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Note that the axes are changed such thaf' is calculated according Automatic Detection of the Mid-Sagittal
toe'/d' = e/d\/27/20 ~ 1.71 (with e/d = 145/98 derived from Plane in 3-D Brain Images

the section).

Fig. 7 shows an example of an histological section and a corabak A. Ardekani,* Jeff Kershaw, Michael Braun, and Iwao Kanno
sponding hexagon (a) from which the error functions are calculated
(see below). In the next step the section is sheared\py = 0.1
where the outer contour of the original section is superimposed (b)Abstract—This article presents a detailed description of an algorithm
As can be seen, alignment is worsened when the PAT has been appfﬁééhe automatic detection of the mid-sagittal plane in three-dimensional

. L. . . . —D) brain images. The algorithm seeks the plane with respect to which
(c). This condition can be attributed mainly to a rotational error Ee iznage exhigits maXiml?m symmetry. Forpa given plang, symmetry

~3.5° corresponding te-8 pixels at the outer contour. This findingis measured by the cross-correlation between the image secfions lying
is in good agreement with the expecte®.3’ calculated from the on either side. The search for the plane of maximum symmetry is per-
theoretical analysis. formed by using a multiresolution approach which substantially decreases
computational time. The choice of the starting plane was found to be
an important issue in optimization. A method for selecting the initial

plane is presented. The algorithm has been tested on brain images from

lll. CoNCLUSION various imaging modalities in both humans and animals. Results were

For precise alignment, the PAT can account for at g8t (n-+1) evaluated by visual inspection by neuroradiologists and were judged to

. ; . . . . . be consistently correct.
parameters im dimensions, since the inertia matrices are symmetri-

cal. The number of equations is, therefore, not sufficient for an exactndex Terms—Brain, image registration, medical imaging, mid-sagittal
alignment of objects that can be related by an affine transformatiBiine: Pattern recognition.
with n? parameters (without translation).

An analytical model is devised for determining the error functions I. INTRODUCTION

when the PAT is used in the presence of shearing parameters,, . . . .
With this analytical model, misalignment can be decomposed intosrh's paper describes a robust algorithm for the automatic detec-

rotational and scaling errors which can be examined by varying tﬁgn of the mid-sagittal plane (MSP) in arbitrarily oriented three-

. g imensional (3-D) brain images.
shearing and form parameters. The theory shows, that minute sheann‘;he algorithm has several useful applications. MSP detection is
results in strong rotational error if the shapes are approximatel 9 . . app ' ;
oéen the first step in spatial normalization or anatomical standard-

square, but scaling errors dominate in cases with extensive shearing;. S . ) -
L . . izdfion of brain images [1], [2]. It is also a useful first step in

With increasingly rectangular shapes, the rotational error decrealsnisasub'ect interfintramodality image registration [3], where alignin

for a fixed shearing parameter. The study also reveals misalignm t ) y ge reg : gning

if the PAT reported in [1] is applied, demonstrating that stabilizingiqe MSPS. between images re_duces th? de.gre?? of freedom to three
modifications of (6) are required. one rotation and two translations). This simplifies the problem to

one of two-dimensional (2-D) registration which can be achieved

by whatever technique is most appropriate. The algorithm is also
REFERENCES useful for defining symmetric regions of interest in left and right

hemispheres. In single photon emission tomography (SPECT) for

[1] R.Bajcsy and S. Kovacic, “Multiresolution elastic matchinGdmput.  example, this allows accurate comparison of the local radionuclide

Vision Graph Image Processingpl. 46, pp. 1-21, 1989. . . . .
[2] LS. Hibbzfrd anng. A Hawkigs, “Objggive image alignment for 3_Duptake in opposing sides of the brain where any observed asymmetry

reconstruction of digital autoradiograms]” Neurosci. Meth.yol. 26, may be useful for clinical diagnosis [4].

pp. 55-74, 1988. Several papers in the medical imaging literature have previously
[3] A. W. Toga and P. K. Banerjee, “Registration revisited,”"Neurosci. considered this problem [5]—[7]. Junei al. [5] developed a method

Meth., vol. 48, pp. 1-13, 1993. for automatic detection of thdine of symmetry in a transverse

[4] 1. Kapouleas, A. Alavi, W. M. Alves, R. E. Gur, and D. W. Weiss, . . .
“Registration of three-dimensional MR and PET images of the humdPSitron emission tomography (PET) or SPECT slice. The two pa-

brain without markers,Radiol.,vol. 181, pp. 731-739, 1991. rameters that specify the line of symmetry are found by an exhaustive
(5] N. M. Alpert, J. F. Bradshaw, D. Kennedy, and J. A. Correia, “Thesearch. An exhaustive search is really only computationally feasible
principal axes transformation—A method for image registratioh,” for 2-D cases and when the initial guess for the orientation of the

Nucl. Med.,vol. 31, . 1717-1722, 1990. . . . . .
[6] E. J. Holupka and gpM Kooy, “A geometric algorithm for medical“ne of symmetry is close to the optimum. We have found in practice

image correlations,Med. Phys.yol. 19, pp. 433-438, 1992. that the cross-correlation method as presented in [5] does not reliably
[7]1 M. K. Hu, “Visual pattern recognition by moment invariantd2EE locate the MSP in three dimensions.
Trans. Inform. Theorypp. 179-189, Feb. 1962.

[8] G. Fischer,Analytische Geometrie.Braunschweig, Germany: Vieweg ) ) )
& Sohn, 1979. Manuscript received July 30, 1997; revised November 4, 1997. The work

[9] T. Schormann, A. Dabringhaus, and K. Zilles, “Extension of th&f B- A. Ardekani was supported by the Japan Science and Technology
principal axes theory for the determination of affine transformationsg€ncy under an STA Postdoctoral Research Fellowship. The Associate Editor
in Proceedings of the DAGM: Informatik-AktuellBerlin, Germany: resppns_lble for coordmatlng_ the review of this paper and r_ecommendlng its
Springer-Verlag, 1997, pp. 384-391. publication was M. W. VannierAsterisk indicates corresponding author.

*B. A. Ardekani is with the Department of Radiology and Nuclear

Medicine, Research Institute for Brain and Blood Vessels, 6-10 Senshu-

kubota machi, Akita 010, Japan (e-mail: babak@akita-noken.go.jp).

J. Kershaw and |. Kanno are with the Department of Radiology and Nuclear
Medicine, Research Institute for Brain and Blood Vessels, Akita 010, Japan.
M. Braun is with the Department of Applied Physics, University of

Technology, Sydney 2007 Australia.

Publisher Item Identifier S 0278-0062(97)09343-9.

0278-0062/97$10.00 1997 IEEE



948 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 16, NO. 6, DECEMBER 1997

Minoshimaet al. [6] presented a method for detecting the MSH he quantitiesd.., d,, and d. are the sampling intervals (voxel
in 3-D PET images. The measure of symmetry used in this pamimensions) in ther, y, and =z directions, respectively. Note that
is a modified stochastic sign change (SSC) criterion [8]. This papdistances irC are real-world distances in units of millimeters (mm).
also relies on an exhaustive search of a small region of the parametdPoints(z, y, z) € C are related to precise locations within tield
space for the optimal MSP. By limiting the search to this region, theyf view(FOV) of the scanner by adopting the following conventions.
are assuming that the scans are very close to being either coronallee origin is taken to be at the center of the FOV. Thdirection
transaxial. is assumed to lie parallel to the axis of the scanner. Fhand v
Neither [5] nor [6] applied their algorithms to MR images. Oraxes are chosen as left to right, and anterior to posterior directions,
the other hand, Brummer's approach [7] is suitable for MR imagesspectively.
only. The technique is based on a Hough transform of edge imagedhe equation of a plane in three dimensions can be written in the
obtained using Sobel edge detectors and therefore is only suited ffmm
high-resolution images such as MR images. It also requires transaxial
or coronal scans and will not work with sagittal scans, essentially

reducing the problem to finding mid-sagittal lines in 2-D slices. gacn plane is characterized by a unique set of paraméters c).

The approach presented in this paper is based on the premise §at aim is to find the triplet(a, b, ¢) with respect to which the
the MSP separates a 3-D brain image into two almost symmet[,iﬁagef has maximum “symmetry.”
halves. We define a criterion to measure symmetry and find the plangy determine the symmetry df [5] and [6] compare it with the
that maximizes this criterion. This is basically the same approapr{qageg that is obtained whef is reflected (flipped) about the plane.
used in [5] and [6], but we have overcome some of the restrictions ffe measure of symmetry used in [6] is the SSC criterion computed

these works. More precisely, we need make no particular assumpligns g The measure of symmetry used in [5] is the cross-correlation
about the scan orientation, nor are we restricted to a specific imagifigtweenf andg defined as

modality. The algorithm is truly 3-D and is insensitive to how the _

data is initially presented to the program—we can arbitrarily rotate S, g) = (f—f1)-(g —71) @)
and translate the image set in three dimensions and still obtain the i I = FO)|l (g — g1

desired result. This is possible because we have introduced some n%w

ideas for overcoming the problem of local minima in the similarit)‘/v ©
measure. Specifically, a multiresolution approach is adopted wheréb}
an approximate location of the MSP is constructed from smaller
images of lower resolution and then located more accurately in ima o .
Withghigher resolution. This improves the computational )éfficienc jed vectorsf’ andg'. There are two modifications. First, only

of the algorithm and is the reason why we can perform the true 3- F‘S'Stf' of voxels on the positive side of the plaﬁé:’{? y> ) > 0],
algorithm within a reasonable time period. while g’ only consists of voxels on the negative side of the plane

The paper is organized as follows. In Section II, we present[g(w’ ¥, 2) < 0]. This is in contrast with the definitions dfandg

concise mathematical formulation of the theory and describe tngd n (3)|\\//|vshsre_"”|15 the en'gre |rr(1jf_:(ge ?ng IS its reflfhctlton”at;out at f
implementation of the algorithm in detail. In Section Ill, we appl)presume - ' he second modfication ensures that afl elements o

/ ’ H ; i H
the method to a large number of images and evaluate the res ﬁts‘?mdg are greater than a given threshold IeYI_'eIT_hls Is achieved
Ligy removing all elements from bothf and g if either f, or g,

Discussion is presented in Section IV followed by conclusions i - !
P y is less than or equal t&'. The procedure for obtainingf andg’ is

Fla,y,z) =ax+by+cz—1=0. 3)

ref andg are the means of the elementsfaindg, respectively,

1 is an N-dimensional vector with all its elements equal to one.
he present paper also uses the cross-correlation symmetry mea-
ge. However, the cross correlation is computed between two mod-

Section V.

as follows.
1) For each pointi, j, k) € D, compute the corresponding point
Il. METHODS P = (z, y;. z) € C from (2). Proceed iff(i. j. k) > T
and F(P) > 0. Otherwise, skig7, j, k) and process the next
A. Measure of Symmetry point.
Consider three sets of integefs= {0, 1, ---, N, — 1}, J = 2) Find the reflection of poinP with respect to the plane by
0,1,---, N, —1},and K = {0, 1, ---, N, — 1}. Let D denote ) F(P) VF
t{he product set of}, J, and Ix”,{that is } P'= (el gy 5) =P = zﬁ IVE ®)

D=IxJxK={Gjkriel,jel ke K} (1) 3) If P’ falls outside the FOV, sef(i, j, k) = 0. Otherwise, set
g(i, j, k) = fe(a}, v}, z,) wheref.(2}, y}, z,) is an estimate
A 3-D medical image can be considered as a functjorthat of f. at P’ obtained by interpolation.
mapsD into the set of real numbed&. Points (s, j, k) represent ~ 4) If g(i, j. k) > T, include f(i, j, k) in £" andy(é, j, k) in g'.
volume elementgvoxels). The image value or intensity at a voxeNote thatboth the original and reflected pointg.(P) and f.(P),
(i, j, k) is denoted byf (i, j, k). Alternatively, the image may be must exceed the threshdfd in order to be included if’ andg’.

represented by aiV-dimensional vectof (N = N, x N, x N.) Using the modified vector§' andg’ has the obvious advantage
with elementsf,, = f(<, j, k), wheren = kN, N, + j N, + 4 of improving computational efficiency since the size of the vectors is
(n=0,1,---, N = 1). substantially smaller tha®V. More importantly,s(f’, g') is a more

The array of numberg(i, j, k) represents discrete samples of aiseful measure of symmetry than (4) for detection of the MSP. We

function f.(z, y, =) defined on a continuous domainC IR*. More shall present our arguments for this in Section IV.
precisely, we defing (i, j, k) = fe(xs, y;, z&) with
B. Reduction of the Image Size

xi =i — (N — 1)/2] ds . . . . .

] . The search for the MSP in three dimensions is computationally

yi = —(Ny = 1)/2]dy expensive. The computation time is proportional to the number of

zr =[k = (N. = 1)/2]d.. (2) image voxels and can be substantially shortened by a multiresolution
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approach which uses images of smaller dimension. This sectior2) Care must be taken when computing the 1-D convolutions

outlines our algorithm for performing the image reduction. near the image boundaries since the convolution kernel and
Let the original image matrix size b€, x N, x V. voxels, and the the image matrix do not completely overlap in these regions.
dimensions of each voxél, xd, xd. mn?. The resizing is performed The difficulty is overcome by extending the image beyond its

so that the resulting voxels are almost cubic. We first specify the  boundaries by mirror reflections.
dimensionN', (<N.) of the new matrix. The corresponding voxel 3) If the choice of V', results in eitherN', > N, or N', >
dimensiond’, for the new image is calculated as N., then we do not perform the Gaussian smoothing in that

direction.
d, =d, x (N, =1)/(N', = 1). (6)

This is used to obtain thg and = dimensions of the new matrix ~ C. Optimization
N, = RU[dy x (N — 1)/d. + 1] This sect|9n (?utllne_s the method u_sed for maximizing the similarity
; . . measures(f’, g') defined in (4) with respect to the parameters
NI =RU[d. x (N. = 1)/d'; +1] (") w = (a, b, ¢). Note thats is only implicitly dependent oria, b, c)
! ! H H H
where we use the notation “RU” to indicate rounding up to the nearérs]f(.)Uth. and_g - The basic procedure is _S|mple. we sta_rt at an
initial point uo in the parameter space and find a local maximum of

in r. FromN', and N'. the new voxel dimensiond', andd’. , . R . .

tege rromiy, a dN". the new voxel dimensiong , andd . . st(lfl’ g') using an optimization algorithm. Whether or not this local
are obtained in the same manner as (6). They are equal to or sllgipng imum corresponds to the MSP is dependent on the choice of
less thand’.. so that the voxels in the new image alenostcubic. Ximu P : p :

With the dimensions for the matrix and voxels of the reduced ima&éartm% point. Thus, crloosmgo_ IS an _|mpor_tant ISSue.
The “center of mass” of an image is defined as follows:

finalized, we can proceed to resampling. This is a two-step process.

The first step is to use a Gaussian kernel to smooth the original image. S Z i flis o k)
Since a Gaussian kernel is separable, smoothing with a 3-D kernel UM A
. . . . . ] (i, 4, k)eD
is equivalent to smoothing with three one-dimensional (1-D) kernels. 1
The 1-D kernel for ther direction is given by Yem = 37 SO wifis i k)
2 (i, j, k)ED
he(z) = ! exp 7 6] 1
© vV 271'0'3; ’ 20—% ' Zem — v Z Zkf(L ] ]‘)
The parametew, determines the amount of smoothing in the (9. mep
direction. A largero,. results in a greater degree of smoothing. The where
image scanner is as§umed_ to have_a Gaussian pomt spread function M= Z £, . k) (11)
(PSF) in thex direction, with full-width half-maximum (FWHM) e
0

equal tor x d.. We chooser, so that the ratior is maintained
between the FWHM of the reduced image and its voxel dimensiaf, y;, andz, are as in (2), and (7, j, k) is the image value at voxel

d'.. This means we must satisfy (i, j, k). In most cases the MSP will pass near this point, hence it
2 is reasonable to choos& from amongst the set of planes which
ol = S (d’i - di) (9) contain the center of mass. Now consider a sphere of unit radius
n

_ _ _ centered afPcn = (Zem, Yem, Zem). Any point P on the sphere
In our implementation we assume a value of tworfofhe smoothing uniquely defines a plane. Specifically, the plane passes through point
kernels for they and = directions are constructed in the same wayp ., with unit normalP — P.,,. Our procedure is to sele€} points
Once the smoothing kernels are known, they are used to smooth ghethe unit sphere and evaluat’, g’) for all of the corresponding
original image by a series of 1-D discrete convolutions. planes. The initial planey, is then chosen as the one which returns

If the PSF of the scanner is not Gaussian, but can be at legs largest value. The following procedure is used for specifying the
approximated by some other analytic form, then a similar but possikly points.
more complicated equation may be derived &Gr. In such cases, 1) Seti = 1 and letA¢ = /(2q) whereq is a given integer.

it may be simpler to regard (9) as ad hocrule for choosing 5y | spherical coordinates a point on the unit sphere can always be
the smoothing kernel used to reduce image resolution. The only specified by the two angles andé, 0 < ¢ < 7, 0 < § < 2.
consequence of such an approximation is that the ratio between the Defines; = iA6. Select RUy sin G;z] poiﬁts at (’aqual distances

FWHM of the smoothed image andl.. is not necessarily equal ta on the semicircle ab = ¢, anda < # < a + 7, wherea is
This will not interfere with the effectiveness of the algorithm since an angle between 0 ark chosen at random.
r is not a critical factor in the method. _ 3) If i < ¢, increase by one and repeat Step 1. Note that when
The second step in the resampling process is to select voxel values™ ; _ ¢, & = =/2 and RUg sin &;] = ¢. Therefore,q is
7/ AT! A ; Ve T oo 1 '
for the smallerV'> x Ny x . image from the smoothed image. the number of points that would be selected on the largest
We apply linear interpolation for this task. semicircle defined by = 7/2 anda < 6 < a + 7.

The following are some practical points concerning the implemen-4) Select the additional point = 0 on the unit sphere.

tation of the algorithm. Recall that the notation “RU” indicates rounding up to the nearest

1) Since the domain of the kernel in (8)(is >o, oc), we truncate yieger, The number of points selected is a function of the given pa-
it by settingh(x) = 0 for || > 1.650,, mm. This makes the \meter,. For exampleg = 20 givesQ = 138. Evaluatings(f’, g')
area under the truncated portion of the curve less than 1%. Ty 41 () points would normally be computationally expensive. This
discrete version ofic(x) which is used in computations is  prohlem is overcome by using images of reduced resolution and

(i) = aho(id,) i=0, +1, +2, --- (10) dimension obtained by implementing the image reduction scheme
outlined in the previous subsection.
where« is a normalizing constant chosen to makg h(i) = After choosing the starting poini,, we obtain a local maximum

1. of s(f', g') by applying the downhill simplex optimization method
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[9]. Our choice of the optimization method was not based on a
particular reasoning. We have found that this method works quite w
and gives satisfactory results. In order to speed up the optimizai
process, we first maximize(f’, g') at a reduced image scale. Th
process is then repeated at a larger image scale starting at the optil
point found by the previous step. This process can be applied
number of times, but in practice, we have obtained accurate res
with only a two step process.

One other important issue regarding the maximization proces:
the existence of degenerate solutionsb, ¢) where it is possible for
s(f', g') to take on large values. For example, if the planeb, ¢)
passes near the head bounddfyandg’ will contain relatively few
points which are spatially close. If the image intensity does not ve
appreciably withinf’ and g’, then s(f’, g') will produce a large
value which is not of interest. If this problem is not dealt witt
the optimization routines frequently find such degenerate solutio
A simple way to overcome this problem is to constrain the seal
space to those planes for which the number of elementf iis
greater than a certain percentage of the number of elements in
set{(i, j, k) € D: f(i, j, k) > T}, whereD is as defined in (1)
and T is the given threshold level.

lll. RESuULTS
In order to evaluate the performance of the automatic ML,

detection algorithm, it was applied to brain images from 20 patients @
arbitrarily selected from amongst a pool of images available in the
in a matrix size of 3% 32x 18 in the case of PET images anc

32x 32x 14 for the MR images. The value of the parametevas

chosen to be 50 resulting in @ of 818. The same size images

were used in the first stage of the optimization process. In t

second stageN', was set to 64, making the PET and MR imag

dimensions 64 64 x 36 and 64x 64 x 27, respectively. The value

of the threshold paramet&r used in defining”’ andg’ was selected

to be zero. This eliminates the negative values in the PET ime

which are artifacts of the reconstruction algorithm. For both o

MRI and PET images’ = 0 eliminates most of the background

points, although the threshold can be arbitrarily increased if necess

finding the type of degenerate solutions mentioned in Section II-€ig. 1. Examples of successful searches for the MSP in (a) T2-weighted
the search space was constrained to those planes for which the nurigrand (b) O®-water PET images.

of elements inf’ is at least 20% of the number of elements in the

set{(i, j, k) € D: f(i, j, k) > T}.

computing times were approximately 45 and 35 s in PET and MRhis patient was a 58-year-old man who suffered from a transit
images, respectively. ischemic attack and had an operation of the anastomosis between
The results from all 49 image volumes were inspected by expdine superficial temporal artery and the middle cerebral artery. The
neuroradiologists and in 47 cases were judged to be highly accurdf®| scan was performed two days after the operation. Quite clearly,

picture archiving and communication system (PACS) at the Resea
Institute for Brain and Blood Vessels (Akita, Japan). All patien
had both &°-water PET and T1-weighted magnetic resonance ime
ing (MRI) scans. Nine patients also had T2-weighted MRI scar
The PET images were of matrix dimension 122828x 46 and
voxel dimension 2. 2.0x 3.125 mmi, whereas the MRI scans
were of matrix dimension 256 256x19 with voxel dimension
1.01x 1.01x 6.0 mnt.
As mentioned in Section Il, the algorithm uses images of reduc J -]
resolution and size in order to speed up the computations. 1
scale of the image that was used in the procedure for finding 1
starting planex, was specified by selectiny’,, = 32. This resulted

particularly if there are large background values in nonbrain regions I II

in the PET data. In order to prevent the optimization algorithm from (b)

The algorithm was implemented in C on a Silicon Graphics IND¥ind MRI scan from the same patient. Fig. 2 shows MRI slices from
R5000 workstation. For the parameter values given above, the avertige subject with the detected plane of maximum symmetry overlaid.
Fig. 1 contains example slices from the successful cases. The tihe failure of the algorithm in this case is caused by the high degree
image volumes for which the algorithm failed were in fact the PE®f asymmetry which is present in the image.
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Fig. 3. Slices from an MRI study of a monkey showing the successfully
located MSP.

Fig. 2. Slices from the MR image where the algorithm failed. This patient

was a 58-year-old man who suffered from a transit ischemic attack and lEd . .
an operation of the anastomosis between the superficial temporal artery &g 4(2) and_(b) schematlc.:ally '”UStr_ate the prOble_m tha_t can occur
the middle cerebral artery. The MRI scan was performed two days after then s(f, g) is used. The imagé (thick boundary) is deliberately

operation. chosen to be asymmetric by removing a part of the “brain.” The
reflected image is also shown (thin boundary). The intensity of the

We have also successfully tested the algorithm on PET and Mi_l\;]age in the brain region is assumed to be relatively constant. The

scans from cats and monkeys. Fig. 3 shows the MSP detectedvﬂ#ues _Off — g along the cross-section AB are also sketched.
an MR image volume from a monkey. In animal experiments, the The imagesf andg over D, only consist of background voxels.

L : 2
results were used in MR-PET registration to reduce the number-U?irEfore' ltlhe Tuml of s?uares n th_'s rgg@ﬂ,— g”1’22' 1S _Tltssumed
parameters required for full alignment from six to three. to be small. Clearly a large contribution ff — gf|” will come

from regionDs. In this situation, in order to minimiz¢f — g|?,
the optimization algorithm may drive the MSP away from the true
position in order to reduce the contribution frdifi—g||%, . In effect
In Section II-A, it was stated that the measure of symmetiy would be minimizing the area dP; by trying to fit the reflected
s(f', g') used in this paper is more useful thaff, g). To justify image to the original image with as little nonoverlapping area as
this statement, first note that if we ignore interpolation errors in thgsssible. Such a solution is shown in Fig. 4(b) where the detected
construction of, theng = f = constant and/f|| = [|g|| = constant. MSP is placed to the left of the actual (defined) MSP. It is still true
From these relations, it can be easily deduced that maximizingz)  that a large contribution tf — g||> comes fromDs, but now the
is equivalent to simply maximizing.g. Furthermore, through the nonoverlapping region is smaller so thit — g||? is also smaller.
identity Clearly, the way to avoid this problem is to ignore the contribution
If = gl = 2(|I£]1% - £.¢) (12) frorr/1 Ds. T/his is achieyed py defin.ing the similarity measure in t.erljns
of ' andg’, as prescribed in Section II-A, so that only points within
itis equivalent to minimizingd|f —g||?, the sum of squared differencesp, are considered.
between elements df andg. Let us consider the problem in terms A pertinent question is how this algorithm performs in the presence

IV. DiscussioN

of this latter function. . of asymmetries in the image which are due to clinical conditions.
The sum of squared differenc — g||” is computed over seb.  The modified symmetry measure used in this paper is designed to
SetD can be divided into three regions handle cases where the image intensity in the asymmetric regions

Dy ={(i, j. k) €D: fi, j, k) > T, g(i, j. k) > T} falls bgloyv the threshold levar (e.g., missing data). I-Iloweve/r, if the
o oo o intensity is above the threshold, it will be includedfinandg’ and

Do ={(i, j. k) € D: f(i, j. k) < T. g(i. j, k) < T'} thus decrease(f’, g’). Nevertheless, in our experience such regions
D3 =D —Dy U Ds. (13) are only a small fraction of the image volume and the remaining
symmetric regions will be sufficient to guide the algorithm into
finding an accurate set of parameters. In the case of gross asymmetry,
the underlying assumption of our algorithm that the MSP divides the
If—gll’ = If —gllp, +If — gllp, + If —gllp,- (14) brain into two almost symmetric halves is violated. One example

Thus, using the linearity of ||?, ||f —g||* can be broken into three
terms
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The algorithm also performs satisfactorily for MR and PET images

Original image :
g g scanned from animals.

Reflected image
MSP Guess for MSP
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any method that improves the initial guess for the location of the

MSP will enhance the performance of the program. In this paper, the

method of selecting the starting point for the optimization algorithm

relies on two steps. First, the choice of the initial plane is limited to

those that pass through the computed center of mass of the image.

Second, from a large number of random selections amongst these

planes, we choose the one that produces maximum cross correlation

as computed on an image of reduced size. Although we have not

explored this further, one suggestion for improving the initial guess

is to use the principal axes of the image [10].

V. CONCLUSIONS

In this paper, we have described a technique which locates the
MSP of a 3-D brain image. The algorithm is independent of the
imaging modality and is truly 3-D in the sense that it is insensitive
to the initial orientation of the image in space. The technique finds
the plane which divides the image into two regions (one on either
side) with maximum symmetry. The measure of symmetry is a cross-
correlation function. The key to the success of the algorithm is
twofold. First, careful attention is paid to the construction of the
vectors used in the symmetry measure so that certain undesirable
solutions are avoided. Second, the search of the parameter space
is performed on smaller images with lower resolution. The use of
smaller images dramatically reduces the computational cost while
still producing satisfactory results.

When applied to a large number of clinical images, the results
were satisfactory in 19 out of 20 patients. The one patient for which
the program failed had gross asymmetries in the brain and skull.




