required size of the queue is not known in advance,
and memory is addressed in a very unstructured manner, causing performance degradation on
virtual memory and especially on parallel computers, since it requires a lot of synchronization.

&

¥l
5'1
/ I‘.".

2] [

A

4

fi N
4 [5] I

Figure 10. Disjoint set forest of sets of integers {1,2,3,4,5}, {6}, {7,8,9}.

|

-

S

Y
hY
[9]

E"‘H

)

UNION-FIND algorithm. In the UNION-FIND algorithm, disjoint sets are stored in trees,
forming a disjoint-set forest, in which each node p is pointing to its parent parent[p]; Fig. 10
gives an example where sets of integers are stored. A node p of a tree is called the root of the
tree if parent[p] = p. For each tree, the root is chosen as the representative of the set stored in
the tree.

If two sets are merged (united), it is sufficient to change the root of one of the trees such
that it points to the root of the other tree. To prevent the height of the tree from increasing too
drastically, resulting in longer search times to find representatives, path compression is applied.
This means that not only the root, but all nodes on the path from an arbitrary node p to the
root, are set to point directly to the root. By this technique the length of paths to roots rarely
exceeds 3 in practical cases.

In [47] Tarjan uses a second technique, called union by rank, to prevent the height of the trees
from growing too drastically as well, keeping the resulting tree reasonably balanced when merging
two trees. In [47] it is shown that the time complexity of the algorithm using both techniques,
for an input of size N, is O(Na(N, N)), where a(N, N) is the inverse of the Ackermann function,
whose value is smaller than 5 if N is of the order 10%Y. So, in practice, this algorithm can be
regarded to run in linear time with respect to its input. When using the algorithm for computing
connected components in images, it turns out that only the path compression technique really
pays off, and therefore the ranking technique is omitted.

Using the disjoint-set technique, the labelling of connected components can easily be per-
formed in a scan-line fashion, cf. Algorithm 4.7. In this case, the nodes of the trees are pix-
els. Let < denote the lexicographical order between pixels. E.g., in a 2-D image with pixels
p=(i,7),q = (k,1), p < q denotes that (i < k)V((i =k)A(j <l));also,p <¢=(p<qVp=q).
In the scan-line algorithm, pixels are visited in lexicographical order. Let pg denote the first
pixel, and curpix the current pixel, during scanning. Then the following order on the array
parent is maintained: V(p : po = p =X curpiz : pg =< parent[p] =< p). Since this order prevents
cycles, we can iteratively evaluate parent to find the root of the tree containing p, denoted by

24 J.B.T.M. Roerdink and A. Meijster / The Watershed Transform

FindRoot (p).

Let p be the current pixel. If p has no neighbours ¢ (with ¢ < p) with the same image
value, a new set is created by setting parent[p] to p. If there exist neighbouring pixels ¢ (with
g < p) that have the same grey value as p, the representatives of these neighbours are computed
and the (lexicographically) smallest of them is chosen as the representative of the union of the
sets containing these neighbours. Then the paths of these neighbours are compressed using
PathCompress(), and p is merged with this set. In a second pass through the input image, the
output image lab is created. All root pixels get a distinct label; for any other pixel p its path is
compressed, making explicit use of the order imposed on parent (see line 29 in Algorithm 4.7),
and p gets the label of its representative.

This algorithm can be used for the computation of connected components in images of any
dimension, size and connectivity, in contrast to the algorithm of Rosenfeld-Pfaltz [44], which
works only for 2-dimensional images using 4-connectivity. The same restriction holds for the
UNION-FIND algorithm in [14] which performs in exact linear time by post-processing each scan
line. Also an in-situ variation of the algorithm is possible in which the array parent has been
removed. In this case the image lab plays the role of output image and parent array at the same
time.

We now resume our discussion of watershed algorithms based on topographical distance.

4.2.2. Image integration by the Dijkstra-Moore shortest paths algorithm.

Given a directed weighted graph G = (V, E,w), with w : E — N a nonnegative weight function
on the arcs, the Dijkstra-Moore algorithm computes the length of the shortest path from a source
node s to every other node v [8,10]. This algorithm can be simply adapted for computing the
watershed transform. First, an edge (p,p’) in the image is considered as a pair of arcs (p, p’) and
(p',p) with the same weight. Next, a label image lab and a distance image dist are introduced,
just as in the case of Algorithm 4.4, where lab[v] is the index of the minimum nearest to v, and
dist[v] is the distance to this minimum [22]. From each minimum a wavefront is started, labelled
by the index of the minimum it started in, and the distance is initialized with the value of the
minimum, cf. (3.8). If wavefront i reaches a node v after it has propagated over a distance /,
and ¢ is less than dist[v], the value ¢ is placed in dist[v], while lab[v] is set to i. If a node v is
reached by another wavefront that has propagated over the same distance but originated from
a different minimum (if it already carries the label WSHED this is also the case), lab[v] is set to
the artificial value WSHED, designating that v is a watershed pixel. For the pseudo-code, see
Algorithm 4.2.

If the input image has non-minima plateaus, it may be first lower completed. An alternative
is to keep track of distances to the lower border of plateaus during execution of the algorithm.
This can be achieved by the use of ordered queues.

Implementation by ordered queues. The function GetMinDist in Algorithm 4.2 can be
implemented such that it has a time complexity which is linear in the number of pixels of the
image. This can be realized with a data structure called ‘hierarchical’ or ‘ordered’ queue (0Q),
which is a priority queue of N FIFO queues, one queue for each of the N grey values in the
image, such that the lower grey values have higher priority [5,24]. The OQ processes lower grey

J.B.T.M. Roerdink and A. Meijster / The Watershed Transform

25

Algorithm 4.7 Scan-line algorithm for labelling level components based on disjoint sets.

el e el e

DN NN N NN NN
ORI B TR A o > A o

AR R B 0 W W) W W W W W W
OR OISR SRR RS (o S I NG U C

[\
s

w
@

procedure UNION-FIND-ComponentLabelling

INPUT: grey scale image im on digital grid G = (D, E).
OUTPUT: image lab on D, with labelled level components.
(x Uses array parent of pointers. x)

(x First pass)
for all p € D in lexicographical order do
r<p
for all ¢ € Ng(p) with ¢ < p do
if im[g] = im[p] then
r«—r min FindRoot (q) (* min denotes minimum w.r.t. lexicographical order)
end if
end for
parent[p] < r
for all ¢ € Ng(p) with ¢ < p do (* compress paths)
if im[g] = im[p] then
PathCompress(q,)
end if
end for

: end for

: (% Second pass *)
. curlab«—1 (* curlab is the current label x)
: for all p € D in lexicographical order do

if parent[p] = p then (*xp is a root pixel)
lab[p] = curlab
curlab = curlab + 1

else
parent[p] = parent[parent|p]] (* Resolve unresolved equivalences)
lab[p] = lab[parent|p]]
end if
: end for

: function FindRoot (p : pizel)
: while parent[p] # p do

r«—parentlp] ; p—r

: end while
: return r

: procedure PathCompress(p : pizel, r : pizel)
: while parent[p] # r do

h < parent[p] ; parent[p| —r ; p—h

: end while

26 J.B.T.M. Roerdink and A. Meijster / The Watershed Transform

levels before higher ones, and is initialized with the labelled border pixels of minima. Pixels
with grey value h are inserted in the FIFO queue with priority level h of the OQ. Pixels are
removed from the OQ by priority, and propagate their labels to (i) non-labelled neighbouring
pixels, which are inserted in the OQ), or to (ii) neighbouring labelled pixels still in the OQ, which
change to watershed pixels if the propagated label differs from the current label. By using the
priority order of grey values, pixels always propagate labels to steepest upper neighbours, except
on plateaus, where synchronous breadth-first propagation of labels coming from different pixels
of the lower border takes place. Thus an OQ automatically implements a hierarchical order
relation between pixels, so that preprocessing to make the input image lower complete can be
avoided.

It should be noted however, that the OQ does not always give exactly the same result as
when the input image is first lower completed. For example, when the image has a plateau
whose pixels, after lower completion, are assigned to different basins without any pixel being
labelled as watershed pixel (no pixel is equidistant to two or more minima), the OQ algorithm
may nevertheless introduce a watershed line at points where wavefronts coming from different
parts of the boundary meet. The exact location of this watershed line is dependent on the pro-
cessing order, and is biased towards that part of the lower boundary from which the propagation
proceeded last.

Remark. Algorithm 4.2 requires updating of the set V: distances and labels are only propa-
gated to pixels which are still in V. In the ordered queue implementation, V' is the set of pixels
which have not yet entered the OQ, or are still in it. In the case of a lower complete image,
one may instead propagate from a pixel u to all neighbours v of u: since the cost function
is positive (except on minima plateaus), the computed distance to an already processed pixel
v € V will always increase, so the algorithm will not change anything for such a pixel v. This
entails redundant computation, but has the advantage that no memory is needed to encode the
set V. However, when the OQ implementation is used for an image which is not lower complete,
and the set V' is not properly encoded, a broadening of the watershed line may occur on the
interior of plateaus, where the cost function is identically zero. O

4.2.3. Hill climbing

Compared to image integration, hill climbing is much simpler since no distances have to be
computed: labels are simply propagated to all steepest upper neighbours, see Algorithm 4.3.
For a lower complete image, determination of the upstream set I'~!(p) of a pixel p only requires
local computation. Again, if an image contains non-minima plateaus, it may first be lower
completed. Alternatively, just as above, ordered queues can be used.

If the version of the algorithm is used which does not compute watershed pixels, and the
distance values on the edges of the underlying grid are equal to 1 (d(p,q) = 1 in Eq. (3.3)), such
as is the case for the 4-connected and 8-connected neighbourhoods mostly used in practice, one
may simply replace the upstream set I'"!(p) by all unlabelled neighbours ¢ of p. Because the
algorithm processes pixels with lowest grey value first, an unlabelled neighbour of a pixel p is
necessarily in the upstream of p, and a labelled pixel never has to be inspected again, since no
watershed labels are assigned. This implies that the initial computation of lower distances and

J.B.T.M. Roerdink and A. Meijster / The Watershed Transform 27

cost function can be avoided, leading to a time and memory efficient implementation. But, of
course, the result is not exact and dependent on the processing order.

| [l

aEluisdannan

1<-2<-3 21 tp2s)2gt

T A S ; I
0

[«
A
I
=
t
N+
|
\
=
|
Y
O
A
1
[
O

L

Figure 11. Left: image and its corresponding DAG; right: graph after resolving (watershed
pixels are surrounded by a box).

4.2.4. Watershed transform by UNION-FIND algorithm

The UNION-FIND algorithm described in Section 4.2.1 can be modified to compute the watershed
transform itself [23], by the following steps.

1. First, plateaus have to be removed from the image f by computing the lower completion
fro of f, see Algorithm 4.5. The last loop in the algorithm can be slightly adapted to
label the minima pixels of f (i.e., pixels p with lc[p] = 0) as well.

2. From the lower complete image, the lower complete graph G’ = (V, E’) is constructed
(see Definition 3.5), which is a directed acyclic graph (DAG). See Fig. 11 for an example.
The DAG is stored in an array sln, where sin|p,i| is a pointer to the ith steepest lower
neighbour of pixel p (the number of steepest lower neighbours is at most the connectivity).
For each minimum m, one pixel r € m is chosen as the representative of this minimum,
and a pointer is created from r to itself. The array sin plays the role of parent in the
level components algorithm, but note that a node can now have more than one ‘parent’
(steepest lower neighbour). Therefore the graph G is not a disjoint set forest, as in the
case of connected components. The DAG can be constructed in a single pass scan-line
algorithm, in which for each pixel only its neighbours are referenced.

3. The last step is to apply the UNION-FIND algorithm to the DAG. The first pass is similar to
that of Algorithm 4.7. The resolving step has to be modified so that watershed pixels can
be detected, which are points having paths in the DAG to distinct roots. For the pseudo-
code of the resolving algorithm, which closely resembles Tarjan’s FindRoot operation [47],
see Algorithm 4.8.

This technique computes the exact watershed transform by topographical distance [25]. A
similar approach was developed by Bieniek et al. [7], based on earlier work [6] on parallel imple-
mentation of the watershed transform. However, these authors use the local condition in which
no watershed pixels are computed (see Sections 3.2.3, 5.2.3); when several steepest lower neigh-
bours exist, one of them is arbitrarily chosen. Therefore, that algorithm, sometimes referred to
as rainfalling, is a variant of the watershed transform by UNION-FIND, where the graph is not a
DAG, but a disjoint-set forest.

28

J.B.T.M. Roerdink and A. Meijster / The Watershed Transform

Algorithm 4.8 Watershed transform w.r.t. topographical distance based on disjoint sets.

W W W W WwWwWwWwRINNINNDNDINDNRNINDLNDRF P 2 &= B = & &2
S A el T o e B e A o A ol e <o IS C LN ol S vl S

: procedure UNION-FIND-Watershed
INPUT: lower complete graph G’ = (V, E').
OutpuT: labelled image lab on V.

#define WSHED 0 (xlabel of the watershed pixels *)
#define W (-1,-1) (* fictitious coordinates of the watershed pixels *)
Labellnit (* initialize image lab with distinct labels for minima)
for all p e V do (x give p the label of its representative x)

rep < Resolve (p)

if rep # W then
lab[p] < lab[rep]
else
lab[p] < WSHED
end if

: end for

: function Resolve (p : pixel)

. (x Recursive function for resolving the downstream paths of the lower complete graph.)
: (* Returns representative element of pixel p, or W if p is a watershed pixel)
ci+—1;rep—(0,0) (x some value such that rep # W x)

: while (i < CON) and (rep # W) do (* CON indicates the connectivity *)

if (sin[p,i] # p) and (sin[p,i] # W) then
sln[p, i] < Resolve (sin[p,i])
end if
if i =1 then
rep < sln[p, 1]
else if sin[p,i] # rep then
rep«— W
for j«—1 to CON do
sln[p, j]
end for
end if
1—1+1

: end while

return rep

J.B.T.M. Roerdink and A. Meijster / The Watershed Transform 29

5. Parallelization

In this section we first make some general remarks about parallel computer systems and parallel
programming. Then a review of parallelization strategies for the watershed transform is given,
for both distributed and shared memory architectures.

5.1. General considerations
5.1.1. Parallel computer systems

A standard classification of parallel computer systems into four types is due to Flynn, see [15,41]
for details. The two types most often encountered in practice are SIMD (Single Instruction,
Multiple Data), and MIMD (Multiple Instruction, Multiple Data). In a SIMD computer all
processor elements simultaneously execute the same operation on different data items, whereas
in a MIMD machine the processors may execute different operations on their own data. MIMD
computers are more flexible, but are in general more difficult to program. Both SIMD and
MIMD computers can be either of the shared memory or distributed memory type. In a shared
memory parallel computer, there are a number of processors and a single (large) memory which
is accessible to all processors. In contrast, in a distributed memory architecture, each processor
has its own local memory and a processor can retrieve data in the memory of another processor
by messages over a communication network.

The performance of a parallel computer is very much dependent on the bandwidth of the
connection of the processors to the memory, that is, the maximum number of simultaneous load
or store operations per time unit. Shared memory systems typically have a bandwidth problem
since there is only a single memory, so that conflicts may arise when many processors try to access
the same memory locations. On the other hand, distributed memory MIMD machines have the
disadvantage that the communication between processors is much slower than for shared memory
machines, so that the synchronization overhead is much higher when tasks have to communicate.
This mismatch between communication vs. computational speed often makes communication the
speed-limiting factor on distributed memory MIMD architectures, while memory congestion is
usually the speed-limiting factor on shared memory systems. The maximum amount of work a
process can perform before communication with other processors becomes necessary is called the
granularity or grain size. Load balancing, i.e. ensuring equal work load of different processors
during program execution, is an important requirement of parallel program design. In this
context, an important issue is that of mapping, i.e. the assignment of tasks to processors. This
may be done statically at initialization, or dynamically during execution of the program.

5.1.2. Parallel programming models

Various parallel programming models exist. In message-passing programming, tasks are cre-
ated, which interact by sending and receiving messages. The approach most often used is called
SPMD (single program multiple data), meaning that every processor runs the same program,
performing operations on its own data space. In the shared-memory programming model, tasks
share a common address space. Mechanisms such as locks and semaphores [11] may be used

30 J.B.T.M. Roerdink and A. Meijster / The Watershed Transform

to control access to the shared memory. Below we will compare implementations of the water-
shed transform on distributed memory machines making use of message passing, and on shared
memory architectures where synchronization takes place through shared variables.

5.1.3. Classification of parallel watershed algorithms

The following classification of current parallel implementations of the watershed transform can
be made:

e domain decomposition: distribute the image over the processors in a regular way (static
mapping) and use a sequential algorithm for the subimage in each subdomain. Insert
synchronization and communication points where the result depends on neighbouring sub-
domains. Merge subresults to obtain the final solution.

e functional decomposition: when simulating flooding from local minima, distribute the local
minima over the processors. In this case, the efficiency depends crucially on the number of
local minima, and the sizes of the corresponding basins. Load imbalance may arise when
the sizes of basins differ significantly.

5.1.4. Speed versus scalability

Let N be number of processors used. Define T'(N) to be the running time between the moment
that the first processor starts and the moment that the last processor finishes. Speedup of the
parallel algorithm is measured by:

where T} is the execution time of the fastest serial algorithm on one processor. Often, T} is
replaced by the time needed to execute the algorithm, which formed the starting point for
parallelization, on one processor; then one speaks about relative speedup. Efficiency is defined
as

E(N) = Sp(N)/N.

A quality measure for the efficiency of a parallel algorithm is how close the efficiency is to unity,
i.e., how well the speedup curve approximates the linear function Sp(N) = N. Speedup depends
critically upon the amount of sequential computation. If f is the fraction of such sequential
operations, then Amdahl’s law states that the maximum speedup achievable obeys [41]:

1

This implies that a small number of sequential operations can drastically limit the achievable
speedup, since Sp(N) < 1/f, no matter how many processors are used.

Usually, speedup is an increasing function of the problem size, since overhead costs, such
as creating processes, input/output and process synchronization are constant or increase slower
than grain size. Note that an algorithm can be slow but at the same time have good scaling
properties.

J.B.T.M. Roerdink and A. Meijster / The Watershed Transform 31

5.2. Watershed implementation on distributed memory architectures

In the case of the watershed algorithm, usually domain decomposition is used on distributed
memory architectures. Granularity depends on the distribution of data among processors, the
number of processors and the image content. When many subimages are used, the grains are
small with a relatively large number of pixels on the boundary between subdomains, requiring
more communication.

In all algorithms discussed in this subsection, the image is distributed in stripes or blocks
D;,i=1,...,N over all processors. Each processor has access to an overlap region between do-
mains, determined by the neighbourhood Ng(p) of each boundary pixel. By D;t = Upep, N (p)
is denoted the extension of subdomain D;, and by D;” = D; N (U#iD;r) the pixels of D; which
have outside neighbours. Pixels in boundary regions are written only by the process to which the
subdomain is assigned, but is available for reading by processors of neighbouring subdomains.
An approach where a division of the image in rectangular blocks is used naturally leads to an
implementation where the processors are connected in a rectangular mesh topology, which for
example is easily realizable by a transputer system (each transputer having four communication
links).

Speedups are usually measured excluding the time needed for image loading, distribution,
retrieval and saving.

5.2.1. Hill climbing by ordered queues

Parallellization of the watershed transform by ordered queues is discussed in [27]. The algorithm
does not construct watershed lines. The program uses the SPMD approach with synchronization
by messages from and to a master process. The image is distributed in blocks. The steps in the
watershed computation are:

1. Minima detection: plateaus are examined by breadth-first scans in each subimage using
a FIFO queue. If a plateau is spread over different subdomains, communication between
processors is necessary during which merging of parts in different subdomains takes place.
This may require repeated communication until stabilization (i.e. no more changes occur).

2. Flooding by local OQ’s: each processor performs flooding in its own subdomain based on
ordered queues, as in the sequential algorithm. To allow flooding to propagate to neigh-
bouring subdomains, two approaches have been considered. In the first one [32] processors
are tightly synchronized at each grey level by analyzing border pixels of subdomains whose
steepest lower neighbours (or, when these do not exist, neighbours of the same grey value)
are in the extension area of the subdomains. When a processor reaches synchronization
level h, labels and values in their extension areas are exchanged with neighbouring proces-
sors. Communication and reflooding takes place until the label propagation stabilizes, as
detected by the master process. Due to this tight synchronization considerable idle times
are introduced, since processors do not execute the same code at approximately the same
time. A second approach [27] first performs local flooding at all grey levels in the sub-
domain, followed by communication and reflooding until the label propagation stabilizes.
This reduces the amount of communication necessary for reflooding.

32 J.B.T.M. Roerdink and A. Meijster / The Watershed Transform

Performance measurements. Speedups for both schemes are reported in [27, Ch. 2]. The
tight synchronization scheme was implemented on a Parsytec Supercluster 128, which is a mas-
sively parallel reconfigurable network of transputers, under PIPS (Parallel Image Processing
System) [38]. (An initial implementation on a loosely coupled cluster of workstations using
the PVM (Parallel Virtual Machine) package [40] resulted in marginal speedups with efficiency
deteriorating quickly as the number of processes was increased [32]). The second scheme was
implemented on a Cray T3D MIMD distributed memory architecture with 256 nodes using MPI
(Message Passing Interface) [16]. The experimental results show a moderate increase of speedup
with number of processors for some images, the speedup for the second scheme being almost
twice as high as that of the first scheme. (Note however, that these schemes were implemented
on different architectures.) For natural images, efficiency ranges from 25 —50% at 16 processors,
to 10% or less at 128 processors. However, both stages of the algorithm (minima detection and
flooding) are very data dependent, leading to load imbalance. For artificial images with large or
snake-like plateaus spread over different subdomains, speedup may be marginal or even decrease
with number of processors, due to extensive relabelling. Also, better performance is not always
obtained for larger images.

5.2.2. Hill climbing and rainfalling after lower completion

Hill climbing, with lower completion as preprocessing, was considered by Moga et al. [27, 28],
effectively using, but not explicitly introducing, the local condition of Definition 3.7. In addi-
tion, the rainfalling algorithm was studied, see Section 4.2.4. For both algorithms, the steps
are: (i) minima detection, (ii) lower completion, (iii) flooding (by hill climbing and rainfalling,
respectively).

Minima detection with lower completion on non-minima plateaus again requires repeated
communication until stabilization to achieve global consistency. The flooding step is considered
as labelling each vertex in the lower complete graph by the label of the minimum to which it is
connected by a path. The procedure of choosing arbitrarily one of the steepest lower neighbours
of a given pixel, in case several exist, turns the DAG into a disjoint-set forest. This reduces the
amount of non-locality, but introduces scanning order dependence (cf. Section 4.2.4).

For the rainfalling algorithm, the forest is labelled inside subdomains as described above,
using a FIFO queue to store root pixels of not yet resolved paths. Processors perform communi-
cation with neighbours as long as there are unresolved paths in their subdomain. But, since a
processor can decide locally when to terminate its calculation, no global reduction operation is
necessary; also no relabelling or synchronization between paths are needed. In the case of hill
climbing, each processor initializes by a raster scan a FIFO queue with border pixels of minima
in its subdomain. A pixel p removed from the queue propagates its label to all pixels ¢ for which
there is an arc from ¢ to p in the lower complete graph. Labels are repeatedly exchanged with
neighbouring processors through the extension area, initiating new labelling. A processor be-
comes inactive as soon as all pixels in its subdomain have been labelled. Summarizing, plateaus
are treated in breadth-first order, while labelling is along paths generated by depth-first search,
c.q. breadth-first search, for rainfalling, and hillclimbing, respectively.

J.B.T.M. Roerdink and A. Meijster / The Watershed Transform 33

Performance measurements. Implementations were carried out on a Parsytec Superclus-
ter 128 under PIPS [38] and on Cray T3D under MPI. Speedup curves are rather similar for
rainfalling and hillclimbing, with rainfalling having shorter running times but somewhat lower
speedup. Efficiency decreases with increasing number of processors, and is very data dependent
in the case of artificial scenes (F(128) < 25% on the Parsytec system, F(128) < 12.5% on
the Cray T3D). Compared to the implementation using ordered queues (cf. Section 5.2.1) the
time spent for flooding has been reduced, but the time of the first stages has increased due
to the lower distance computation. Overall execution time has not improved significantly. An
advantage may be that ordinary queues are easier to implement correctly than ordered queues.

5.2.3. Hill climbing by ordered queues combined with a connected component
operator

Parallelization of the hill climbing algorithm combined with a connected component operator
has been considered by Bieniek et al. [6] using the local condition of Definition 3.7, and by Moga
et al. [27,30]. We first describe the former approach [6].

The main idea is to solve the watershed problem independently on all subdomains without
synchronization. Instead temporary labels are assigned to pixels which will be flooded from
adjacent subdomains. The boundary connectivity information is stored in a graph or equivalence
table. Global labels are computed by a reduction operation using the resolving step as in the
UNION-FIND algorithm (cf. Section 4.2.1). If N is the number of processors, computation of the
global labels then takes log, N steps, independent of the complexity of the data. The latter
problem is strongly related to the connected component labelling problem [1,13,45].

The algorithm for images without plateaus is as follows:

1. Give all local minima in each domain D; a globally unique label, using information from
Df.

2. Give all pixels p of D, a temporary label (globally unique) if the downstream neighbours
of p are in another subdomain. The set of boundary pixels requiring a temporary label is
thus

D™ = {p € D;[T(p) N (D} \ D;) # 0}. (5.1)

3. Produce a watershed segmentation consistent with Definition 3.7, independently on each
subdomain, using the minima and temporary labels as seeds for basins. By using ordered
queues, non-minima plateaus which are completely within a subdomain will be flooded in
accordance with Definition 3.7.

4. Merge subdomains pairwise: give all labels of the subdomains globally consistent values
by linking basins, which have grown from pixels p with a temporary label, to basins in the
downstream of p.

An efficient implementation of step 4 in this algorithm can be based upon the UNION-FIND
algorithm, as discussed in Section 4.2.1.

As an example, consider Fig. 12. Figure 12(b) shows a watershed segmentation of the image
in Fig. 12(a) consistent with Definition 3.7 (several other labellings are possible). Next consider
a subdivision of the image into two strips of three rows each. In the figure, we show the result

34 J.B.T.M. Roerdink and A. Meijster / The Watershed Transform

after step 2 and step 3 of the above algorithm. Clearly, after step 4 (not shown) a correct result
(w.r.t. Definition 3.7) is obtained.

Of course, the real problem is to treat images with plateaus. To do this, the following
procedure is proposed in [6]. Define the neighbour set I'(p) of a plateau pixel as the union of
all neighbour sets I'(p’) with p’ running over those boundary pixels of the plateau which have
minimal geodesic distance to p. Extend Definition 3.7 by replacing I'(p) by I'(p). Then the
claim is that with a similar replacement of I'(p) by I'(p) in the algorithm above, a watershed
segmentation is produced in agreement with the extended definition. It is easy to see, however,
that this claim cannot be true. When in (5.1), T'(p) is replaced by I (p), the set Di“"* as defined
in (5.1) may be empty, because the set I''(p) may be located in a subdomain which is far away
from D;, and therefore has zero overlap with Df \ D;. Therefore, the watershed segmentation
according to the algorithm above produces a result in a subdomain D); which is completely
independent of the downstream. In fact, what should be done is to assign temporary labels to
all pixels p for which I(p) extends to any other subdomain, whether it is an adjacent one or
not. But in that case, the locality aimed at by introducing Definition 3.7 is lost. This effectively
annihilates the idea of computing the watershed transform independently on each subdomain,
followed by a merging step requiring communication of boundary information only. It comes
therefore as no surprise that in the implementation in [6], which uses a variant of the sequential
watershed transform (8-connected) based on ordered queues, an iterative plateau correction is
required after step 3 of the algorithm for labels and distances stretched out over more than one
subdomain, needing a global synchronization step. This clearly demonstrates that the locality
assumption, which is implicit in the specification of the algorithm with plateaus, does not hold.

0(1|/2]1(0 A|lAIA|B|B All|2(1|B A|lA|A|B|B
112(3]2]1 A|lAIA|B|B 1121321 AlA|A|B|B
513|714]3 A|lAIA|B|B 513|743 A|lA|A|B|B
415(8|6|2 C|A|A|D|D 41E|8|6|2 C|E|E|D|D
3141621 Cc|C|D|D|D 3146|121 C|C|D|D|D
02340 cC|C|D|D|D Ci2/3|4|D c/C|D|D|D

(a) (b) (c) (d

Na

Figure 12. Watershed according to Definition 3.7. (a): original image; (b): a watershed seg-
mentation of the complete image; (c): result after step 2 of the parallel algorithm with two
subdomains. (d): result after step 3 of the parallel algorithm with two subdomains.

A similar approach was used by Moga et al. [27,30]. The difference with the approach in [6]
is that for non-minima plateaus which are shared by several processors the globally correct lower
distance values are computed before flooding, instead of during flooding, so that no relabelling
of wrongly labelled higher neighbourhoods of plateaus is necessary.

J.B.T.M. Roerdink and A. Meijster / The Watershed Transform 35

Performance measurements. Experiments have been reported in [6] on a Parsytec Super-
cluster 128 under PIPS and in [30] for an implementation under MPI on a Cray T3D, both
with similar results. An almost linear speedup is obtained for a number of processors up to 64,
after which saturation sets in. Efficiency at 128 processors ranges from 10-50 %. Local minima
detection and local flooding takes most of the time, until the number of processors becomes very
large: then the plateau correction is the most time limiting factor, even for images with small
plateaus. This implementation performs better with respect to scalability and execution time
than the implementation of hill climbing or rainfalling discussed in Section 5.2.2. Also, the data
dependence is less severe, although it is still present due to the plateau correction step.

5.2.4. Parallel watershed transform based on sequential scanning

Finally we mention a watershed algorithm based on sequential scannings [27,33] (see Section 4.2).
Although the sequential algorithm is very slow, the method has good scaling properties in a
parallel implementation. The implementation consists of repeated raster and anti-raster scans
within the subdomains and message passing among processors until stabilization. Although the
implementation is carried out on a MIMD architecture (Parsytec cluster), the algorithm is also
suitable for SIMD computers since no queues are used.

The parallel implementation has the following steps: (i) detection of minima; (ii) lower
completion of the image; (iii) labelling minima; (iv) flooding by image integration. Labels
in the boundaries between subimages have to be communicated between processors. Even if
the computation has stabilized within a subdomain, new raster scans may be necessary due
to changes in the boundary region caused by other processors. A master process detects when
global stabilization has been obtained. Since all subdomains are equal in size, and each processor
executes simple operations in raster scan mode, chances are higher that communication points
are reached at approximately the same time, resulting in a better load balance.

Performance measurements. Implementations were carried out under PIPS on a Parsytec
Supercluster 128 [33], and under MPI on a Cray T3D [27, Ch. 3]. An approximately linear
speedup, close to the ideal line, is obtained in many cases, but efficiency drops when the number
of processors becomes larger. Speedup may even decrease for small image size, because the
amount of work per processor becomes too small. Larger image sizes yield higher speedups for
the same number of processors. The algorithm is still data dependent: for images with large,
snake-like plateaus, speedup may drop with increasing number of processors.

5.2.5. Conclusions

Summarizing the performance results for the various parallel implementations discussed in Sec-
tion 5.2.1-Section 5.2.4, it was found that slow methods such as sequential scanning have the
best scaling properties. Ordered queues are relatively fast, but have the worst scaling, since in a
distributed memory system local ordered queues need to be kept in global order by proper syn-
chronization. The improvement of hill climbing and rainfalling over ordered queues is marginal.
Better results have been obtained by combining the ordered queue implementation with a con-
nected component operator. The data dependence is less severe, since the use of the connected

36 J.B.T.M. Roerdink and A. Meijster / The Watershed Transform

component operator allows the computation of globally correct labels with fixed time complexity,
independent of the image content.

All algorithms have problems, although to varying degree, with images containing large or
snake-like plateaus spread over different subdomains: speedup may be marginal or even decrease
with increasing number of processors.

5.3. Shared memory implementations

The main motivation to use shared memory architectures for the watershed transform derives
from the global data dependence caused by extended basins in grey value images. This requires
direct access to data which may be far separated in memory. For that reason, a shared memory
is an obvious choice, cf. Section 5.1.

5.3.1. Components graph algorithm

A parallelization of the components graph algorithm (cf. Section 4.1.2) is proposed in [21]. All
pixels which are in the same level component are clustered in one single node of the components
graph, therefore plateaus no longer exist. Since shared memory is used, the parallel programs
are very similar to the sequential counterparts. Only concurrent references to the same memory
locations have to be protected by synchronization primitives.

The steps are the following.

1. Level components labelling. A single processor labels level components of the entire image
and distributes the input image and the labelled image over the processors. To each
processor a slice of consecutive scan lines of (approximately) equal size is assigned, with
one scan line overlap so that it can be decided whether level components are shared with
neighbouring processors.

2. Parallel watershed transform of a graph. Every processor builds a local components graph
for its own image slice. Since some level components are shared between several processors
the graphs on the processors are not disjoint. Next every processor performs an adapted
version of the flooding algorithm, taking care of shared vertices.

3. Back transformation. After flooding each processor transforms its local components graph
back to an image slice, as in the sequential case.

5.3.2. Topographical distance algorithm by ordered queue

The first step of the algorithm is detecting local minima, see Section 4.2.1. Computation of lower
slope and cost function are local operations, and therefore easy parallelizable. Actually, minima
detection and lower completion can be obtained in one step (see Section 3.2.2). Computation of
the watershed transform on the graph is based on Algorithm 4.2, which does compute watershed
pixels. Each processor computes the basins of an (approximately) equal number of minima.
However, there is a strong data dependence since the sizes of basins may differ substantially.
Therefore dynamic instead of static mapping is needed to obtain good performance.

J.B.T.M. Roerdink and A. Meijster / The Watershed Transform 37

5.3.3. Topographical distance algorithm by modified UNION-FIND

This approach to compute the watershed transform is relatively easy to parallelize for shared
memory architectures. In a first phase the input image is transformed into a lower complete
image using FIFO queues. The very same algorithm can be used on parallel architectures by
splitting the domain of the image in (almost) equally sized subdomains. Each processor has
its own private FIFO queue, which it initializes with seed points (pixels that are at the lower
boundary of a plateau) in its private subdomain. After this initialization, each processor starts
propagating distances in a private image dist. When all processors have finished this operation,
the minimum over all the dist images is the desired lower complete image. Computing this
minimum can be efficiently performed in parallel using a so-called reduction operator on most
parallel architectures. After computing the lower complete image, the DAG sin can be con-
structed in a single image pass, in which for each pixel only its neighbours are addressed. There
is no dependence between pixels, as far as the computation order is concerned, and thus this
operation can trivially be performed in parallel. The resolving phase is also easy to parallelize,
by replacing the domain D in Algorithm 4.8 by the private domain of a processor. Note that
the mapping procedure is hybrid in this case: initially, a processor starts to work on pixels
in its private domain, but during the resolving phase it will access pixels in domains of other
processors.

5.3.4. Results and conclusions.

Timing results on a Cray-J932 shared memory computer with 16 processors for the algorithm
discussed in Section 5.3.2 are reported in [22], where only static mapping was used. At 16
processors, efficiency for the complete watershed computation ranges from 20% for an image
with only a few minima to about 60% for an image with a moderate amount of minima. For
images with very many minima efficiency deteriorates. The speedup for computing lower slope
and cost function is almost linear in the number N of processors. The same holds for minima
detection, although the influence of concurrent references to the same memory locations starts
to play a major role if we use many processors, typically 8 or more. If the number of minima is
smaller than IV, no speed is gained by using more processors. In practice, however, the number
of minima is usually much larger than N. Work by the present authors on the approach of
Section 5.3.3 is in progress.

6. Summary

We have reviewed various existing definitions of the watershed transform based on immersion
or on shortest paths with respect to a topographical distance function. The main sequential
algorithms for computing the watershed transform according to both definitions were described.
Emphasis was put on the fact that watershed algorithms found in the literature often do not
adhere to their definition, or are the implementation of an algorithm without a proper specifi-
cation.

Strategies for parallel implementation were discussed, distinguishing between distributed
memory and shared memory architectures. The watershed algorithm by immersion is hard

38

J.B.T.M. Roerdink and A. Meijster / The Watershed Transform

to parallelize because of its inherently sequential nature. A parallel implementation of this
algorithm can be based upon a transformation to a components graph. The distance-based
definition allows various parallel implementations. The main ones are based on (ordered) queues,
repeated raster scanning, a modified UNION-FIND algorithm, or a combination of these. The main
conclusion to be drawn from this review is that, despite all the techniques and architectures
used, there is always a stage in the watershed transform which remains a global operation, and
therefore in the case of parallel implementation at most modest speedups are to be expected.

References

[1]

[17]

Alnuweiri, H. M., and Prasanna, V. K. Parallel architectures and algorithms for image component
labeling. IEEE Trans. Patt. Anal. Mach. Intell. 14, 10 (1992), 1014-1034.

Berge, C. Théorie des Graphes et ses Applications. Dunod, Paris, 1958.

Beucher, S. Watershed, hierarchical segmentation and waterfall algorithm. In Mathematical Mor-
phology and its Applications to Image Processing, J. Serra and P. Soille, Eds. Kluwer Acad. Publ.,
Dordrecht, 1994, pp. 69-76.

Beucher, S., and Lantuéjoul, C. Use of watersheds in contour detection. In Proc. International Work-
shop on Image Processing, Real-Time Edge and Motion Detection/Estimation, Rennes, september
(1979).

Beucher, S., and Meyer, F. The morphological approach to segmentation: the watershed transfor-
mation. In Mathematical Morphology in Image Processing, E. R. Dougherty, Ed. Marcel Dekker,
New York, 1993, ch. 12, pp. 433-481.

Bieniek, A., Burkhardt, H., Marschner, H., Nolle, M., and Schreiber, G. A parallel watershed
algorithm. In Proc. 10th Scandinavian Conference on Image Analysis (SCIA’97), Lappeenranta,
Finland (1997), pp. 237-244.

Bieniek, A., and Moga, A. A connected component approach to the watershed segmentation. In
Mathematical Morphology and its Applications to Image and Signal Processing, H. J. A. M. Heijmans
and J. B. T. M. Roerdink, Eds. Kluwer Acad. Publ., Dordrecht, 1998, pp. 215-222.

Cormen, T. H., Leiserson, C. E., and Rivest, R. L. Introduction to Algorithms. MIT Press, 1990.
Digabel, H., and Lantuéjoul, C. Iterative algorithms. In Actes du Second Symposium Européen
d’Analyse Quantitative des Microstructures en Sciences des Matériauzx, Biologie et Médecine, Caen,
4-7 October 1977 (1978), J.-L. Chermant, Ed., Riederer Verlag, Stuttgart, pp. 85-99.

Dijkstra, E. W. A note on two problems in connexion with graphs. Numerische Mathematik 1
(1959), 269-271.

Dijkstra, E. W. Co-operating sequential processes. In Programming Languages, F. Genuys, Ed.
Academic Press, New York, 1968, pp. 43-112.

Dobrin, B. P., Viero, T., and Gabbouj, M. Fast watershed algorithms: analysis and extensions. In
SPIE 1994; Vol. 2180. Proc. IS&T/SPIE Symposium on Electronic Imaging Science & Technology,
Nonlinear Image Processing V, February 6-10, 1994, San Jose Convention Center, CA. (1994),
pp- 209-220.

Embrechts, H., Roose, D., and Wambacq, P. Component labelling on a mimd multiprocessor. Comp.
Vis. Graph. Im. Proc. 75, 2 (1993), 155-165.

Fiorio, C., and Gustedt, J. Two linear time union-find strategies for image processing. Theoretical
Computer Science A 154, 2 (Feb. 1996), 165-181.

Foster, I. Designing and Building Parallel Programs. Addison Wesley, Reading, MA, 1994.

Gropp, W., Lusk, E., and Skjellum, A. Using MPI: Portable Parallel Programming with the Message
Passing Interface. MIT Press, Cambridge, MA, 1995.

Guillemin, V., and Pollack, A. Differential Topology. Prentice-Hall, Englewood Cliffs, NJ, 1974.

[18]

[19]

[20]

[21]

[30]
[31]

[32]

J.B.T.M. Roerdink and A. Meijster / The Watershed Transform 39

Haralick, R. M., and Shapiro, L. G. Survey : image segmentation techniques. Comp. Vis. Graph.
Im. Proc. 29 (1985), 100-132.

Klein, J. C., Lemonnier, F., Gauthier, M., and Peyrard, R. Hardware implementation of the water-
shed zone algorithm based on a hierarchical queue structure. In Proc. IEEE Workshop on Nonlinear
Signal and Image processing, June 20-22, Neos Marmaras, Halkidiki, Greece (1995), 1. Pitas, Ed.,
pp- 859-862.

Lantuéjoul, C. La squelettisation et son application aur mesures topologiques des mosaiques poly-
cristallines. PhD thesis, Ecole des Mines, Paris, 1978.

Meijster, A., and Roerdink, J. B. T. M. A proposal for the implementation of a parallel watershed
algorithm. In Computer Analysis of Images and Patterns, V. Hlavac and R. Séra, Eds., vol. 970 of
Lecture Notes in Computer Science. Springer-Verlag, New York—Heidelberg—Berlin, 1995, pp. 790-
795.

Meijster, A., and Roerdink, J. B. T. M. Computation of watersheds based on parallel graph algo-
rithms. In Mathematical Morphology and its Applications to Image and Signal Processing, P. Mara-
gos, R. W. Shafer, and M. A. Butt, Eds. Kluwer Acad. Publ., Dordrecht, 1996, pp. 305-312.
Meijster, A., and Roerdink, J. B. T. M. A disjoint set algorithm for the watershed transform. In
Proc. IX European Signal Processing Conference (EUSIPC0O’98), September 8 - 11, 1998, Rhodes,
Greece (1998), S. Theodoridis, I. Pitas, A. Stouraitis, and N. Kalouptsidis, Eds., pp. 1665-1668.
Meyer, F. Un algorithme optimal de ligne de partage des eaux. In Proceedings 8th Congress AFCET,
Lyon-Villeurbane, France (1992), vol. 2, pp. 847-859.

Meyer, F. Topographic distance and watershed lines. Signal Processing 38 (1994), 113-125.
Meyer, F., and Beucher, S. Morphological segmentation. J. Visual Commun. and Image Repres. 1,
1 (1990), 21-45.

Moga, A. Parallel watershed algorithms for image segmentation. PhD thesis, Tampere University of
Technology, Tampere, Finland, Feb. 1997.

Moga, A. N., Cramariuc, B., and Gabbouj, M. Parallel watershed transformation algorithms for
image segmentation. Parallel Computing 24 (1998), 1981-2001.

Moga, A. N., and Gabbouj, M. A parallel watershed algorithm based on the shortest path com-
putation. In Parallel Programming and Applications, P. Fritzson and L. Finmo, Eds. IOS Press,
1995.

Moga, A. N., and Gabbouj, M. Parallel image component labeling with watershed transformation.
IEEE Trans. Patt. Anal. Mach. Intell. 19, 5 (May 1997), 441-450.

Moga, A. N., and Gabbouj, M. Parallel marker-based image segmentation with watershed transfor-
mation. Journal of Parallel and Distributed Computing 51, 1 (1998), 27-45.

Moga, A. N., Viero, T., Dobrin, B. P., and Gabbouj, M. Implementation of a distributed watershed
algorithm. In Mathematical Morphology and its Applications to Image Processing, J. Serra and
P. Soille, Eds. Kluwer Acad. Publ., Dordrecht, 1994, pp. 281-288.

Moga, A. N., Viero, T., Gabbouj, M., Nolle, M., Schreiber, G., and Burkhardt, H. Parallel watershed
algorithm based on sequential scanning. In Proc. IEEE Workshop on Nonlinear Signal and Image
processing, June 20-22, Neos Marmaras, Halkidiki, Greece (1995), 1. Pitas, Ed., pp. 991-994.
Moore, E. F. The shortest path through a maze. In Proc. Intern. Symp. on Theory of Switching,
1957 (1959), vol. 30 of Annals of the computation laboratory of Harvard University, pp. 285-292.
Nackman, L. R. Two-dimensional critical point configuration graphs. IEEE Trans. Patt. Anal.
Mach. Intell. 6, 4 (1984), 442—-450.

Najman, L., and Schmitt, M. Watershed of a continuous function. Signal Processing 38 (1994),
99-112.

Noguet, D., Merle, A., and Lattard, D. A data dependent architecture based on seeded region growing
strategy for advanced morphological operators. In Mathematical Morphology and its Applications to
Image and Signal Processing, P. Maragos, R. W. Shafer, and M. A. Butt, Eds. Kluwer Acad. Publ.,
Dordrecht, 1996, pp. 235-243.

40

J.B.T.M. Roerdink and A. Meijster / The Watershed Transform

Nolle, M., Schreiber, G., and Schulz-Mirbach, H. PIPS-a general purpose parallel image pro-
cessing system. In Proceedings 16th DAGM-Symposium Mustererkennung, Vienna (Sept. 1994),
G. Kropatsch, Ed., Reihe Informatik XPress, Springer-Verlag, New York—Heidelberg—Berlin,
pp- 271-309.

Preteux, F. On a distance function approach for gray-level mathematical morphology. In Mathemat-
ical Morphology in Image Processing, E. R. Dougherty, Ed. Marcel Dekker, New York, 1993, ch. 10,
pp- 323-349.

PVM: Parallel Virtual Machine, a user’s guide and tutorial for networked parallel computing, 1994.
Quinn, M. Parallel Computing. Theory and Practice. McGraw-Hill, New York, NY, 1994.
Roerdink, J. B. T. M., and Meijster, A. Segmentation by watersheds: definition and parallel imple-
mentation. In Advances in Computer Vision, F. Solina, W. G. Kropatsch, R. Klette, and R. Bajcsy,
Eds. Springer, Wien, New York, 1997, pp. 21-30.

Rosenfeld, A., and Pfaltz, J. Distance functions on digital pictures. Pattern Recognition 1 (1968),
33-61.

Rosenfeld, A., and Pfaltz, J. L. Sequential operations in digital picture processing. J. Ass. Comp.
Mach. 13 (1966), 471-494.

Samet, H. Connected component labeling using quadtrees. J. Ass. Comp. Mach. 28, 3 (1981),
487-501.

Serra, J. Image Analysis and Mathematical Morphology. Academic Press, New York, 1982.

Tarjan, R. E. Data Structures and Network Algorithms. STAM, 1983.

Tarjan, R. E., and van Leeuwen, J. Worst-case analysis of set union algorithms. J. Ass. Comp.
Mach. 31, 2 (1984), 245-281.

Verbeek, P. W., and Verwer, B. J. H. Shading from shape, the eikonal equation solved by gray-
weighted distance transform. Pattern Recognition Letters 11 (1990), 681-690.

Viero, T. Algorithms for image sequence filtering, coding and image segmentation. PhD thesis,
Tampere University of Technology, Tampere, Finland, Jan. 1996.

Vincent, L. Algorithmes Morphologiques a Base de Files d’Attente et de Lacets. Extension aux
Graphes. PhD thesis, Ecole Nationale Supérieure des Mines de Paris, Fontainebleau, 1990.
Vincent, L., and Soille, P. Watersheds in digital spaces: an efficient algorithm based on immersion
simulations. IEEE Trans. Patt. Anal. Mach. Intell. 13, 6 (1991), 583-598.

