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Robust Midsagittal Plane Extraction from Normal
and Pathological 3-D Neuroradiology Images

Yanxi Liu*, Member, IEEERobert T. CollinsMember, IEEEand William E. Rothfus

Abstract—This paper focuses on extracting the ideal mid- the robustness of an iIMSP extraction algorithm include: 1) the
sagittal plane (iMSP) from three-dimensional (3-D) normal and intrinsic factor: the brain and the skull being imaged can be

pathological neuroimages. The main challenges in this work are gjher pilaterally symmetric or asymmetric. Brain asymmetry
the structural asymmetry that may exist in pathological brains,

and the anisotropic, unevenly sampled image data that is common can be cau;ed bY any Qomb'nat'_ons of normal brain asymmetry,
in clinical practice. We present an edge-based, cross-correlation abnormal tissue |ntenS|ty alteraﬂon, and mass effect. Abnormal
approach that decomposes the plane fitting problem into discovery tissue intensity alteration can happen due to, e.g., a nonhemor-
of two-dimensional symmetry axes on each slice, followed by a rhagic stroke as shown in Fig. 1(a). Mass effect can be caused

robust estimation of plane parameters. The algorithm’s tolerance by virtue of swelling or space occupying lesions, e.g., a tumor
to brain asymmetries, input image offsets and image noise is N

quantitatively evaluated. We find that the algorithm can extract as shgwn in Fig. 1(c). 2). the ex.trlnS|C factor(s): the volumetric
the iIMSP from input 3-D images with 1) large asymmetrical Neuroimage can be anisotropic, and/or unevenly sarhpled
lesions; 2) arbitrary initial rotation offsets; 3) low signal-to-noise and initial alignment inconsistencies and artifacts/noise can be
ratio or high bias field. The iIMSP algorithm is compared with introduced during the imaging process. The goal of our work

an approach based on maximization of mutual information g 5 extract the iIMSP from a clinical 3-D neuroimage while
registration, and is found to exhibit superior performance under . s .

adverse conditions. Finally, no statistically significant difference tolerating both lntrlnS|c.and extrinsic fac_tors. .

is found between the midsagittal plane computed by the iMSP  The well-known Talairach framework is an anatomical land-

algorithm and that estimated by two trained neuroradiologists. mark-based approach to define a 3-D brain coordinate system
Index Terms—Medical image analysis, midsagittal plane, patho- [30]. The principal orthogonal axes in the Talairach framework
logical neural image analysis, robust estimation, symmetry detec- are determined by a line passing through the anterior and poste-
tion. rior commissures, called the AC—PC line, a line going through
the posterior margin of the anterior commissure and perpendic-
l. MOTIVATION ular to the AC-PC line, called the (VAC)ine, and the inter-

. - . . hemispheric sagittal plane (referred to as the midline in [30, p.
ORMAL h””.‘a” brains exh|b|t.an appr(.mmat.e b|Iate.raé]). Besides the intrinsic and extrinsic factors mentioned above,
symmetry with respect to the interhemispheric (longitu-

dinal) fissure bisecting the brain, known as the anatormite patient image to Talairach framework registration is difficult to
sagittal plane(MSP). However r,luman brains are almost nev chieve automatically due to its reliance on precise location of
perfectly symmetric [5], [6], [10]. Pathological brains, in partic-_'D anatomical image feature_s that may not b_e obvpusly identi-
ular, often depart drastically from bilateral symmetry. For effediaPl€- Furthermore, when the interhemispheric sagittal plane no
tive pathological brain image alignment and comparison (e.{§fnger lies on aflat surface due to normal or pathological defor-
[5], [16]), it is most desirable to definegane of referencehat  Mmation [Fig. 1(c)], the interhemispheric med@éaneis ill-de-
is invariant for symmetrical as well as asymmetrical brain infined. In contrast, the iMSP is based on global geometry of the
ages, and to develop algorithms that capture this reference plBf@d and can be found using low-level image processing tech-
robustly. niques. It remains well-defined in pathological brains, forcing a
We define anideal midsagittal plang(iMSP) asa virtual Virtual left-right separation consistent with the location where
geometric plane about which the three-dimensional (3-Bideal midsagittal plane would have been if no tissue deterio-
anatomical structure captured in the given neuroimageation or mass effect had occurred [Fig. 1(b) and (d)]. Automatic
presents maximum bilateral symmetBactors that challenge extraction of the iIMSP, at least, can provide an initial estimate
for the automation of Talairach framework alignment in patho-
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Fig. 1. (a) Nonspace-occupying lesion (infarct). (b) The intersection of the iIMSP and the given two—dimensional (2-D) axial slice. (c) An asi@leoath
deformed midline due to a tumor. (d) The intersection of the extracted iIMSP with the same 2-D brain slice (straight line), and the deformed maititiadrur
captured by a “snake” active contour.

real-time medical image consultation [16], [17]. This effort fillsmethod based on maximization of mutual information. We also
a gap in medical image analysis algorithms, as stated in [8hd no significant difference between the iIMSP orientations
“To date, all too often image analysis algorithm developmesstimated by our iIMSP algorithm and those hand-picked by
ignores the analysis of different abnormal, pathological &wo neuroradiologists.

disease states.” Our IMSP extraction algorithm is designedin Section II, we review existing work on automatic MSP ex-
for and tested on both normal and pathological, 3-D CT draction. In Section Ill, we present the underlying geometry of
magnetic resonance (MR) neuroimages. The iIMSP is robustthe midsagittal plane, together with an edge-based, robust es-
determined via an edge-based geometric approach applieditmation algorithm for iIMSP extraction. Sample experimental
both axial and coronal 2-D slices of the given 3-D image. Thesults are shown in Section 1V, followed in Section V by eval-
algorithm has been applied to 130 clinical volumetric imagesation on real and synthetic images, and an analysis of perfor-
and tested on both real and synthetic images with grounthnce with respect to human experts. In Section VI, we discuss
truth. Breakdown points of the iIMSP extraction algorithm arissues in model accuracy, speed, and applications related to the
found by varying brain orientation, lesion size, noise levelMSP extraction algorithm. Finally, in Section VII, we present
and bias field. The iIMSP algorithm compares favorably with a brief summary and discussion of future work.
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Il. RELATED WORK TABLE |
o . . EXISTING WORK ON MSP DETECTION
Existing work under the general topic of symmetry detection.

i i i i Author Image Image Feature
and the specific topic of neuroimage MSP (.axtractlon,.can I Reforoncs Year Modality | Dimension Monou
described and compared in terms of four main aspects: Brammer [2] 01 MR 5D edge Hough
transform
A. The Goal Guillemaud et al {11] 95 MR 3D interhemispheric
fissure, snake
The goal of most symmetry detection algorithms [7], [9] Author Image Tmage | Image Similarity
[19], [22], [26], [29], [32], [34] is to find the symmetry ;‘Efi‘etncfléﬁg M‘;‘]*;T“ty D'm;‘)‘s"’“ , tMe?tS“re
point/line/plane of an object that is known to be nearly sym "= * SPECT o
metrical. Similarly, the goal of most MSP detection algorithm ™ Minoshima et al [20] 92 PET 3D stochastic
[1], [11], [20], [2], [12] is to locate the plane of reflection of a Aok e a7 TRPET 5 i;;fzs;haﬁf;s
. . . . rdekani et al N
nearly symmetrical brain image. It must be realized, howeve mrrelzﬁon
that MSP means different things to different algorithms. Th™ Liu et al [15, 13] 98 00 MR, CT 2D or 3D edge cross
MSP can be defined as the plane about which there is m 1eascc(.);§;23ndist
structural symmetry of the brain, skull or head, as the plal 5, n & jenkinson 27199 | CT.MRPET | 3D Tatio of intensity
that best fits the interhemispheric fissure, or even as the ple SPECT ___profiles
determined by a particular image processing routine. That ~ Frimaet al [21] 00 CTs’ygéf;ET 3D intensity eross
the definition of an MSP can be either feature-based (e.g., tie
interhemispheric fissure) or image-based (using a similarity
measure computed from image properties). files along an estimated normal line at each voxel for deter-
mining the optimal symmetrical plane. Though it is basically an
B. The Approach intensity-based method, a preprocessing step is suggested for

Several existing algorithms designed specifically for MSP elnages with strong bias field to distill the edge information. No
traction are listed in Table I. These approaches can be furtifigantitative evaluations have yet been given, and the compu-
divided into two gross categories: feature-based versus imd@Hon is very expensive. Most recently, Prireal. report on
similarity-based. The MSP extraction algorithms are compar@f MSP extraction algorithm for 3-D neuroimages which finds
in terms of image modality, image dimensiband feature/sim- & plane that maximizes the bilaterally symmetric matching for
ilarity measurement. each voxel examined in a specific-sized block [21]. The sim-

Feature-based methods include the work of [2] and [11]. jlgrity is measured by correlation. No images with significant
[2], the author uses a Hough transform to find straight lines—t@§ymmetry or pathology are shown.
longitudinal fissure line on the upper portion of the brain. In Maximization of mutual information theory, another inten-
[11], the fissure line is extracted from each slice using line&iy-based approach, has been applied successfully to multi-
snakes and then a plane is found using orthogonal regressf@ﬁ.dal brain registration under both rigid and affine transforma-
Both methods encounter the same problem when the longitihs [18], [28], [31], [33]. The iIMSP could be extracted using
dinal fissure line departs drastically from a straight line due f9utual information by registering a 3-D brain volume with a
mass effect. reflected version of itself to find the best plane of reflection.

Image similarity-based approaches include the rest of the r¥Ye have experimented with this approach (see Section V). Al-
erences listed in Table I. The authors of [12] use cross correlRBough itis relatively insensitive to the introduction of simulated
tion of intensity images as the similarity measure applied Spherical lesions, due to the global nature of the processing, the
2-D images, and report that the method is sensitive to brafiethod is more sensitive than our algorithm to degradation in
asymmetry. The work in [20] uses a method called stochasgi@nal to noise ratio due to random noise, and very sensitive to
sign change to determine the similarity of two images. The aliensity bias fields.
thors report their surprise at finding that the algorithm, devel- .
oped for normal brains, is also capable of finding the correfr The Evaluation
MSP on certain asymmetrical, pathological brains [on simulatedThe evaluations given in previous papers on MSP extraction
positron emission tomography (PET) images]. Their results rare based on visual inspections by the authors, or on results from
quire accurate initial alignment of the head using a guiding laseonpathological neuroimages only. No quantitative validations
beam. The most recent work on MSP extraction reported ame provided systematically. The algorithm in [20] is tested with
this journal is [1]. The authors evaluate a candidate MSP usiimgages containing simulated spherical lesions on simulated PET
the cross correlation of two intensity vectors, each containimgages, but the authors did not explore failure modes of the
voxels from one side of the current estimated MSP. The authailgorithm. Synthetic MR images are used for testing in [21] but
report that the method is highly sensitive to asymmetry. Moresults are reported for successful experiments alone.
recently, Smith and Jenkinson [27] presented an algorithm for
finding symmetry axes in partially damaged, asymmetrical ini?. The Data

3Here, “2-D images” means each 2-D brain slice is treated independently, diain, as is used by most neurolog|9al |mqge qn.derSFandmg
“3-D images” means volumetric image data. researchers, unevenly sampled, anisotropic clinical images
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Fig. 2. (a) Ideal head coordinate systéfqY, Z, versus the imaging coordinate systéfl”Z. The iMSP algorithm finds the transformation between planes
Xo = 0andX = 0. Rendered head courtesy of the Visible Human Project. (b) A midsagittal pane-(0) automatically extracted using our iMSP extraction
algorithm.

make it difficult to infer 3-D structure by simply interpolating We define andeal head coordinate systeagentered in the

the missing data between slices. The absence of informattamain with positiveXy, Y5, and Z; axes pointing to the right,
between slices in turn makes it difficult to use volumetrianterior and superior directions, respectively (Fig. 2, white co-
intensity-based approaches. Little work has been reported andinate axes). With respect to this coordinate system, the plane
effective MSP extraction approaches for dealing with clinicat, = 0 is defined to be the iIMSP of the braia:virtual geo-
images and pathological cases, both of which are of greametric plane about which the 3-D anatomical structure presents

importance in applied medical image analysis. maximum bilateral symmetrydeally, a set ofaxial (coronal)
Our work, reported in this paper, differs from previous agslices is cut perpendicular to tH&(Y5) axis, and the intersec-
proaches as follows: tion of the IMSP with each slice appears as a vertical line on the

1) The Goal:our goal is to find the iIMSP both in normalslice#
(statistically more symmetrical) and especially in patho- In clinical practice, however, thieaging coordinate system
logical (statistically more asymmetrical) neuroimages; XY Z [Fig. 2(a)], black coordinate axes) differs from the ideal

2) The Approachthe approach taken is edge-based rathépordinates due to positioning offsets (translations) and rotation
than intensity-based, and decomposes symmetry pls#fethe head introduced so that a desired volume can be better
extraction in a volume into discovery of 2-D Symmetrymaged. The orientation of the Imaglng coordinate SyStem dif-
lines on each slice, followed by a robust fitting of a 3-0€rs from the ideal coordinate system by three rotation angles,
plane. pitch, roll and yaw, about th&, Yy, andZ, axes, respectively

3) The Evaluationthe algorithm is evaluated on clinical CT[Fig- 2(a)]. The imaging coordinate system can also have a non-
and MR data, and quantitatively tested using Symheﬁevial translation offset. The goal of an iMSP algorithmis to find
images and real images with ground truth provided b{ie transformation between the two planés= 0 and.X = 0.
human experts; )

4) The Data:the algorithm is applied to clinical image datd> G€ometry of the iMSP
ranging from dense MR images (voxel dimension close Under theimaging coordinate systerthe iMSP can be rep-
to 1 x 1 x 1 mm®) to CT images that are anisotropicresented as
(e.g., voxel dimension 0560.5 x 10 mn?) and unevenly
sampled (e.g., 5-mm and 10-mm slice thicknesses exist in aX +0Y +¢cZ+d=0 1)

one 3-D image).
ge) where (a, b, ¢) is a vector describing the plane normal and

d/va?+ b2 + % is the perpendicular distance of the plane
lll. 3-D MIDSAGITTAL PLANE EXTRACTION from the origin. The parametefs, b, ¢, d) can be scaled by

Neuroradio|ogy scans are in nature 3-D volumetric data eén arbitrary, nonzero amount. For the rest of this SeCtion, we
: . . 7 _
pressed as a stack of 2-D images. In this section, we pres@pgume that they have been scaled sovhat+ 5% = 1. Now
geometric analysis and a working algorithm for extracting the sty anaiysis given to axial slices from now on can be applied also to coronal
iIMSP from these scans. slices (cut along th&™ axis) with corresponding symbols changed?to “Y".”
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consider theth axial slice, represented by the plane equatidwy solving a linear system of equations specified in (4). Note
Z = Z;. The 2-D axis of bilateral symmetry on th#h slice is from (4) and (7) that when the roll angleis zero, plane param-
the intersection of the above two planes eterc = 0 and, thus, all 2-D symmetry axes have the same offset
p; = dregardless o%;; otherwise p; varies linearly from slice

to slice. Finally, the quantity—d cos ¢) measures the displace-
ment of the imaging coordinate system in the direction normal
to the iIMSP.

aX +bY + (cZ; +d) = 0. @)

This is the equation of a 2-D liné;, p;) in the XY plane,
having line orientation

6; = arctan(b/a) (3) B. Symmetry Plane Extraction Algorithm

The geometric results from the previous section have been
used to develop an algorithm for automatically extracting the
iIMSP of neuroimages. The input is a set of slices from an axial

pi = cZi +d. 4) (gorona_l) CTorMR brain_scan, alqng with the associated voxel
dimensions. The output is an estimate of the head’s yaw and

We can make two immediate observations from (2). Firaill angles, and the best-fit IMSP, represented as a set of 2-D
since the IMSP is assumed to be a planar surface, the oriersammetry axes superimposed on each slice.
tion anglef; = arctan(b/a) of each 2-D symmetry axis should 1) Preprocessing Each SliceThe format of the images we
be the same for all slices regardless of thigiposition [Equa- receive varies from scanned-in 8-bit gray images with an av-
tion (3)]. Secondly, the offsei; of the symmetry axis on slice erage size of 656 550, to 16-bit DICOMS3 format raw images
Z = 7, is linearly related ta7Z; as a function of plane parame-with a standard size of 512 512 or 256x 256. The number
tersc andd [see, (4)]. Therefore, given the translational offset aff slices in each 3-D image ranges from nine to 187, and slice
at least two symmetry axes on different slices, we can comptiéckness/space ranges from 1.2 to 10 mm. Sometimes a 3-D
¢ andd by solving a set of linear equations. These observatioimsage contains more than one slice thickness (see Table Il). Al-
form the basis for the IMSP extraction algorithm described though each image is dominated by the patient’s head, some
the next section. images contain additional clutter superimposed on the slice in

A different way to express th&, = 0 plane in the imaging the form of patient data, acquisition parameters, and the phys-
coordinates is to view each point on the plane as being traisal cross section of the head-rest (Fig. 9). We have developed
formed from XYy Z, to XY Z by an unknown rotatiorR = a simple procedure for preprocessing each slice to remove this
vaw(@)roll(¢)pitch(w) and displaced by an unknown transelutter, and thereby isolate just the head region, by adaptively
lation A X, AYy, andA Z,. Specifically, points in the ideal co- thresholding to produce a binarized image and choosing the
ordinate system are mapped into the imaging coordinate systingest connected region in that image (details can be found in
by the transformation [14]).

We would like the iIMSP extraction algorithm to operate on

and 2-D perpendicular offset to the poiit=0,Y =0, Z =
Z;

X cpcl  chswsp — cwsh  cwebsp + swsh the 3-D structure of the brain and bony regions, and not be

Y= |cosh cwed+swspsh  cwspst — chsw unduly influenced by large homogeneous intensity regions, or

Z —s¢ cpsw cwed even the raw intensity values themselves. For this reason, we
Xo AX, first extract binary edges from each slice, and perform all fur-
Yo | + | AY, (5) ther processing on these edge images. Each edge image is cre-
Zo AZy ated by convolving with a Laplacian and marking zero cross-

) ings. Any similar binary edge extraction technique, such as the
wherect = cos 6, s6 = sin 6, and so on. The IMSR(o = 0can  canny edge detector [3], would yield similar results.
be rewritten in terms of the imaging coordinates as Finally, we wish the edge information to capture only gross
- . . _ anatomical structures of the brain and skull, and to ignore fine
cos ¢ cosf.X + cos psin6Y —sin¢Z — (n.A) =0 (6) details and intensity fluctuations. This is achieved by spatial fil-
where n = (cos¢cosf, cospsinf, —sing)? is the unit tering of the images before edge extraction. Specifically, images
normal vector of the plane and = (AXy, AYy, AZ)T. are repeatedly reduced (smoothed and subsampled) by a factor
Dividing by cos ¢ provided abg¢) # 90°, and comparing Of 2 until the shortest side is between 32 and 64 pixels in length.

with (1) Edge extraction is performed on this reduced image, so that only
large-scale anatomical boundaries are found. In addition to fil-
a=cos)  b=sinf c=—tang tering out fine details, the resulting reduction in image size also
d =—(n.A)/ cos ¢. (7) speeds up the subsequent processing steps.

) ) 2) Estimating Symmetry Axis Orientatiofy for Each
That is, the shared angte= ¢; = arctan(b/a) of each axial gjice: Geometric reasoning in Section IlI-A tells us that
slice is actually the yaw angle of the head's imaging coOrdiach 2-D symmetry axis should have the same orientation
nate system. Furthermore, the roll anglean be determined \yhich corresponds to the yaw angle of the patient’s head. The
from the offsets of the 2-D symmetry axes on the set of slicggyorithm begins by extracting an estimate of this angle from

5This is a modest geometric restriction on the roll angle. If the roll anglewef‘aeaCh 2-D axial slice. These estimates are later combined to
to approach 99, we would be dealing witsagittalrather than axial slices. ~ form a single best estimate.
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TABLE I
A SAMPLE OF INPUT 3-D IMAGE DATA
Set | Modality | Orientation Matrix Voxel (mm?) Pathology
3 CT axial 636x550x33 0.5x0.5x5 (1-15) right parietal/occipital
enhanced 0.5x0.5x10 (16 - 33) meningioma
5 MR coronal 256x256x123 0.9375x0.9375x1.5 Normal
17 CT axial 686x550x9 0.5x0.5x10 Right thalamic
acute bleed
58 CT axial 678x542x17 0.5x0.5x5 (1-9) Frontal astrocytoma,
0.5x0.5x10 (10-17) high grade glial tumor
82 MR sagittal 256x256x124 | 0.9375 x 0.9375x 1.5 | Left parasella
meningioma
87 MR sagittal 256x256x124 0.9375 x 0.9375 x 1.5 right frontal
astrocytoma
89 MR sagittal 256x256x124 |  0.9375x 0.9375x 1.5 Left frontotemporal
astrocytoma
91 MR axial 176x236x187 0.98x0.98x1.2 Normal
109 CT axial 512x512x21 | 0.4395x0.0.4395x5 (1-10) | Left parietal infarct
0.4395x0.4395x8 (11-21)
110 CT axial 512x512x24 0.4297x0.4297x5 Normal
112 CT axial 256x256x20 | 0.8672x0.8672x5 (1-11) | Right occipital infarct
0.8672x0.8672x8 (12-20)
(d)
Fig.3. (a)ACT axial head imag®;. (b) The vertically reflected image:f+ (5;). (c) The rotated reflected imaget(refy (S;), 26). (d)-(f) The corresponding

edge images. Note that§; is oriented with anglé, ref, (5;) has angle-6, thus, we must rotate k86 to bring it into alignment withS;.

Recall the definition of bilateral symmetry: a reflection of a&valuate a candidate orientatién we rotatercfy (.S;) by 26;
bilaterally symmetric images; about its symmetry axis pro- about the center of the image, cross correlate with the original
duces a figureref(S;) that is approximately identical t§;. imagesS;, and record the maximum correlation value. Formally,
Therefore, the orientation of the reflection line that maximizebe maximum cross-correlation valdés, 4, for brain slice: at
the cross correlation between the original image and its reflenglef; can be expressed dds, o, = max{Cs, ¢,(x, 1)},
tion is searched for. First, the imagg is reflected about the where the correlation score surfacg, o, is expressed as a
current vertical center line, which is the intersection of the 2-Binction of the 2-D locatior{z, v)
slice with theX = 0 plane in imaging coordinates, to produce a
new imagere fi-(S;). This has the effect of reflecting the corre- ro - Yo
sponding 3-D VE)IuZnetric image with th€ = 0 plane (Fig. 2). Cs.o(m,y)= > > Si@’ —z, ¢ —y) x Si(', ¢/)

If the reflection axis ofS; is oriented?® from vertical, then the z'=ly'=1
symmetry axis ofcfy (S;) will be oriented—6° from vertical, and
regardless of where it appears in the image (Fig. 3). Therefore, to

Si(x, y) =rot(refy(S;), 20;) (8)
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Fig. 4. Using pairs of edge images to find the best correlation value for each given rotation angle. The cross-correlatior(égnfa]ceare shown fop;, =
—22 andd;, = —14°. The brightest point indicated the highest correlation score. Note: the correlation values have been rescaled for better viewing. Also shown
is a plot of the maximum cross correlatiails, , o, between imagesot(refy-(S;), 26;) andS;, for 8, in [-31, —11] © sampled at every°1

size(S;) = size(S:) = [xo, Yo] 9)
T € [_$07 -’170], ye [_y07 yO] (10)
Si(z'—=z, v —y) =0 when
@' —w g Lawol or v —y¢l[lul (11) MSP: aX +bY +¢Z +d=0

The 2-D cross-correlation resulls,, 4. is a 2-D array that is
double the size of the original image in bakhandY dimen-
sions (Fig. 4). Elements in the array contain correlation valui R o] angle
for all possible horizontal and vertical disparities between tF
original image and the rotated reflected image; therefore, tt  tan ¢ = -c¢/sqrt(a”2+b"2)
method determines the orientation of the symmetry axis regau
less of the translation of that axis in the image.

In most instances, a single, well-defined peak occurs in tl
cross-correlation surfad@s, ¢, (Fig. 4). The global maximum
correlation valueMs, 4, is recorded to represent the “score”
of angle ¢; as an estimate of the unknown symmetry axi
orientation. Such correlation scores are evaluated for multig
candidates; within a range of possible symmetry axis ori-
entations, to acquire a plot of correlation scores versus angIFglas
(Fig. 4). Since cross correlations must be performed for man;?'
different candidate angles, the correlation is performed in
frequency space for greater efficiency. Note that the Fourieo that we only have to compute the Fourier transformation
transformF commutes with rotations and vertical reflectionspf S; once—the flipped and rotated versions can be generated

Yaw angle tan 0 ="b/a

5. Fitting the iIMSP through a set of midlines in three dimensions.
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Fig. 6. Fitting the IMSP to a set of 2-D slices [one 2-D slice is shown in Fig. 1(a)]. The computed yaw angleThi@stars without circles denote outlier points
found and excluded from the fitting, while the stars with circles are the remaining inliers. The solid grey line is the least-median of squardbdirsharer
black line is the least-squares iIMSP line fit after discarding outliers. The dashed line is the MSP that would have been estimated by leastutiprarkadfmot
been removed.

directly in frequency space by flipping and rotating the tranghe constant 1.4826 is a coefficient to achieve the same ef-

formed imageF(S;). That is ficiency as a least-squares estimator in the presence of only
Gaussian noisg; is the dimension of the parameter vector (in
Cs, 9, =XCorr(S;, rot(refy(S:), 26;)) our casep = 1), andn is the number of samples. This is a
=FUF (Si)rot(re fv(F(Si)), 26;)) standard formula from robust statistics [35]. The distribution of

inliers is assumed to be Gaussian; there is no assumption on
whereF*(S;) is the complex conjugate of the Fourier transforrthe distribution of outliers, except that they are located far away
of S; andF—! is the inverse Fourier transformation [23], [25].from the median. In our implementation, sample points falling
After testing all required angle;, the one that yields the 3 times the robust standard deviation from the median (median
largest correlation score could be chosen as the esti@gaﬂa +35) are removed to filter outliers. The rest of the points (the
the best symmetry axis orientation for slife. That is, 6; inliers) are used to compute yaw angle using a biased, weighted
argmax(Ms, ,).Since the candidate anglés are coarsely mean estimator. For brain sli¢ethe exact form of weight used
sampled (say every’J, a more precise estimate is obtained bin our experiment isv; = (n — ¢ + 1)2. The bias serves to
first smoothing the correlation score versus angle curve and tigivie lower brain slices more weight. We have observed that the
finding the peak of the smoothed curve to sub-pixel precisidawer brain slices usually produce a “peaki€rs; . curve be-
(Fig. 4). cause the slices lower in the brain contain complex bilateral
3) Combiningé,, ..., 8, into a Single MSP Yaw Angle bony structures in axial slices (similarly, the frontal slices in
6: Since all brain slices in the scan should have the same 2eDronal slices), while slices higher in the brain become ovals
symmetry axis orientation, it is necessary to combine resuftseven near-circular at the top of the head.
9 from each slice to produce a reliable cumulative estimate4) Estimating Symmetry Axis Offsep; fOf Each
6 of the yaw angled for the given 3-D image. Simply taking Slice: Having computed a yaw angle estimatethat best
the mean value of thé; would be susceptible to outliers indescribes the shared orientation of each 2-D bilateral symmetry
the computed data. Instead, we treat this as a robust estima#igis, each images; is rotated by an angle-6 so that its
problem with one parameter (the yaw angle) andampled symmetry axis should be oriented vertically in the image. That
points, each of which is computed from one of the-D slices. image is then cross correlated with a vertical reflection of
First, the median of the sample values is found, ansbast itself. The columrC of the correlation image where the highest
standard deviations, is computed using the median of the abeross-correlation value occurs is used to compute the value of
solute values of the residuats offsetp;, = C/2 for that slice. X
5) Computing the iIMSP and Roll Angle frafrand Offsets
o = 1.4826[1 + 5/(n — p)] * median|r;|. (12) p1, ..., po: To completely specify the iIMSP involves com-
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puting estimates for the plane parametersb, ¢, d) from (1). A 3D Brain Scan with n 2D Slices
From (7) it was seen that, givén we can already compute two
parameter estimateés = cosf andb = sin 6. To compute pa-
rameters: andd of the iIMSP, recall the simple linear relation-|
shipp; = c* Z; + d, defining an over-determined set of lineal
equations inp; andZ; that can be solved far andd. Solving

this linear set of equations is equivalent to fitting a plane to a < @ @ ® o o @ Step 3
of parallel lines in 3-D Euclidean space (Fig. 5), each having o

Step 1
Step 2

Image Preprocessing

entationd;. It is known that straightforwarteast-squaredine 61 l 62 l 6
fitting would be sensitive to outliers in the computedvalues.
The existence of such outliers is unavoidable in our case, ¢ [ Robust in-plane Angle Estimator Step 4
to pathology effects, digital image artifacts, and symmetry ax i
ambiguity in the higher brain slices. We perform a robust line l )
regression instead. The obvious choice is to lesst-median ‘/‘/
of squareqLMS) [24], which has a breakdown point of 50%.
After applying LMS regression, we identiffp;, Z;) outlier ® ® O ¢ Step 5
points by using the robust standard deviation measure definet
formula (12) (sep = 2) to filter points based on their residuals Pr 3P vPn
A standard least-squares line fit is then applied to the inliers Robust 3D Plane Estimator Step 6
compute a final estimate f@randcz (see Fig. 6). l
This final set of parameterdi, b, ¢, d) completely specify
the best-fit IMSP. The roll angle of the head can now be es 9 8 !6\ é\ ’Q é\ Q Step7
mated ag) = — arctan(¢). Perpendicular distance of the iIMSF R O

from the origin of the ideal head coordinate system is computeg 7. A flow chart of the iIMSP extraction algorithm, where “X” with a circle

asd cos ¢ As a final step, we recompute a 2-D symmetry axigound it means 2-D cross correlation, and with a double circle means multiple

for each slice with onentatloﬁ and offsetp; = éx Z; + d This cross correlations using different rotated images. The right column shows the
‘ corresponding step numbers described in the IMSP extraction algorithm.

is equivalent to intersecting the estimated iIMSP with each brain

slice to obtain a new set of 2-D symmetry axes. 7) Compute the remaining plane parameters cos(d ) and

6) iIMSP Extraction Algorithm Summary: b = sin(f), and roll anglej = — arctan(c). Intersect
Input: a set of brain scans in axial (or coronal) format, voxel ~ the estimated MSP with each 2-D slice to obtain a new
dimensions. set of 2-D symmetry axes with orientatiéhand offset
Output: &, b, ¢, d, head yaw and roll anglés ¢, translational pi = Ex Zi +d.
offsets of the IMSP.
Algorithm (Fig. 7). V. IMPLEMENTATION AND SAMPLE RESULTS

1) Isolate the head region. Reduce the size of each slice byrhe algorithm is implemented on an SG2 R10000. using
smoothing and subsampling. Compute binary edge ima-mixture of MATLAB and C subroutines. The CPU time for

agesSy, ..., S, from the reduced slices. running the algorithm is dominated by cross correlation com-
2) Pick one of the lowest 2-D brain slice%. Construct putations. Each cross correlation takes 0.26 s for the &4
S = §; reflected w.rt.X = 0 plane. Findf;,,;; = reduced-resolution slices used to estimate yaw angles, and 10 s

arg max{C;(S;, rot(S;, 8))} whereC; is the cross cor- for the original 512x 512 slices used to estimate translational
relation ofS; and rotated;, and¢ is sampled everySin  offset. Total time spent doing correlations for a 20-slice neural
the range of—90°, 90°] or [-180°, 180°] if necessary. image is roughly 5 min. Total time for all algorithmic steps is

3) find symmetry axis orientatiofy on each 2-D slicé&; as roughly 7 min. No attention has been paid to speeding up the
0; = arg max{C;(S;, rot(S}, binie + 7))}, Wherej runs  code, except for using the fast Fourier transform for cross corre-
from —10 to 10 in 1° increments. lation computation. The algorithm has been applied on 130 3-D

4) Compute the shared yaw (or roll) angle from all the axid#nage sets with varying modalities (CT [enhanced and nonen-
(coronal) slicesf = robust(6y, ..., 6,,), where func- hanced] and MR [T1, T2, enhanced and nonenhanced]). Table II
tion robust eliminates outliers [35] and finds the mean ohows the parameters of a few sample input image sets. Note
the weighted inliers. that some examples have very sparse sampling i¥tdeec-

5) Compute image offsefs by finding the maximum cross tion (every 10 mm). An automatically extracted “midsagittal”
correlation value of each yaw (roll)-angle-corrected 2-lane is shown in Fig. 2(b). Fig. 8 shows the symmetry axes
slice and its vertical reflection. extracted from a set of axial images with a roll angle of 15

6) Remove outliers from(p;, Z;) using least-median of (out-of-plane rotation). Figs. 1(b) and (d) and 9-11 show exam-
squares line fitting [24] and then fit a least-squares line fsles of extracted symmetry axes when there are obvious asym-
the inliers using the equatign = ¢Z; + dto getc andd. metries in the head.

6The breakdown point of an estimator is the fraction of outlying data points “Address: SGI, Mountain View, CA, 94043, USA. Website:
that may cause the estimator to take on an arbitrarily large aberrant value. http://www.sgi.com/o02/
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A. Yaw and Roll Angle Accuracy Evaluation

To evaluate the accuracy of computed yaw and roll angles, a
densely sampled MR image set was resampled using trilinear
interpolation to artificially vary the yaw angles from10° to
1 in 2.5 intervals, and the roll angles from15° to 15 in
5° intervals. To determine the approximate absolute ground
truth angles of each dataset, we first ran the algorithm on the
original dataset, revealing a yaw angle of £.2hd a roll angle
of —1.75". These computed offsets of the original dataset were
added to the known relative yaw and roll of each resampled
dataset to determine a “ground truth” yaw and roll for that
dataset. The algorithm was then run to determine an estimated
yaw and roll angle. Given the above definition of ground truth,
the average error was0.3> for computed yaw angles (Fig. 12)
and <0.75 for computed roll angles (Fig. 13).

B. Tolerance to Asymmetry

Fig.9. The midsagittal plane automatically extracted from a clinical CT image o ) ) )
where obvious asymmetry is present. To test the sensitivity of the IMSP extraction algorithm to le-

sions of varying size and position, we constructed a perfectly
symmetrical volumetric neuroimage from a clinical CT scan of
a normal brain (dataset 110 in Table Il). Spherical “lesions” are
superimposed in the symmetrical volumetric image by speci-
No obvious errors have been observed when applying tiyéng a 3-D position, radius and intensity value. The lesion in-
IMSP extraction algorithm to 130 clinical image sets withensity replaces the densities in the CT scan. Fig. 14 shows one
varying modalities and scan geometries. In this section, wesult of iIMSP extraction for a lesion with radius 42.97 mm
report a series of experiments that test the robustness of (he0 pixels), with density darker than the surrounding tissues.
iIMSP algorithm. We have tested the algorithm extensively with lesions in dif-
For the experiments in Sections V-B and V-C, we chose fgrent locations, and have “grown” lesions of up to 128.9 mm
construct an artificially symmetric image from clinical image$300 pixels) in radius. The iIMSP algorithm’s performance starts
for quantitative testing. This was done because 1) visual inspé&gdecline when the tumor radius reaches 85.9 mm (200 pixels),
tion is subjective; 2) from areal brain image, itis hard, if notimsee Fig. 15, and totally fails when the lesion radius reaches
possible, to distinguish whether an error is caused by the iM$P7.4 mm (250 pixels), as is summarized by the plots in Fig. 16.
algorithm or by the nonmodeled anatomic variations of humdar®r comparison, the average radius of a human brain is approx-
brains (see Section VI); 3) no human brain scan exhibits perféately 70 mm.
digital symmetry, thus, no known ground truth in a real image
can be used dwectly for iMSP algorithm evaluation. C. Comparison of IMSP Extraction Methods: Intensity-Based
Two ground truth_ image test sets were created from datasgfs ;o Edge-Based
5 and 110, respectively (Table I); one is a dense, coronal MR
volume, and the other is a sparse, axial CT volume. Each groundn this section, we compare our iIMSP with a representative
truth test set was constructed by finding the midsagittal plaimgensity-based approach: maximization of mutual information
by hand, then reflecting one half of the head volume about th{igll). The IMSP is extracted using Ml by registering a 3-D brain
midsagittal plane to form the other half, producing a perfectiyolume V' with a reflected version of itsel¥”’. Following the
symmetrical volume. Since the constructed test set is perfectgme geometric reasoning as in Section lll, halving the trans-
symmetric, the ground truth iMSP is known. formation parameters provides the solution for the location of

V. EVALUATION
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(b)

(d)

Fig. 10. The symmetry axes extracted from different clinical CT scans where obvious asymmetry is present. (a) Acute blood (left frontal), ¢a) anlt#o
blood (left frontal and right parietal), (c) infarct (right frontal), and (d) infarct (left frontal and temporal).

the best reflection plane. The mutual information registration 1) Tolerance to Noise and Asymmetryo study the effects
code implemented in [18] is used for this testing. of noise and asymmetry on iMSP extraction, we have tested our
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(b)

(©

Fig. 11. Sample MR tumor images with IMSP identified. Input images are originally in sagittal slices. Images courtesy of Dr. Kikinis, Harvard3dkdalal
Pathology types: (a) meningioma (left parasellar), (b) astrocytoma (right frontal), and (c) astrocytoma (left frontotemporal).

algorithm on the MR ground truth dataset, side-by-side with tl{Eig. 17). The algorithm reported in this paper worked correctly
MI-based approach. The data is artificially degraded by addiaglevels of noise up to SNR —10.8 dB when no lesion was
different levels of zero-mean Gaussian noise, and by insertipgesent, and up to SNR —4.82 dB in the presence of a lesion
spherical lesions of varying diameters. Algorithm breakingith radius 56.25 mm (60 pixels).

points are determined by incrementally adding noise until each2) Tolerance to Bias Field:We have also tested both our
respective algorithm fails to detect the correct symmetry plan®SP algorithm and the MI-based approach on MRI volumes
Each incremental addition of noise corresponds to a loss afrrupted by a simulated intensity “bias field” (Fig. 18). A
6.02 dB of signal-to-noise ratio (SNR), or roughly 1 bit obynthetic bias field is generated as a Gaussian with sigma
informationg Fig. 17 shows representative resulting slices, artf pixels, centered at pixel offséX, Y), rescaled so that the
iIMSPs extracted by the algorithms (shown on 2-D slices). Intensity at pixel(X, Y) has grey levelZ. This bias image
both cases, with and without lesions, the MI-based approashthen added to each slice of the MRI volume. Testing was
fails at lower levels of noise than our edge-based approastrformed for different values df, ranging from a mild bias

field (G = 0.25 times the maximum grey value Gmax in the
8SNR is defined a0 * log (var(signal)/var(noise)). An SNR of less than zero_ . ( grey

means that the noise has a higher variance than the signal. original MRI volume), to very severes = 10 x Gmax). The
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Fig. 12. Actual versus detected yaw angles in the MR axial scans. The so%
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second medical doctors is 20 and 4.5 years, respectively. The ra-
diologists were allowed to view the whole set of 2-D slices from
one volumetric image for reference while using a mouse to click
on a brain scan displayed directly on a computer screen. The
fairness of this comparison between a human expert (drawing
a line on each 2-D slice) and the computer algorithm (fitting
a plane within the whole 3-D image) is based on the fact that,
when interviewed, the neuroradiologists acknowledged “We are
actually at an equivalent stage as the computer algorithm in that
when we are drawing the midline, we have a mental picture of
the 3-D brain. This mental picture is formed by looking at all the
2-D slices, and drawing upon many years of experience.” Al-
though geometric reasoning tells us that the angles of the inter-
section line of the IMSP and each axial slice should be the same
(Section IlI-A), there is a variation in the angles determined by
the human experts. The standard deviation of the human mea-
surement error on different sets of slices varies from 0.55@5
F678 (Table II).

line is the perfect detection result and the dashed line is formed from the yaw The correlation scores between Experts 1 and 2, Expert 1

angle values detected using our algorithm.

-5

Detected Roll Angles (Degrees}

20 L
-15 -10 -5 0 5
Rotated Roll Angles (Degrees)

Fig. 13. Actual versus detected roll angles in the MR coronal scans. The solid

and the computer algorithm, and Expert 2 and the algorithm
are, respectively, 0.9968, 0.9951, and 0.9874. Thus, there is
a high level of agreement between the human experts, and
between each expert and our algorithm. This can also be seen
by plotting points representing one agent’s estimates (there
being three agents—two humans, and one computer) against
another’s, as in Fig. 19. In each case, the data points lie very
close to the superimposed least squares Yne= « + S5X.
Indeed, the F-tests for the three regressions [4] were highly
significant: 619.5, 407.8, and 155.19, respectively, all in one
and four degrees of freedom. This indicates that the angles
estimated by all three agents are very similar to each other. In
all three cases, the estimate @ffrom the least squares line

is not significantly different from zero, at level 0.05, and all
three confidence intervals fg# include 1 ([0.8278, 1.0356],
[0.7804, 1.0292], and [0.7464, 1.1745]). Therefore, there is no
statistically significant difference between the estimates given
by the three agents.

VI. DISCUSSION

line is the perfect detection result and the dashed line is formed from the roll

angle values detected using our algorithm.

We have observed that IMSP computation is not adversely af-
fected by large lesions and mass effect in pathological images.

mutual information approach failed when even the mildest bid§!iS May seem strange since cross correlation is used as a mea-

was present [Fig. 18(a)]. In contrast, our algorithm did not fafiure for matching two images (in our case, the two halves of a

at even the highest levels of bias field tested [Fig. 18(b)]. This/&ain)- It is natural to ask why the algorithm works so well on

so because our method is based on local edge detection, wilEgstically asymmetrical images. We can provide the following

is relatively unaffected by the addition of a smooth intensiiglévant observations:

bias field, while the global distribution of intensity values in 1) Majority Rules:For a 3-D pathological brain, a lesion

the volume is critically important to the mutual information resides on only a relatively small number of 2-D slices;

approach. thus, when the iMSP is fit to the whole set of 2-D slices,
normal slices with prominent bilateral symmetry domi-
nate the IMSP’s position.

2) Edge FeaturesBy using edge features rather than the
To compare the algorithm with human performance, we asked  original intensity images directly, the effect of strong den-

two neuroradiologists to hand-draw the ideal midline on each  sity concentration around lesions is much reduced.

2-D slice of six randomly chosen 3-D CT brain scans. The ex- 3) Lower Brain Slice Stabilityl.ower brain slices are rel-

perience in interpreting clinical CT images of the first and the atively stable due to the bilateral structure of the skull.

D. Comparison with Human Experts
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Fig. 14. The iMSP algorithm performs successfully when presented with an artificially grown lision of 42.77 mm (100 pixels) radius.

. i

Fig. 15. The iMSP algorithm performance on an artificial lesion with 85.5 mm (200 pixels) radius.

Yaw Angles

€Y (b)

Fig.16. (a) Yaw and roll angle errors and (b) translational offset errors versus the radius of an artificial lesion in millimeters<Dgif87 mm). The spherical
lesion is centered at the 3-D image pixel location= 310,Y = 210, andZ = 350 (that is the pointf = 133 mm,}Y” = 90 mm, andZ = 150 mm] with respect

to the back-upper-left corner of the image volume). The iIMSP algorithm’s performance starts to decline when the tumor radius reaches 86 mn),(@00 pixels
totally fails when the lesion radius reaches 107.4 mm (250 pixels).

In our algorithm, the lower brain slices are given more of the brain appears to enhance the position and orienta-
weight when determining the orientation of the iIMSP. tion accuracy. This brain structure is emphasized by using
4) Robust EstimatorsRobust estimation techniques are edge features.
used to remove outliers from computed measurementsThis work addresses two main issues. One is that the brain
before combining them to determine other quantities. sometimes departs drastically from perfect symmetry. The other
5) Brain Structure:Although the bony skull is influential, is that using clinical images introduces challenging factors like
the accuracy of the detected symmetry axes decreakmge initial offsets, undersampling, artifacts (bias field) and
when the symmetry axes are determined by the silhouetteise. The acute advantage of our iIMSP extraction algorithm
of the skull alone [14]. Therefore, the internal structurever existing MSP extraction algorithms is its robust treatment
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(d) (e)

Fig. 17. Sample results on images artificially degraded with lesions and noise, to determine algorithm breaking points. The images shown vethifld$P id

are the ones just before the corresponding algorithm'’s breaking point. (a) One slice from original dataset with no nois@l3SB&RIB. (b) Result from iIMSP
extraction using MI-based registration, on a dataset with added noise only. SNR of breaking point is 7.23 dB. (c) Result from our algorithm whelataseon a
with added noise only. SNR of breaking pointis.0.84 dB. (d) Result from iIMSP extraction using MI-based registration, on a dataset with lesion {ddus

mm, about 60 pixels) plus noise. SNR of breaking point is 13.25 dB. (e) Result from our algorithm, on a dataset with lesion (same) plus noise. SkB of break
point is —4.82 dB.

of unevenly sampled, anisotropic clinical images, particulariyut-of-plane rotation errors is to use both axial and coronal
CT images, containing large lesions and mass effect. slices simultaneously to estimate the yaw and roll angles

Limitations of this IMSP extraction algorithm include: (usually, one of these sets of slices is measured directly, and

a) “Ideal midsagittal plane is a planar surface” Assump-the other is created by resampling the image volume). Since
tion: Itis under this assumption that geometric reasoning tetlsere is no limit to in-plane rotation angle estimation, the
us that the yaw (roll) angle on each slice of an axial (coronal) sstme algorithm described in Section 1lI-B can run on both
should be the same [see (3)]. Sometimes this assumption is \ddentations in parallel, with the computed result of the in-plane
lated by true anatomical structure. This is exactly where a clestation angles (the computed yaw angle from axial slices or
mathematical model and complicated reality may conflict witthe computed roll angle from coronal slices) weighted more
each other. Even for normal human brains, the interhemisphkighly than the out-of-plane rotation angle estimates.
ical plane may sometimes be a curved surface (for example, sime) Speed: Cross correlation is an expensive operation in gen-
ilar to the shape of a piece of a potato chip); therefore, a plaeml. We have not made any special effort to speed up the algo-
cutting through the brain will not always intersect each 2-D axiakhm other than using the fast Fourier transform (Section V).
(coronal) slice coincident with the “midline” of the 2-D slice. If\When a 3-D image contains a large number of slices, the IMSP
the goal is to find a reference plane, then the coincidence issuedsnputation process can be slow. However, from Fig. 7 one can
not important so long as the IMSP can be extracted consistenglge that the cross correlation operation for each 2-D slice can be
If the goal is to find the exact shape of the interhemisphericabne in parallel instead of sequentially. If a parallel hardware
membrane, then the extracted iIMSP can be used as the initiavice such as an optical correlator were used, the speed of this
position for an energy minimizing procedure [e.g., Fig. 1(d)]. algorithm would be greatly increased.

b) Out-of-plane rotation:When out-of-plane rotation is
larger than 20, estimates of the roll (yaw) angle from a stack
of axial (coronal) slices can not be trusted. This is because
the p;s, the offsets of the midline, can be under-estimated, In this paper, we have presented an iIMSP extraction algo-
causing the roll (yaw) angle value to be smaller than it sthm that is capable of finding the ideal MSP from asymmet-
in reality. One strategy used to increase robustness to largml neural images without compromising accuracy on sym-

VIlI. CONCLUSION
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(b)

Fig. 18. Sample results on images with artificially added bias field. The original MR test image can be found in Fig. 17(a). Here, the roll angkesbfreage t
is set to 10. (a) The MR test image with added bias figld = 0.25, and the iIMSP found by our algorithm. The algorithm based on maximization of mutual
information failed on this test case. (b) The MR test image with added biagZietd10, from which our algorithm still finds the iIMSP correctly.

TABLE 1lI
COMPARISON OFHUMAN VERSUSCOMPUTERESTIMATED Y AW ANGLES (IN DEGREE9
Label Pathology | # Slices | Expert 1 | Expert 2 | Expert 1 | Expert 2 | Computed

Mean(6;) | Mean(f;) | Std(8;) | Std(6:) Yaw §
CMUI21 infarct 17 1.6208 1.5730 1.0290 0.9972 0.8202
CMU126 blood 21 7.1404 6.2472 2.3678 0.5595 6.0347
CMUI129 | infarct 10 -2.0248 | -1.8201 1.1141 1.6304 -2.2318
CMU130 blood 21 1.3257 0.6829 0.9091 0.8967 1.3216
CMUI170 | normal 20 -4.3187 | - 4.5296 1.2781 2.0080 -4.5109
CMU171 | normal 22 -1.3028 | - 1.7582 1.0626 1.1963 -1.0129

metrical ones. Our work presents a sound geometric methaoak been found to exhibit superior performance under adverse
for estimating the symmetry of a 3-D object using a sparse seinditions.

of 2-D slices. The proposed algorithm has been applied to 130The robustness and simplicity of this approach stems from
clinical image sets with varied modality, volumetric samplingjsing edge information rather than direct use of intensities,
and background clutter. In this paper, the algorithm has beesing a sound mathematical model of 2-D-3-D imaging ge-
guantitatively evaluated using three methods: 1) image resapmetry, and using robust parameter estimation techniques to
pling, 2) introduction of spherical lesions, noise and simulatedmove the effects of outliers. This work combines 2-D and
bias-fields, and 3) comparison with human experts. The det&b images in such a way that 2-D data is used to predict a 3-D
tion accuracy of yaw and roll angles on the resampled imagaisne and the 3-D structure is used to correct local errors on
are estimated within“1of rotated angle values. The iIMSP esti2-D slices.

mation method does not begin to break down until lesions oc-We are currently exploring how to use the iIMSP extraction
cupy a significant fraction of the brain, SNR is very low, oalgorithm to facilitate registration and comparison of brain im-
the bias field is quite intense. Finally, no statistically signifiages from multiple sources and modalities. Computing simi-
cant difference can be found between yaw angles estimateddmjty among diverse brain images is part of an ongoing project
the algorithm and those estimated by trained neuroradiologidtsstudy how a patient’s brain scan can be used to retrieve med-
The iIMSP algorithm has also been compared with an approacally relevant cases from a neural image database [16], [17].
based on maximization of mutual information registration, ar@ther future work includes choosing a good statistical sampling
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Cross Correlatjon = 0.9968

Cross Correlatjon = 0.9951
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Cross Corrglation = 0.9874 ¢

(@) (b)
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Fig. 19. The least-squares linear regression liiess o + X for pairwise comparison of experts and the iIMSP algorithm. The estimatetvalues are,
respectively, (ajv;2 = —0.3131,312 = 0.9317; (b)x1z = —0.2979,8:5 = 0.9048; (C)x23 = 0.0069,3>; = 0.9605, where the subscripts denote 1: Expert 1,
2: Expert 2, and 3: the iMSP algorithm. In all three cases, the estimatésafiot significantly different from zero, at level 0.05, and all three confidence intervals

for 3 include 1 ([0.8278, 1.0356], [0.7804, 1.0292], [0.7464, 1.1745]).

method for dense 3-D brain images, evaluation of the IMSP ex42]
traction algorithm on orthopedic images, and testing the effec-
tiveness of this approach on image modalities such as PET and
SPECT. [13]
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