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Robust Midsagittal Plane Extraction from Normal
and Pathological 3-D Neuroradiology Images
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Abstract—This paper focuses on extracting the ideal mid-
sagittal plane (iMSP) from three-dimensional (3-D) normal and
pathological neuroimages. The main challenges in this work are
the structural asymmetry that may exist in pathological brains,
and the anisotropic, unevenly sampled image data that is common
in clinical practice. We present an edge-based, cross-correlation
approach that decomposes the plane fitting problem into discovery
of two-dimensional symmetry axes on each slice, followed by a
robust estimation of plane parameters. The algorithm’s tolerance
to brain asymmetries, input image offsets and image noise is
quantitatively evaluated. We find that the algorithm can extract
the iMSP from input 3-D images with 1) large asymmetrical
lesions; 2) arbitrary initial rotation offsets; 3) low signal-to-noise
ratio or high bias field. The iMSP algorithm is compared with
an approach based on maximization of mutual information
registration, and is found to exhibit superior performance under
adverse conditions. Finally, no statistically significant difference
is found between the midsagittal plane computed by the iMSP
algorithm and that estimated by two trained neuroradiologists.

Index Terms—Medical image analysis, midsagittal plane, patho-
logical neural image analysis, robust estimation, symmetry detec-
tion.

I. MOTIVATION

NORMAL human brains exhibit an approximate bilateral
symmetry with respect to the interhemispheric (longitu-

dinal) fissure bisecting the brain, known as the anatomicalmid-
sagittal plane(MSP). However, human brains are almost never
perfectly symmetric [5], [6], [10]. Pathological brains, in partic-
ular, often depart drastically from bilateral symmetry. For effec-
tive pathological brain image alignment and comparison (e.g.,
[5], [16]), it is most desirable to define aplane of referencethat
is invariant for symmetrical as well as asymmetrical brain im-
ages, and to develop algorithms that capture this reference plane
robustly.

We define anideal midsagittal plane(iMSP) asa virtual
geometric plane about which the three-dimensional (3-D)
anatomical structure captured in the given neuroimage
presents maximum bilateral symmetry. Factors that challenge
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the robustness of an iMSP extraction algorithm include: 1) the
intrinsic factor: the brain and the skull being imaged can be
either bilaterally symmetric or asymmetric. Brain asymmetry
can be caused by any combinations of normal brain asymmetry,
abnormal tissue intensity alteration, and mass effect. Abnormal
tissue intensity alteration can happen due to, e.g., a nonhemor-
rhagic stroke as shown in Fig. 1(a). Mass effect can be caused
by virtue of swelling or space occupying lesions, e.g., a tumor
as shown in Fig. 1(c). 2) the extrinsic factor(s): the volumetric
neuroimage can be anisotropic, and/or unevenly sampled1 ;
and initial alignment inconsistencies and artifacts/noise can be
introduced during the imaging process. The goal of our work
is to extract the iMSP from a clinical 3-D neuroimage while
tolerating both intrinsic and extrinsic factors.

The well-known Talairach framework is an anatomical land-
mark-based approach to define a 3-D brain coordinate system
[30]. The principal orthogonal axes in the Talairach framework
are determined by a line passing through the anterior and poste-
rior commissures, called the AC–PC line, a line going through
the posterior margin of the anterior commissure and perpendic-
ular to the AC–PC line, called the (VAC)2 line, and the inter-
hemispheric sagittal plane (referred to as the midline in [30, p.
5]). Besides the intrinsic and extrinsic factors mentioned above,
patient image to Talairach framework registration is difficult to
achieve automatically due to its reliance on precise location of
3-D anatomical image features that may not be obviously identi-
fiable. Furthermore, when the interhemispheric sagittal plane no
longer lies on a flat surface due to normal or pathological defor-
mation [Fig. 1(c)], the interhemispheric medialplaneis ill-de-
fined. In contrast, the iMSP is based on global geometry of the
head and can be found using low-level image processing tech-
niques. It remains well-defined in pathological brains, forcing a
virtual left–right separation consistent with the location where
an idealmidsagittal plane would have been if no tissue deterio-
ration or mass effect had occurred [Fig. 1(b) and (d)]. Automatic
extraction of the iMSP, at least, can provide an initial estimate
for the automation of Talairach framework alignment in patho-
logical neuroimages.

Designing a robust algorithm that handles clinical neuroim-
ages with pathologies originates from our desire to facilitate
on-line clinical image database indexing and retrieval for

1Here, “anisotropic” means that the image voxel shape is not a cube, e.g., the
slice thickness can be 10 mm while pixel size on each slice is�1� 1 mm . “Un-
evenly sampled” means that there can be more than one slice thickness in one
3-D image, e.g., some slices have thickness 5 mm and some 10 mm (Table II).
These are more common in computed tomography (CT) images.

2The line that is vertically traversing the posterior margin of the anterior com-
missure. This line is the basis for the vertical frontal plane [30].
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(a) (b)

(c) (d)

Fig. 1. (a) Nonspace-occupying lesion (infarct). (b) The intersection of the iMSP and the given two–dimensional (2-D) axial slice. (c) An axial brainslice with
deformed midline due to a tumor. (d) The intersection of the extracted iMSP with the same 2-D brain slice (straight line), and the deformed midline (curved line)
captured by a “snake” active contour.

real-time medical image consultation [16], [17]. This effort fills
a gap in medical image analysis algorithms, as stated in [8],
“To date, all too often image analysis algorithm development
ignores the analysis of different abnormal, pathological or
disease states.” Our iMSP extraction algorithm is designed
for and tested on both normal and pathological, 3-D CT or
magnetic resonance (MR) neuroimages. The iMSP is robustly
determined via an edge-based geometric approach applied to
both axial and coronal 2-D slices of the given 3-D image. The
algorithm has been applied to 130 clinical volumetric images
and tested on both real and synthetic images with ground
truth. Breakdown points of the iMSP extraction algorithm are
found by varying brain orientation, lesion size, noise level,
and bias field. The iMSP algorithm compares favorably with a

method based on maximization of mutual information. We also
find no significant difference between the iMSP orientations
estimated by our iMSP algorithm and those hand-picked by
two neuroradiologists.

In Section II, we review existing work on automatic MSP ex-
traction. In Section III, we present the underlying geometry of
the midsagittal plane, together with an edge-based, robust es-
timation algorithm for iMSP extraction. Sample experimental
results are shown in Section IV, followed in Section V by eval-
uation on real and synthetic images, and an analysis of perfor-
mance with respect to human experts. In Section VI, we discuss
issues in model accuracy, speed, and applications related to the
iMSP extraction algorithm. Finally, in Section VII, we present
a brief summary and discussion of future work.
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II. RELATED WORK

Existing work under the general topic of symmetry detection,
and the specific topic of neuroimage MSP extraction, can be
described and compared in terms of four main aspects:

A. The Goal

The goal of most symmetry detection algorithms [7], [9],
[19], [22], [26], [29], [32], [34] is to find the symmetry
point/line/plane of an object that is known to be nearly sym-
metrical. Similarly, the goal of most MSP detection algorithms
[1], [11], [20], [2], [12] is to locate the plane of reflection of a
nearly symmetrical brain image. It must be realized, however,
that MSP means different things to different algorithms. The
MSP can be defined as the plane about which there is most
structural symmetry of the brain, skull or head, as the plane
that best fits the interhemispheric fissure, or even as the plane
determined by a particular image processing routine. That is,
the definition of an MSP can be either feature-based (e.g., the
interhemispheric fissure) or image-based (using a similarity
measure computed from image properties).

B. The Approach

Several existing algorithms designed specifically for MSP ex-
traction are listed in Table I. These approaches can be further
divided into two gross categories: feature-based versus image
similarity-based. The MSP extraction algorithms are compared
in terms of image modality, image dimension,3 and feature/sim-
ilarity measurement.

Feature-based methods include the work of [2] and [11]. In
[2], the author uses a Hough transform to find straight lines—the
longitudinal fissure line on the upper portion of the brain. In
[11], the fissure line is extracted from each slice using linear
snakes and then a plane is found using orthogonal regression.
Both methods encounter the same problem when the longitu-
dinal fissure line departs drastically from a straight line due to
mass effect.

Image similarity-based approaches include the rest of the ref-
erences listed in Table I. The authors of [12] use cross correla-
tion of intensity images as the similarity measure applied on
2-D images, and report that the method is sensitive to brain
asymmetry. The work in [20] uses a method called stochastic
sign change to determine the similarity of two images. The au-
thors report their surprise at finding that the algorithm, devel-
oped for normal brains, is also capable of finding the correct
MSP on certain asymmetrical, pathological brains [on simulated
positron emission tomography (PET) images]. Their results re-
quire accurate initial alignment of the head using a guiding laser
beam. The most recent work on MSP extraction reported in
this journal is [1]. The authors evaluate a candidate MSP using
the cross correlation of two intensity vectors, each containing
voxels from one side of the current estimated MSP. The authors
report that the method is highly sensitive to asymmetry. More
recently, Smith and Jenkinson [27] presented an algorithm for
finding symmetry axes in partially damaged, asymmetrical im-
ages of various modalities. They use the ratio of intensity pro-

3Here, “2-D images” means each 2-D brain slice is treated independently, and
“3-D images” means volumetric image data.

TABLE I
EXISTING WORK ON MSP DETECTION

files along an estimated normal line at each voxel for deter-
mining the optimal symmetrical plane. Though it is basically an
intensity-based method, a preprocessing step is suggested for
images with strong bias field to distill the edge information. No
quantitative evaluations have yet been given, and the compu-
tation is very expensive. Most recently, Primaet al. report on
an MSP extraction algorithm for 3-D neuroimages which finds
a plane that maximizes the bilaterally symmetric matching for
each voxel examined in a specific-sized block [21]. The sim-
ilarity is measured by correlation. No images with significant
asymmetry or pathology are shown.

Maximization of mutual information theory, another inten-
sity-based approach, has been applied successfully to multi-
modal brain registration under both rigid and affine transforma-
tions [18], [28], [31], [33]. The iMSP could be extracted using
mutual information by registering a 3-D brain volume with a
reflected version of itself to find the best plane of reflection.
We have experimented with this approach (see Section V). Al-
though it is relatively insensitive to the introduction of simulated
spherical lesions, due to the global nature of the processing, the
method is more sensitive than our algorithm to degradation in
signal to noise ratio due to random noise, and very sensitive to
intensity bias fields.

C. The Evaluation

The evaluations given in previous papers on MSP extraction
are based on visual inspections by the authors, or on results from
nonpathological neuroimages only. No quantitative validations
are provided systematically. The algorithm in [20] is tested with
images containing simulated spherical lesions on simulated PET
images, but the authors did not explore failure modes of the
algorithm. Synthetic MR images are used for testing in [21] but
results are reported for successful experiments alone.

D. The Data

Unlike finely sampled research data containing the entire
brain, as is used by most neurological image understanding
researchers, unevenly sampled, anisotropic clinical images
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(a) (b)

Fig. 2. (a) Ideal head coordinate systemX Y Z versus the imaging coordinate systemXY Z. The iMSP algorithm finds the transformation between planes
X = 0 andX = 0. Rendered head courtesy of the Visible Human Project. (b) A midsagittal plane (X = 0) automatically extracted using our iMSP extraction
algorithm.

make it difficult to infer 3-D structure by simply interpolating
the missing data between slices. The absence of information
between slices in turn makes it difficult to use volumetric
intensity-based approaches. Little work has been reported on
effective MSP extraction approaches for dealing with clinical
images and pathological cases, both of which are of great
importance in applied medical image analysis.

Our work, reported in this paper, differs from previous ap-
proaches as follows:

1) The Goal:our goal is to find the iMSP both in normal
(statistically more symmetrical) and especially in patho-
logical (statistically more asymmetrical) neuroimages;

2) The Approach:the approach taken is edge-based rather
than intensity-based, and decomposes symmetry plane
extraction in a volume into discovery of 2-D symmetry
lines on each slice, followed by a robust fitting of a 3-D
plane.

3) The Evaluation:the algorithm is evaluated on clinical CT
and MR data, and quantitatively tested using synthetic
images and real images with ground truth provided by
human experts;

4) The Data:the algorithm is applied to clinical image data
ranging from dense MR images (voxel dimension close
to 1 1 1 mm ) to CT images that are anisotropic
(e.g., voxel dimension 0.50.5 10 mm ) and unevenly
sampled (e.g., 5-mm and 10-mm slice thicknesses exist in
one 3-D image).

III. 3-D M IDSAGITTAL PLANE EXTRACTION

Neuroradiology scans are in nature 3-D volumetric data ex-
pressed as a stack of 2-D images. In this section, we present
geometric analysis and a working algorithm for extracting the
iMSP from these scans.

We define anideal head coordinate systemcentered in the
brain with positive , , and axes pointing to the right,
anterior and superior directions, respectively (Fig. 2, white co-
ordinate axes). With respect to this coordinate system, the plane

0 is defined to be the iMSP of the brain:a virtual geo-
metric plane about which the 3-D anatomical structure presents
maximum bilateral symmetry. Ideally, a set ofaxial (coronal)
slices is cut perpendicular to the axis, and the intersec-
tion of the iMSP with each slice appears as a vertical line on the
slice.4

In clinical practice, however, theimaging coordinate system
[Fig. 2(a)], black coordinate axes) differs from the ideal

coordinates due to positioning offsets (translations) and rotation
of the head introduced so that a desired volume can be better
imaged. The orientation of the imaging coordinate system dif-
fers from the ideal coordinate system by three rotation angles,
pitch, roll and yaw, about the , , and axes, respectively
[Fig. 2(a)]. The imaging coordinate system can also have a non-
trivial translation offset. The goal of an iMSP algorithm is to find
the transformation between the two planes 0 and 0.

A. Geometry of the iMSP

Under theimaging coordinate system, the iMSP can be rep-
resented as

(1)

where is a vector describing the plane normal and
is the perpendicular distance of the plane

from the origin. The parameters can be scaled by
an arbitrary, nonzero amount. For the rest of this section, we
assume that they have been scaled so that 1. Now

4The analysis given to axial slices from now on can be applied also to coronal
slices (cut along theY axis) with corresponding symbols changed: “Z” to “Y .”
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consider the th axial slice, represented by the plane equation
. The 2-D axis of bilateral symmetry on theth slice is

the intersection of the above two planes

(2)

This is the equation of a 2-D line in the plane,
having line orientation

(3)

and 2-D perpendicular offset to the point , ,

(4)

We can make two immediate observations from (2). First,
since the iMSP is assumed to be a planar surface, the orienta-
tion angle of each 2-D symmetry axis should
be the same for all slices regardless of theirposition [Equa-
tion (3)]. Secondly, the offset of the symmetry axis on slice

is linearly related to as a function of plane parame-
ters and [see, (4)]. Therefore, given the translational offset of
at least two symmetry axes on different slices, we can compute

and by solving a set of linear equations. These observations
form the basis for the iMSP extraction algorithm described in
the next section.

A different way to express the 0 plane in the imaging
coordinates is to view each point on the plane as being trans-
formed from to by an unknown rotation

and displaced by an unknown trans-
lation , , and . Specifically, points in the ideal co-
ordinate system are mapped into the imaging coordinate system
by the transformation

(5)

where , , and so on. The iMSP 0 can
be rewritten in terms of the imaging coordinates as

(6)

where is the unit
normal vector of the plane and .
Dividing by provided5 abs 90 , and comparing
with (1)

(7)

That is, the shared angle of each axial
slice is actually the yaw angle of the head’s imaging coordi-
nate system. Furthermore, the roll anglecan be determined
from the offsets of the 2-D symmetry axes on the set of slices

5This is a modest geometric restriction on the roll angle. If the roll angle were
to approach 90, we would be dealing withsagittalrather than axial slices.

by solving a linear system of equations specified in (4). Note
from (4) and (7) that when the roll angleis zero, plane param-
eter 0 and, thus, all 2-D symmetry axes have the same offset

regardless of ; otherwise, varies linearly from slice
to slice. Finally, the quantity measures the displace-
ment of the imaging coordinate system in the direction normal
to the iMSP.

B. Symmetry Plane Extraction Algorithm

The geometric results from the previous section have been
used to develop an algorithm for automatically extracting the
iMSP of neuroimages. The input is a set of slices from an axial
(coronal) CT or MR brain scan, along with the associated voxel
dimensions. The output is an estimate of the head’s yaw and
roll angles, and the best-fit iMSP, represented as a set of 2-D
symmetry axes superimposed on each slice.

1) Preprocessing Each Slice:The format of the images we
receive varies from scanned-in 8-bit gray images with an av-
erage size of 650 550, to 16-bit DICOM3 format raw images
with a standard size of 512 512 or 256 256. The number
of slices in each 3-D image ranges from nine to 187, and slice
thickness/space ranges from 1.2 to 10 mm. Sometimes a 3-D
image contains more than one slice thickness (see Table II). Al-
though each image is dominated by the patient’s head, some
images contain additional clutter superimposed on the slice in
the form of patient data, acquisition parameters, and the phys-
ical cross section of the head-rest (Fig. 9). We have developed
a simple procedure for preprocessing each slice to remove this
clutter, and thereby isolate just the head region, by adaptively
thresholding to produce a binarized image and choosing the
largest connected region in that image (details can be found in
[14]).

We would like the iMSP extraction algorithm to operate on
the 3-D structure of the brain and bony regions, and not be
unduly influenced by large homogeneous intensity regions, or
even the raw intensity values themselves. For this reason, we
first extract binary edges from each slice, and perform all fur-
ther processing on these edge images. Each edge image is cre-
ated by convolving with a Laplacian and marking zero cross-
ings. Any similar binary edge extraction technique, such as the
Canny edge detector [3], would yield similar results.

Finally, we wish the edge information to capture only gross
anatomical structures of the brain and skull, and to ignore fine
details and intensity fluctuations. This is achieved by spatial fil-
tering of the images before edge extraction. Specifically, images
are repeatedly reduced (smoothed and subsampled) by a factor
of 2 until the shortest side is between 32 and 64 pixels in length.
Edge extraction is performed on this reduced image, so that only
large-scale anatomical boundaries are found. In addition to fil-
tering out fine details, the resulting reduction in image size also
speeds up the subsequent processing steps.

2) Estimating Symmetry Axis Orientation for Each
Slice: Geometric reasoning in Section III-A tells us that
each 2-D symmetry axis should have the same orientation,
which corresponds to the yaw angle of the patient’s head. The
algorithm begins by extracting an estimate of this angle from
each 2-D axial slice. These estimates are later combined to
form a single best estimate.
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TABLE II
A SAMPLE OF INPUT 3-D IMAGE DATA

(a) (b) (c)

(d) (e) (f)

Fig. 3. (a) A CT axial head imageS . (b) The vertically reflected imageref (S ). (c) The rotated reflected imagerot(ref (S ); 2�). (d)-(f) The corresponding
edge images. Note that ifS is oriented with angle�, ref (S ) has angle��, thus, we must rotate by2� to bring it into alignment withS .

Recall the definition of bilateral symmetry: a reflection of a
bilaterally symmetric image about its symmetry axis pro-
duces a figure that is approximately identical to .
Therefore, the orientation of the reflection line that maximizes
the cross correlation between the original image and its reflec-
tion is searched for. First, the image is reflected about the
current vertical center line, which is the intersection of the 2-D
slice with the 0 plane in imaging coordinates, to produce a
new image . This has the effect of reflecting the corre-
sponding 3-D volumetric image with the 0 plane (Fig. 2).
If the reflection axis of is oriented from vertical, then the
symmetry axis of will be oriented from vertical,
regardless of where it appears in the image (Fig. 3). Therefore, to

evaluate a candidate orientation, we rotate by
about the center of the image, cross correlate with the original
image , and record the maximum correlation value. Formally,
the maximum cross-correlation value for brain slice at
angle can be expressed as ,
where the correlation score surface is expressed as a
function of the 2-D location

and

(8)
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Fig. 4. Using pairs of edge images to find the best correlation value for each given rotation angle. The cross-correlation surfaces,C , are shown for� =

�22 and� = �14 . The brightest point indicated the highest correlation score. Note: the correlation values have been rescaled for better viewing. Also shown
is a plot of the maximum cross correlation,M , between imagesrot(ref (S ); 2� ) andS , for � in [�31; �11] sampled at every 1.

(9)

(10)

when

or (11)

The 2-D cross-correlation result is a 2-D array that is
double the size of the original image in bothand dimen-
sions (Fig. 4). Elements in the array contain correlation values
for all possible horizontal and vertical disparities between the
original image and the rotated reflected image; therefore, this
method determines the orientation of the symmetry axis regard-
less of the translation of that axis in the image.

In most instances, a single, well-defined peak occurs in the
cross-correlation surface (Fig. 4). The global maximum
correlation value is recorded to represent the “score”
of angle as an estimate of the unknown symmetry axis
orientation. Such correlation scores are evaluated for multiple
candidates within a range of possible symmetry axis ori-
entations, to acquire a plot of correlation scores versus angles
(Fig. 4). Since cross correlations must be performed for many
different candidate angles, the correlation is performed in
frequency space for greater efficiency. Note that the Fourier
transform commutes with rotations and vertical reflections,

Fig. 5. Fitting the iMSP through a set of midlines in three dimensions.

so that we only have to compute the Fourier transformation
of once—the flipped and rotated versions can be generated
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Fig. 6. Fitting the iMSP to a set of 2-D slices [one 2-D slice is shown in Fig. 1(a)]. The computed yaw angle is 21. The stars without circles denote outlier points
found and excluded from the fitting, while the stars with circles are the remaining inliers. The solid grey line is the least-median of squares line andthe shorter
black line is the least-squares iMSP line fit after discarding outliers. The dashed line is the MSP that would have been estimated by least-squares if outliers had not
been removed.

directly in frequency space by flipping and rotating the trans-
formed image . That is

XCorr

where is the complex conjugate of the Fourier transform
of and is the inverse Fourier transformation [23], [25].

After testing all required angles , the one that yields the
largest correlation score could be chosen as the estimateof
the best symmetry axis orientation for slice. That is,

.Since the candidate angles are coarsely
sampled (say every 1), a more precise estimate is obtained by
first smoothing the correlation score versus angle curve and then
finding the peak of the smoothed curve to sub-pixel precision
(Fig. 4).

3) Combining into a Single MSP Yaw Angle
: Since all brain slices in the scan should have the same 2-D

symmetry axis orientation, it is necessary to combine results
from each slice to produce a reliable cumulative estimate

of the yaw angle for the given 3-D image. Simply taking
the mean value of the would be susceptible to outliers in
the computed data. Instead, we treat this as a robust estimation
problem with one parameter (the yaw angle) andsampled
points, each of which is computed from one of the2-D slices.

First, the median of the sample values is found, and arobust
standard deviation, , is computed using the median of the ab-
solute values of the residuals

(12)

The constant 1.4826 is a coefficient to achieve the same ef-
ficiency as a least-squares estimator in the presence of only
Gaussian noise, is the dimension of the parameter vector (in
our case 1), and is the number of samples. This is a
standard formula from robust statistics [35]. The distribution of
inliers is assumed to be Gaussian; there is no assumption on
the distribution of outliers, except that they are located far away
from the median. In our implementation, sample points falling
3 times the robust standard deviation from the median (median

) are removed to filter outliers. The rest of the points (the
inliers) are used to compute yaw angle using a biased, weighted
mean estimator. For brain slice, the exact form of weight used
in our experiment is . The bias serves to
give lower brain slices more weight. We have observed that the
lower brain slices usually produce a “peakier” curve be-
cause the slices lower in the brain contain complex bilateral
bony structures in axial slices (similarly, the frontal slices in
coronal slices), while slices higher in the brain become ovals
or even near-circular at the top of the head.

4) Estimating Symmetry Axis Offset for Each
Slice: Having computed a yaw angle estimatethat best
describes the shared orientation of each 2-D bilateral symmetry
axis, each image is rotated by an angle so that its
symmetry axis should be oriented vertically in the image. That
image is then cross correlated with a vertical reflection of
itself. The column of the correlation image where the highest
cross-correlation value occurs is used to compute the value of
offset for that slice.

5) Computing the iMSP and Roll Angle fromand Offsets
: To completely specify the iMSP involves com-
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puting estimates for the plane parameters from (1).
From (7) it was seen that, given, we can already compute two
parameter estimates and . To compute pa-
rameters and of the iMSP, recall the simple linear relation-
ship , defining an over-determined set of linear
equations in and that can be solved for and . Solving
this linear set of equations is equivalent to fitting a plane to a set
of parallel lines in 3-D Euclidean space (Fig. 5), each having ori-
entation . It is known that straightforwardleast-squaresline
fitting would be sensitive to outliers in the computedvalues.
The existence of such outliers is unavoidable in our case, due
to pathology effects, digital image artifacts, and symmetry axis
ambiguity in the higher brain slices. We perform a robust linear
regression instead. The obvious choice is to useleast-median
of squares(LMS) [24], which has a breakdown point of 50%.6

After applying LMS regression, we identify outlier
points by using the robust standard deviation measure defined in
formula (12) (set 2) to filter points based on their residuals.
A standard least-squares line fit is then applied to the inliers to
compute a final estimate forand (see Fig. 6).

This final set of parameters completely specify
the best-fit iMSP. The roll angle of the head can now be esti-
mated as . Perpendicular distance of the iMSP
from the origin of the ideal head coordinate system is computed
as . As a final step, we recompute a 2-D symmetry axis
for each slice with orientationand offset . This
is equivalent to intersecting the estimated iMSP with each brain
slice to obtain a new set of 2-D symmetry axes.

6) iMSP Extraction Algorithm Summary:
Input : a set of brain scans in axial (or coronal) format, voxel

dimensions.
Output : , , , , head yaw and roll angles, , translational

offsets of the iMSP.
Algorithm (Fig. 7).

1) Isolate the head region. Reduce the size of each slice by
smoothing and subsampling. Compute binary edge im-
ages from the reduced slices.

2) Pick one of the lowest 2-D brain slices. Construct
reflected w.r.t. 0 plane. Find

where is the cross cor-
relation of and rotated , and is sampled every 5in
the range of or if necessary.

3) find symmetry axis orientation on each 2-D slice as
, where runs

from 10 to 10 in 1 increments.
4) Compute the shared yaw (or roll) angle from all the axial

(coronal) slices: , where func-
tion eliminates outliers [35] and finds the mean of
the weighted inliers.

5) Compute image offsets by finding the maximum cross
correlation value of each yaw (roll)-angle-corrected 2-D
slice and its vertical reflection.

6) Remove outliers from using least-median of
squares line fitting [24] and then fit a least-squares line to
the inliers using the equation to get and .

6The breakdown point of an estimator is the fraction of outlying data points
that may cause the estimator to take on an arbitrarily large aberrant value.

Fig. 7. A flow chart of the iMSP extraction algorithm, where “X” with a circle
around it means 2-D cross correlation, and with a double circle means multiple
cross correlations using different rotated images. The right column shows the
corresponding step numbers described in the iMSP extraction algorithm.

7) Compute the remaining plane parameters and
, and roll angle . Intersect

the estimated MSP with each 2-D slice to obtain a new
set of 2-D symmetry axes with orientationand offset

.

IV. I MPLEMENTATION AND SAMPLE RESULTS

The algorithm is implemented on an SGI7 O2 R10000. using
a mixture of MATLAB and C subroutines. The CPU time for
running the algorithm is dominated by cross correlation com-
putations. Each cross correlation takes 0.26 s for the 6464
reduced-resolution slices used to estimate yaw angles, and 10 s
for the original 512 512 slices used to estimate translational
offset. Total time spent doing correlations for a 20-slice neural
image is roughly 5 min. Total time for all algorithmic steps is
roughly 7 min. No attention has been paid to speeding up the
code, except for using the fast Fourier transform for cross corre-
lation computation. The algorithm has been applied on 130 3-D
image sets with varying modalities (CT [enhanced and nonen-
hanced] and MR [T1, T2, enhanced and nonenhanced]). Table II
shows the parameters of a few sample input image sets. Note
that some examples have very sparse sampling in thedirec-
tion (every 10 mm). An automatically extracted “midsagittal”
plane is shown in Fig. 2(b). Fig. 8 shows the symmetry axes
extracted from a set of axial images with a roll angle of 15
(out-of-plane rotation). Figs. 1(b) and (d) and 9–11 show exam-
ples of extracted symmetry axes when there are obvious asym-
metries in the head.

7Address: SGI, Mountain View, CA, 94043, USA. Website:
http://www.sgi.com/o2/
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Fig. 8. The symmetry axes extracted from a set of MR axial slices with a 15roll angle (out-of-plane rotation).

Fig. 9. The midsagittal plane automatically extracted from a clinical CT image
where obvious asymmetry is present.

V. EVALUATION

No obvious errors have been observed when applying the
iMSP extraction algorithm to 130 clinical image sets with
varying modalities and scan geometries. In this section, we
report a series of experiments that test the robustness of the
iMSP algorithm.

For the experiments in Sections V-B and V-C, we chose to
construct an artificially symmetric image from clinical images
for quantitative testing. This was done because 1) visual inspec-
tion is subjective; 2) from a real brain image, it is hard, if not im-
possible, to distinguish whether an error is caused by the iMSP
algorithm or by the nonmodeled anatomic variations of human
brains (see Section VI); 3) no human brain scan exhibits perfect
digital symmetry, thus, no known ground truth in a real image
can be used directly for iMSP algorithm evaluation.

Two ground truth image test sets were created from datasets
5 and 110, respectively (Table II); one is a dense, coronal MR
volume, and the other is a sparse, axial CT volume. Each ground
truth test set was constructed by finding the midsagittal plane
by hand, then reflecting one half of the head volume about this
midsagittal plane to form the other half, producing a perfectly
symmetrical volume. Since the constructed test set is perfectly
symmetric, the ground truth iMSP is known.

A. Yaw and Roll Angle Accuracy Evaluation

To evaluate the accuracy of computed yaw and roll angles, a
densely sampled MR image set was resampled using trilinear
interpolation to artificially vary the yaw angles from10 to
10 in 2.5 intervals, and the roll angles from15 to 15 in
5 intervals. To determine the approximate absolute ground
truth angles of each dataset, we first ran the algorithm on the
original dataset, revealing a yaw angle of 1.25and a roll angle
of 1.75 . These computed offsets of the original dataset were
added to the known relative yaw and roll of each resampled
dataset to determine a “ground truth” yaw and roll for that
dataset. The algorithm was then run to determine an estimated
yaw and roll angle. Given the above definition of ground truth,
the average error was0.3 for computed yaw angles (Fig. 12)
and 0.75 for computed roll angles (Fig. 13).

B. Tolerance to Asymmetry

To test the sensitivity of the iMSP extraction algorithm to le-
sions of varying size and position, we constructed a perfectly
symmetrical volumetric neuroimage from a clinical CT scan of
a normal brain (dataset 110 in Table II). Spherical “lesions” are
superimposed in the symmetrical volumetric image by speci-
fying a 3-D position, radius and intensity value. The lesion in-
tensity replaces the densities in the CT scan. Fig. 14 shows one
result of iMSP extraction for a lesion with radius 42.97 mm
(100 pixels), with density darker than the surrounding tissues.
We have tested the algorithm extensively with lesions in dif-
ferent locations, and have “grown” lesions of up to 128.9 mm
(300 pixels) in radius. The iMSP algorithm’s performance starts
to decline when the tumor radius reaches 85.9 mm (200 pixels),
see Fig. 15, and totally fails when the lesion radius reaches
107.4 mm (250 pixels), as is summarized by the plots in Fig. 16.
For comparison, the average radius of a human brain is approx-
imately 70 mm.

C. Comparison of IMSP Extraction Methods: Intensity-Based
Versus Edge-Based

In this section, we compare our iMSP with a representative
intensity-based approach: maximization of mutual information
(MI). The iMSP is extracted using MI by registering a 3-D brain
volume with a reflected version of itself . Following the
same geometric reasoning as in Section III, halving the trans-
formation parameters provides the solution for the location of
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(a)

(b)

(c)

(d)

Fig. 10. The symmetry axes extracted from different clinical CT scans where obvious asymmetry is present. (a) Acute blood (left frontal), (b) multifocal acute
blood (left frontal and right parietal), (c) infarct (right frontal), and (d) infarct (left frontal and temporal).

the best reflection plane. The mutual information registration
code implemented in [18] is used for this testing.

1) Tolerance to Noise and Asymmetry:To study the effects
of noise and asymmetry on iMSP extraction, we have tested our
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(a)

(b)

(c)

Fig. 11. Sample MR tumor images with iMSP identified. Input images are originally in sagittal slices. Images courtesy of Dr. Kikinis, Harvard MedicalSchool.
Pathology types: (a) meningioma (left parasellar), (b) astrocytoma (right frontal), and (c) astrocytoma (left frontotemporal).

algorithm on the MR ground truth dataset, side-by-side with the
MI-based approach. The data is artificially degraded by adding
different levels of zero-mean Gaussian noise, and by inserting
spherical lesions of varying diameters. Algorithm breaking
points are determined by incrementally adding noise until each
respective algorithm fails to detect the correct symmetry plane.
Each incremental addition of noise corresponds to a loss of
6.02 dB of signal-to-noise ratio (SNR), or roughly 1 bit of
information.8 Fig. 17 shows representative resulting slices, and
iMSPs extracted by the algorithms (shown on 2-D slices). In
both cases, with and without lesions, the MI-based approach
fails at lower levels of noise than our edge-based approach

8SNR is defined as10� log(var(signal)/var(noise)). An SNR of less than zero
means that the noise has a higher variance than the signal.

(Fig. 17). The algorithm reported in this paper worked correctly
at levels of noise up to SNR 10.8 dB when no lesion was
present, and up to SNR 4.82 dB in the presence of a lesion
with radius 56.25 mm (60 pixels).

2) Tolerance to Bias Field:We have also tested both our
iMSP algorithm and the MI-based approach on MRI volumes
corrupted by a simulated intensity “bias field” (Fig. 18). A
synthetic bias field is generated as a Gaussian with sigma
70 pixels, centered at pixel offset , rescaled so that the
intensity at pixel has grey level . This bias image
is then added to each slice of the MRI volume. Testing was
performed for different values of , ranging from a mild bias
field ( 0.25 times the maximum grey value Gmax in the
original MRI volume), to very severe ( 10 Gmax). The
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Fig. 12. Actual versus detected yaw angles in the MR axial scans. The solid
line is the perfect detection result and the dashed line is formed from the yaw
angle values detected using our algorithm.

Fig. 13. Actual versus detected roll angles in the MR coronal scans. The solid
line is the perfect detection result and the dashed line is formed from the roll
angle values detected using our algorithm.

mutual information approach failed when even the mildest bias
was present [Fig. 18(a)]. In contrast, our algorithm did not fail
at even the highest levels of bias field tested [Fig. 18(b)]. This is
so because our method is based on local edge detection, which
is relatively unaffected by the addition of a smooth intensity
bias field, while the global distribution of intensity values in
the volume is critically important to the mutual information
approach.

D. Comparison with Human Experts

To compare the algorithm with human performance, we asked
two neuroradiologists to hand-draw the ideal midline on each
2-D slice of six randomly chosen 3-D CT brain scans. The ex-
perience in interpreting clinical CT images of the first and the

second medical doctors is 20 and 4.5 years, respectively. The ra-
diologists were allowed to view the whole set of 2-D slices from
one volumetric image for reference while using a mouse to click
on a brain scan displayed directly on a computer screen. The
fairness of this comparison between a human expert (drawing
a line on each 2-D slice) and the computer algorithm (fitting
a plane within the whole 3-D image) is based on the fact that,
when interviewed, the neuroradiologists acknowledged “We are
actually at an equivalent stage as the computer algorithm in that
when we are drawing the midline, we have a mental picture of
the 3-D brain. This mental picture is formed by looking at all the
2-D slices, and drawing upon many years of experience.” Al-
though geometric reasoning tells us that the angles of the inter-
section line of the iMSP and each axial slice should be the same
(Section III-A), there is a variation in the angles determined by
the human experts. The standard deviation of the human mea-
surement error on different sets of slices varies from 0.5595to
2.3678 (Table III).

The correlation scores between Experts 1 and 2, Expert 1
and the computer algorithm, and Expert 2 and the algorithm
are, respectively, 0.9968, 0.9951, and 0.9874. Thus, there is
a high level of agreement between the human experts, and
between each expert and our algorithm. This can also be seen
by plotting points representing one agent’s estimates (there
being three agents—two humans, and one computer) against
another’s, as in Fig. 19. In each case, the data points lie very
close to the superimposed least squares line .
Indeed, the F-tests for the three regressions [4] were highly
significant: 619.5, 407.8, and 155.19, respectively, all in one
and four degrees of freedom. This indicates that the angles
estimated by all three agents are very similar to each other. In
all three cases, the estimate offrom the least squares line
is not significantly different from zero, at level 0.05, and all
three confidence intervals for include 1 ([0.8278, 1.0356],
[0.7804, 1.0292], and [0.7464, 1.1745]). Therefore, there is no
statistically significant difference between the estimates given
by the three agents.

VI. DISCUSSION

We have observed that iMSP computation is not adversely af-
fected by large lesions and mass effect in pathological images.
This may seem strange since cross correlation is used as a mea-
sure for matching two images (in our case, the two halves of a
brain). It is natural to ask why the algorithm works so well on
drastically asymmetrical images. We can provide the following
relevant observations:

1) Majority Rules:For a 3-D pathological brain, a lesion
resides on only a relatively small number of 2-D slices;
thus, when the iMSP is fit to the whole set of 2-D slices,
normal slices with prominent bilateral symmetry domi-
nate the iMSP’s position.

2) Edge Features:By using edge features rather than the
original intensity images directly, the effect of strong den-
sity concentration around lesions is much reduced.

3) Lower Brain Slice Stability:Lower brain slices are rel-
atively stable due to the bilateral structure of the skull.
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Fig. 14. The iMSP algorithm performs successfully when presented with an artificially grown lision of 42.77 mm (100 pixels) radius.

Fig. 15. The iMSP algorithm performance on an artificial lesion with 85.5 mm (200 pixels) radius.

(a) (b)

Fig. 16. (a) Yaw and roll angle errors and (b) translational offset errors versus the radius of an artificial lesion in millimeters, (1 pixel= 0.4297 mm). The spherical
lesion is centered at the 3-D image pixel locationX = 310,Y = 210, andZ = 350 (that is the point [X = 133 mm,Y = 90 mm, andZ = 150 mm] with respect
to the back-upper-left corner of the image volume). The iMSP algorithm’s performance starts to decline when the tumor radius reaches 86 mm (200 pixels), and
totally fails when the lesion radius reaches 107.4 mm (250 pixels).

In our algorithm, the lower brain slices are given more
weight when determining the orientation of the iMSP.

4) Robust Estimators:Robust estimation techniques are
used to remove outliers from computed measurements
before combining them to determine other quantities.

5) Brain Structure:Although the bony skull is influential,
the accuracy of the detected symmetry axes decreases
when the symmetry axes are determined by the silhouette
of the skull alone [14]. Therefore, the internal structure

of the brain appears to enhance the position and orienta-
tion accuracy. This brain structure is emphasized by using
edge features.

This work addresses two main issues. One is that the brain
sometimes departs drastically from perfect symmetry. The other
is that using clinical images introduces challenging factors like
large initial offsets, undersampling, artifacts (bias field) and
noise. The acute advantage of our iMSP extraction algorithm
over existing MSP extraction algorithms is its robust treatment
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(a) (b) (c)

(d) (e)

Fig. 17. Sample results on images artificially degraded with lesions and noise, to determine algorithm breaking points. The images shown with iMSP identified
are the ones just before the corresponding algorithm’s breaking point. (a) One slice from original dataset with no noise, SNR= 43.35 dB. (b) Result from iMSP
extraction using MI-based registration, on a dataset with added noise only. SNR of breaking point is 7.23 dB. (c) Result from our algorithm when run on adataset
with added noise only. SNR of breaking point is�10.84 dB. (d) Result from iMSP extraction using MI-based registration, on a dataset with lesion (radius= 56
mm, about 60 pixels) plus noise. SNR of breaking point is 13.25 dB. (e) Result from our algorithm, on a dataset with lesion (same) plus noise. SNR of breaking
point is�4.82 dB.

of unevenly sampled, anisotropic clinical images, particularly
CT images, containing large lesions and mass effect.

Limitations of this iMSP extraction algorithm include:
a) “Ideal midsagittal plane is a planar surface” Assump-

tion: It is under this assumption that geometric reasoning tells
us that the yaw (roll) angle on each slice of an axial (coronal) set
should be the same [see (3)]. Sometimes this assumption is vio-
lated by true anatomical structure. This is exactly where a clean
mathematical model and complicated reality may conflict with
each other. Even for normal human brains, the interhemispher-
ical plane may sometimes be a curved surface (for example, sim-
ilar to the shape of a piece of a potato chip); therefore, a plane
cutting through the brain will not always intersect each 2-D axial
(coronal) slice coincident with the “midline” of the 2-D slice. If
the goal is to find a reference plane, then the coincidence issue is
not important so long as the iMSP can be extracted consistently.
If the goal is to find the exact shape of the interhemispherical
membrane, then the extracted iMSP can be used as the initial
position for an energy minimizing procedure [e.g., Fig. 1(d)].

b) Out-of-plane rotation:When out-of-plane rotation is
larger than 20, estimates of the roll (yaw) angle from a stack
of axial (coronal) slices can not be trusted. This is because
the s, the offsets of the midline, can be under-estimated,
causing the roll (yaw) angle value to be smaller than it is
in reality. One strategy used to increase robustness to large

out-of-plane rotation errors is to use both axial and coronal
slices simultaneously to estimate the yaw and roll angles
(usually, one of these sets of slices is measured directly, and
the other is created by resampling the image volume). Since
there is no limit to in-plane rotation angle estimation, the
same algorithm described in Section III-B can run on both
orientations in parallel, with the computed result of the in-plane
rotation angles (the computed yaw angle from axial slices or
the computed roll angle from coronal slices) weighted more
highly than the out-of-plane rotation angle estimates.

c) Speed:Cross correlation is an expensive operation in gen-
eral. We have not made any special effort to speed up the algo-
rithm other than using the fast Fourier transform (Section IV).
When a 3-D image contains a large number of slices, the iMSP
computation process can be slow. However, from Fig. 7 one can
see that the cross correlation operation for each 2-D slice can be
done in parallel instead of sequentially. If a parallel hardware
device such as an optical correlator were used, the speed of this
algorithm would be greatly increased.

VII. CONCLUSION

In this paper, we have presented an iMSP extraction algo-
rithm that is capable of finding the ideal MSP from asymmet-
rical neural images without compromising accuracy on sym-
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(a)

(b)

Fig. 18. Sample results on images with artificially added bias field. The original MR test image can be found in Fig. 17(a). Here, the roll angle of each test image
is set to 10. (a) The MR test image with added bias fieldG = 0.25, and the iMSP found by our algorithm. The algorithm based on maximization of mutual
information failed on this test case. (b) The MR test image with added bias fieldG = 10, from which our algorithm still finds the iMSP correctly.

TABLE III
COMPARISON OFHUMAN VERSUSCOMPUTER-ESTIMATED YAW ANGLES (IN DEGREES)

metrical ones. Our work presents a sound geometric method
for estimating the symmetry of a 3-D object using a sparse set
of 2-D slices. The proposed algorithm has been applied to 130
clinical image sets with varied modality, volumetric sampling,
and background clutter. In this paper, the algorithm has been
quantitatively evaluated using three methods: 1) image resam-
pling, 2) introduction of spherical lesions, noise and simulated
bias-fields, and 3) comparison with human experts. The detec-
tion accuracy of yaw and roll angles on the resampled images
are estimated within 1of rotated angle values. The iMSP esti-
mation method does not begin to break down until lesions oc-
cupy a significant fraction of the brain, SNR is very low, or
the bias field is quite intense. Finally, no statistically signifi-
cant difference can be found between yaw angles estimated by
the algorithm and those estimated by trained neuroradiologists.
The iMSP algorithm has also been compared with an approach
based on maximization of mutual information registration, and

has been found to exhibit superior performance under adverse
conditions.

The robustness and simplicity of this approach stems from
using edge information rather than direct use of intensities,
using a sound mathematical model of 2-D-3-D imaging ge-
ometry, and using robust parameter estimation techniques to
remove the effects of outliers. This work combines 2-D and
3-D images in such a way that 2-D data is used to predict a 3-D
plane and the 3-D structure is used to correct local errors on
2-D slices.

We are currently exploring how to use the iMSP extraction
algorithm to facilitate registration and comparison of brain im-
ages from multiple sources and modalities. Computing simi-
larity among diverse brain images is part of an ongoing project
to study how a patient’s brain scan can be used to retrieve med-
ically relevant cases from a neural image database [16], [17].
Other future work includes choosing a good statistical sampling
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(a) (b) (c)

Fig. 19. The least-squares linear regression linesY = � + �X for pairwise comparison of experts and the iMSP algorithm. The estimated�; � values are,
respectively, (a)� = �0.3131,� = 0.9317; (b)� = �0.2979,� = 0.9048; (c)� = 0.0069,� = 0.9605, where the subscripts denote 1: Expert 1,
2: Expert 2, and 3: the iMSP algorithm. In all three cases, the estimate of� is not significantly different from zero, at level 0.05, and all three confidence intervals
for � include 1 ([0.8278, 1.0356], [0.7804, 1.0292], [0.7464, 1.1745]).

method for dense 3-D brain images, evaluation of the iMSP ex-
traction algorithm on orthopedic images, and testing the effec-
tiveness of this approach on image modalities such as PET and
SPECT.
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