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Note that the axes are changed such thate0=d0 is calculated according
to e0=d0

= e=d 27=20 � 1:71 (with e=d = 145=98 derived from
the section).

Fig. 7 shows an example of an histological section and a corre-
sponding hexagon (a) from which the error functions are calculated
(see below). In the next step the section is sheared by�=a = 0:1
where the outer contour of the original section is superimposed (b).
As can be seen, alignment is worsened when the PAT has been applied
(c). This condition can be attributed mainly to a rotational error of
�3.5� corresponding to�8 pixels at the outer contour. This finding
is in good agreement with the expected�3.3� calculated from the
theoretical analysis.

III. CONCLUSION

For precise alignment, the PAT can account for at most1=2n(n+1)
parameters inn dimensions, since the inertia matrices are symmetri-
cal. The number of equations is, therefore, not sufficient for an exact
alignment of objects that can be related by an affine transformation
with n2 parameters (without translation).

An analytical model is devised for determining the error functions
when the PAT is used in the presence of shearing parameters.
With this analytical model, misalignment can be decomposed into
rotational and scaling errors which can be examined by varying the
shearing and form parameters. The theory shows, that minute shearing
results in strong rotational error if the shapes are approximately
square, but scaling errors dominate in cases with extensive shearing.
With increasingly rectangular shapes, the rotational error decreases
for a fixed shearing parameter. The study also reveals misalignment
if the PAT reported in [1] is applied, demonstrating that stabilizing
modifications of (6) are required.
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Automatic Detection of the Mid-Sagittal
Plane in 3-D Brain Images

Babak A. Ardekani,* Jeff Kershaw, Michael Braun, and Iwao Kanno

Abstract—This article presents a detailed description of an algorithm
for the automatic detection of the mid-sagittal plane in three-dimensional
(3–D) brain images. The algorithm seeks the plane with respect to which
the image exhibits maximum symmetry. For a given plane, symmetry
is measured by the cross-correlation between the image sections lying
on either side. The search for the plane of maximum symmetry is per-
formed by using a multiresolution approach which substantially decreases
computational time. The choice of the starting plane was found to be
an important issue in optimization. A method for selecting the initial
plane is presented. The algorithm has been tested on brain images from
various imaging modalities in both humans and animals. Results were
evaluated by visual inspection by neuroradiologists and were judged to
be consistently correct.

Index Terms—Brain, image registration, medical imaging, mid-sagittal
plane, pattern recognition.

I. INTRODUCTION

This paper describes a robust algorithm for the automatic detec-
tion of the mid-sagittal plane (MSP) in arbitrarily oriented three-
dimensional (3-D) brain images.

The algorithm has several useful applications. MSP detection is
often the first step in spatial normalization or anatomical standard-
ization of brain images [1], [2]. It is also a useful first step in
intrasubject inter/intramodality image registration [3], where aligning
the MSP’s between images reduces the degrees of freedom to three
(one rotation and two translations). This simplifies the problem to
one of two-dimensional (2-D) registration which can be achieved
by whatever technique is most appropriate. The algorithm is also
useful for defining symmetric regions of interest in left and right
hemispheres. In single photon emission tomography (SPECT) for
example, this allows accurate comparison of the local radionuclide
uptake in opposing sides of the brain where any observed asymmetry
may be useful for clinical diagnosis [4].

Several papers in the medical imaging literature have previously
considered this problem [5]–[7]. Juncket al. [5] developed a method
for automatic detection of theline of symmetry in a transverse
positron emission tomography (PET) or SPECT slice. The two pa-
rameters that specify the line of symmetry are found by an exhaustive
search. An exhaustive search is really only computationally feasible
for 2-D cases and when the initial guess for the orientation of the
line of symmetry is close to the optimum. We have found in practice
that the cross-correlation method as presented in [5] does not reliably
locate the MSP in three dimensions.
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Minoshima et al. [6] presented a method for detecting the MSP
in 3-D PET images. The measure of symmetry used in this paper
is a modified stochastic sign change (SSC) criterion [8]. This paper
also relies on an exhaustive search of a small region of the parameter
space for the optimal MSP. By limiting the search to this region, they
are assuming that the scans are very close to being either coronal or
transaxial.

Neither [5] nor [6] applied their algorithms to MR images. On
the other hand, Brummer’s approach [7] is suitable for MR images
only. The technique is based on a Hough transform of edge images
obtained using Sobel edge detectors and therefore is only suited for
high-resolution images such as MR images. It also requires transaxial
or coronal scans and will not work with sagittal scans, essentially
reducing the problem to finding mid-sagittal lines in 2-D slices.

The approach presented in this paper is based on the premise that
the MSP separates a 3-D brain image into two almost symmetric
halves. We define a criterion to measure symmetry and find the plane
that maximizes this criterion. This is basically the same approach
used in [5] and [6], but we have overcome some of the restrictions of
these works. More precisely, we need make no particular assumption
about the scan orientation, nor are we restricted to a specific imaging
modality. The algorithm is truly 3-D and is insensitive to how the
data is initially presented to the program—we can arbitrarily rotate
and translate the image set in three dimensions and still obtain the
desired result. This is possible because we have introduced some new
ideas for overcoming the problem of local minima in the similarity
measure. Specifically, a multiresolution approach is adopted whereby
an approximate location of the MSP is constructed from smaller
images of lower resolution and then located more accurately in images
with higher resolution. This improves the computational efficiency
of the algorithm and is the reason why we can perform the true 3-D
algorithm within a reasonable time period.

The paper is organized as follows. In Section II, we present a
concise mathematical formulation of the theory and describe the
implementation of the algorithm in detail. In Section III, we apply
the method to a large number of images and evaluate the results.
Discussion is presented in Section IV followed by conclusions in
Section V.

II. M ETHODS

A. Measure of Symmetry

Consider three sets of integersI = f0; 1; � � � ; Nx � 1g, J =

f0; 1; � � � ; Ny � 1g, andK = f0; 1; � � � ; Nz � 1g. Let D denote
the product set ofI, J , andK, that is

D = I � J �K = f(i; j; k): i 2 I; j 2 J; k 2 Kg: (1)

A 3-D medical image can be considered as a functionf that
mapsD into the set of real numbersIR. Points (i; j; k) represent
volume elements(voxels). The image value or intensity at a voxel
(i; j; k) is denoted byf(i; j; k). Alternatively, the image may be
represented by anN -dimensional vectorf (N = Nx � Ny � Nz)
with elementsfn = f(i; j; k), wheren = kNxNy + j Nx + i

(n = 0; 1; � � � ; N � 1).
The array of numbersf(i; j; k) represents discrete samples of a

functionfc(x; y; z) defined on a continuous domainC � IR3. More
precisely, we definef(i; j; k) = fc(xi; yj ; zk) with

xi = [i� (Nx � 1)=2] dx

yj = [j � (Ny � 1)=2]dy

zk = [k � (Nz � 1)=2]dz: (2)

The quantitiesdx, dy, and dz are the sampling intervals (voxel
dimensions) in thex, y, and z directions, respectively. Note that
distances inC are real-world distances in units of millimeters (mm).

Points(x; y; z) 2 C are related to precise locations within thefield
of view(FOV) of the scanner by adopting the following conventions.
The origin is taken to be at the center of the FOV. Thez direction
is assumed to lie parallel to the axis of the scanner. Thex and y

axes are chosen as left to right, and anterior to posterior directions,
respectively.

The equation of a plane in three dimensions can be written in the
form

F (x; y; z) = ax+ by + cz � 1 = 0: (3)

Each plane is characterized by a unique set of parameters(a; b; c).
Our aim is to find the triplet(a; b; c) with respect to which the
image f has maximum “symmetry.”

To determine the symmetry off , [5] and [6] compare it with the
imageg that is obtained whenf is reflected (flipped) about the plane.
The measure of symmetry used in [6] is the SSC criterion computed
for f�g. The measure of symmetry used in [5] is the cross-correlation
betweenf and g defined as

s(f ; g) =
(f � f1):(g� g1)

k(f � f1)kk(g� g1)k
(4)

wheref andg are the means of the elements off andg, respectively,
and1 is anN -dimensional vector with all its elements equal to one.

The present paper also uses the cross-correlation symmetry mea-
sure. However, the cross correlation is computed between two mod-
ified vectorsf 0 and g0. There are two modifications. First,f 0 only
consists of voxels on the positive side of the plane [F (x; y; z) > 0],
while g0 only consists of voxels on the negative side of the plane
[F (x; y; z) < 0]. This is in contrast with the definitions off andg
used in (4) wheref is the entire image andg is its reflection about a
presumed MSP. The second modification ensures that all elements of
f 0 andg0 are greater than a given threshold levelT . This is achieved
by removing all elementsn from both f and g if either fn or gn
is less than or equal toT . The procedure for obtainingf 0 andg0 is
as follows.

1) For each point(i; j; k) 2 D, compute the corresponding point
P = (xi; yj ; zk) 2 C from (2). Proceed iff(i; j; k) > T

andF (P) > 0. Otherwise, skip(i; j; k) and process the next
point.

2) Find the reflection of pointP with respect to the plane by

P
0

= (x
0

i; y
0

j ; z
0

k) = P� 2
F (P)

krFk

rF

krFk
: (5)

3) If P0 falls outside the FOV, setg(i; j; k) = 0. Otherwise, set
g(i; j; k) = f̂c(x

0

i; y
0

j ; z
0

k) wheref̂c(x0

i; y
0

j ; z
0

k) is an estimate
of fc at P0 obtained by interpolation.

4) If g(i; j; k) > T , includef(i; j; k) in f 0 andg(i; j; k) in g0.

Note thatboth the original and reflected points,fc(P) and f̂c(P0),
must exceed the thresholdT in order to be included inf 0 andg0.

Using the modified vectorsf 0 and g0 has the obvious advantage
of improving computational efficiency since the size of the vectors is
substantially smaller thanN . More importantly,s(f 0; g0) is a more
useful measure of symmetry than (4) for detection of the MSP. We
shall present our arguments for this in Section IV.

B. Reduction of the Image Size

The search for the MSP in three dimensions is computationally
expensive. The computation time is proportional to the number of
image voxels and can be substantially shortened by a multiresolution
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approach which uses images of smaller dimension. This section
outlines our algorithm for performing the image reduction.

Let the original image matrix size beNx�Ny�Nz voxels, and the
dimensions of each voxeldx�dy�dz mm3. The resizing is performed
so that the resulting voxels are almost cubic. We first specify the
dimensionN 0

x (<Nx) of the new matrix. The corresponding voxel
dimensiond0

x for the new image is calculated as

d
0

x = dx � (Nx � 1)=(N
0

x � 1): (6)

This is used to obtain they andz dimensions of the new matrix

N
0

y =RU dy � (Ny � 1)=d
0

x + 1

N
0

z =RU dz � (Nz � 1)=d
0

x + 1 (7)

where we use the notation “RU” to indicate rounding up to the nearest
integer. FromN 0

y andN 0

z the new voxel dimensionsd0

y andd0

z

are obtained in the same manner as (6). They are equal to or slightly
less thand0

x so that the voxels in the new image arealmostcubic.
With the dimensions for the matrix and voxels of the reduced image

finalized, we can proceed to resampling. This is a two-step process.
The first step is to use a Gaussian kernel to smooth the original image.
Since a Gaussian kernel is separable, smoothing with a 3-D kernel
is equivalent to smoothing with three one-dimensional (1-D) kernels.
The 1-D kernel for thex direction is given by

hc(x) =
1p

2��2x
exp

�x2
2�2x

: (8)

The parameter�x determines the amount of smoothing in thex
direction. A larger�x results in a greater degree of smoothing. The
image scanner is assumed to have a Gaussian point spread function
(PSF) in thex direction, with full-width half-maximum (FWHM)
equal tor � dx. We choose�x so that the ratior is maintained
between the FWHM of the reduced image and its voxel dimension
d0

x. This means we must satisfy

�
2

x =
r2

8 ln 2
d

02

x � d
2

x : (9)

In our implementation we assume a value of two forr. The smoothing
kernels for they and z directions are constructed in the same way.
Once the smoothing kernels are known, they are used to smooth the
original image by a series of 1-D discrete convolutions.

If the PSF of the scanner is not Gaussian, but can be at least
approximated by some other analytic form, then a similar but possibly
more complicated equation may be derived for�2x. In such cases,
it may be simpler to regard (9) as anad hoc rule for choosing
the smoothing kernel used to reduce image resolution. The only
consequence of such an approximation is that the ratio between the
FWHM of the smoothed image andd0

x is not necessarily equal tor.
This will not interfere with the effectiveness of the algorithm since
r is not a critical factor in the method.

The second step in the resampling process is to select voxel values
for the smallerN 0

x �N 0

y �N 0

z image from the smoothed image.
We apply linear interpolation for this task.

The following are some practical points concerning the implemen-
tation of the algorithm.

1) Since the domain of the kernel in (8) is(�1; 1), we truncate
it by settingh(x) = 0 for jxj > 1:65�x mm. This makes the
area under the truncated portion of the curve less than 1%. The
discrete version ofhc(x) which is used in computations is

h(i) = �hc(idx) i = 0; �1; �2; � � � (10)

where� is a normalizing constant chosen to make
i
h(i) =

1.

2) Care must be taken when computing the 1-D convolutions
near the image boundaries since the convolution kernel and
the image matrix do not completely overlap in these regions.
The difficulty is overcome by extending the image beyond its
boundaries by mirror reflections.

3) If the choice ofN 0

x results in eitherN 0

y > Ny or N 0

z >

Nz , then we do not perform the Gaussian smoothing in that
direction.

C. Optimization

This section outlines the method used for maximizing the similarity
measures(f 0; g0) defined in (4) with respect to the parameters
u = (a; b; c). Note thats is only implicitly dependent on(a; b; c)
through f 0 and g0. The basic procedure is simple. We start at an
initial point u0 in the parameter space and find a local maximum of
s(f 0; g0) using an optimization algorithm. Whether or not this local
maximum corresponds to the MSP is dependent on the choice of
starting point. Thus, choosingu0 is an important issue.

The “center of mass” of an image is defined as follows:

xcm =
1

M
(i; j; k)2D

xif(i; j; k)

ycm =
1

M
(i; j; k)2D

yjf(i; j; k)

zcm =
1

M
(i; j; k)2D

zkf(i; j; k)

where

M =

(i; j; k)2D

f(i; j; k) (11)

xi, yj , andzk are as in (2), andf(i; j; k) is the image value at voxel
(i; j; k). In most cases the MSP will pass near this point, hence it
is reasonable to chooseu0 from amongst the set of planes which
contain the center of mass. Now consider a sphere of unit radius
centered atPcm = (xcm; ycm; zcm). Any point P on the sphere
uniquely defines a plane. Specifically, the plane passes through point
Pcm with unit normalP�Pcm. Our procedure is to selectQ points
on the unit sphere and evaluates(f 0; g0) for all of the corresponding
planes. The initial planeu0 is then chosen as the one which returns
the largest value. The following procedure is used for specifying the
Q points.

1) Seti = 1 and let�� = �=(2q) whereq is a given integer.
2) In spherical coordinates a point on the unit sphere can always be

specified by the two angles� and�, 0 � �, 0 � 2�.
Define�i = i��. Select RU[q sin �i] points at equal distances
on the semicircle at� = �i and� � � + �, where� is
an angle between 0 and2� chosen at random.

3) If i < q, increasei by one and repeat Step 1. Note that when
i = q, �i = �=2 and RU[q sin �i] = q. Therefore,q is
the number of points that would be selected on the largest
semicircle defined by� = �=2 and� � � + �.

4) Select the additional point� = 0 on the unit sphere.

Recall that the notation “RU” indicates rounding up to the nearest
integer. The number of points selected is a function of the given pa-
rameterq. For example,q = 20 givesQ = 138. Evaluatings(f 0; g0)
for all Q points would normally be computationally expensive. This
problem is overcome by using images of reduced resolution and
dimension obtained by implementing the image reduction scheme
outlined in the previous subsection.

After choosing the starting pointu0, we obtain a local maximum
of s(f 0; g0) by applying the downhill simplex optimization method
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[9]. Our choice of the optimization method was not based on any
particular reasoning. We have found that this method works quite well
and gives satisfactory results. In order to speed up the optimization
process, we first maximizes(f 0; g0) at a reduced image scale. The
process is then repeated at a larger image scale starting at the optimum
point found by the previous step. This process can be applied any
number of times, but in practice, we have obtained accurate results
with only a two step process.

One other important issue regarding the maximization process is
the existence of degenerate solutions(a; b; c) where it is possible for
s(f 0; g0) to take on large values. For example, if the plane(a; b; c)
passes near the head boundary,f 0 andg0 will contain relatively few
points which are spatially close. If the image intensity does not vary
appreciably withinf 0 and g0, then s(f 0; g0) will produce a large
value which is not of interest. If this problem is not dealt with,
the optimization routines frequently find such degenerate solutions.
A simple way to overcome this problem is to constrain the search
space to those planes for which the number of elements inf 0 is
greater than a certain percentage of the number of elements in the
set f(i; j; k) 2 D: f(i; j; k) > Tg, whereD is as defined in (1)
and T is the given threshold level.

III. RESULTS

In order to evaluate the performance of the automatic MSP
detection algorithm, it was applied to brain images from 20 patients
arbitrarily selected from amongst a pool of images available in the
picture archiving and communication system (PACS) at the Research
Institute for Brain and Blood Vessels (Akita, Japan). All patients
had both O15-water PET and T1-weighted magnetic resonance imag-
ing (MRI) scans. Nine patients also had T2-weighted MRI scans.
The PET images were of matrix dimension 128� 128�46 and
voxel dimension 2.0�2.0�3.125 mm3, whereas the MRI scans
were of matrix dimension 256�256�19 with voxel dimension
1.01�1.01�6.0 mm3.

As mentioned in Section II, the algorithm uses images of reduced
resolution and size in order to speed up the computations. The
scale of the image that was used in the procedure for finding the
starting planeu0 was specified by selectingN 0

x = 32. This resulted
in a matrix size of 32�32�18 in the case of PET images and
32�32� 14 for the MR images. The value of the parameterq was
chosen to be 50 resulting in aQ of 818. The same size images
were used in the first stage of the optimization process. In the
second stage,N 0

x was set to 64, making the PET and MR image
dimensions 64�64� 36 and 64�64� 27, respectively. The value
of the threshold parameterT used in definingf 0 andg0 was selected
to be zero. This eliminates the negative values in the PET image
which are artifacts of the reconstruction algorithm. For both our
MRI and PET imagesT = 0 eliminates most of the background
points, although the threshold can be arbitrarily increased if necessary,
particularly if there are large background values in nonbrain regions
in the PET data. In order to prevent the optimization algorithm from
finding the type of degenerate solutions mentioned in Section II-C,
the search space was constrained to those planes for which the number
of elements inf 0 is at least 20% of the number of elements in the
set f(i; j; k) 2 D: f(i; j; k) > Tg.

The algorithm was implemented in C on a Silicon Graphics INDY
R5000 workstation. For the parameter values given above, the average
computing times were approximately 45 and 35 s in PET and MR
images, respectively.

The results from all 49 image volumes were inspected by expert
neuroradiologists and in 47 cases were judged to be highly accurate.
Fig. 1 contains example slices from the successful cases. The two
image volumes for which the algorithm failed were in fact the PET

(a)

(b)

Fig. 1. Examples of successful searches for the MSP in (a) T2-weighted
MRI and (b) O15-water PET images.

and MRI scan from the same patient. Fig. 2 shows MRI slices from
this subject with the detected plane of maximum symmetry overlaid.
This patient was a 58-year-old man who suffered from a transit
ischemic attack and had an operation of the anastomosis between
the superficial temporal artery and the middle cerebral artery. The
MRI scan was performed two days after the operation. Quite clearly,
the failure of the algorithm in this case is caused by the high degree
of asymmetry which is present in the image.
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Fig. 2. Slices from the MR image where the algorithm failed. This patient
was a 58-year-old man who suffered from a transit ischemic attack and had
an operation of the anastomosis between the superficial temporal artery and
the middle cerebral artery. The MRI scan was performed two days after the
operation.

We have also successfully tested the algorithm on PET and MRI
scans from cats and monkeys. Fig. 3 shows the MSP detected in
an MR image volume from a monkey. In animal experiments, the
results were used in MR-PET registration to reduce the number of
parameters required for full alignment from six to three.

IV. DISCUSSION

In Section II-A, it was stated that the measure of symmetry
s(f 0; g0) used in this paper is more useful thans(f ; g). To justify
this statement, first note that if we ignore interpolation errors in the
construction ofg, theng = f = constant andkfk = kgk = constant.
From these relations, it can be easily deduced that maximizings(f ; g)
is equivalent to simply maximizingf :g. Furthermore, through the
identity

kf � gk
2 = 2(kfk2 � f :g) (12)

it is equivalent to minimizingkf�gk2, the sum of squared differences
between elements off andg. Let us consider the problem in terms
of this latter function.

The sum of squared differenceskf � gk2 is computed over setD.
SetD can be divided into three regions

D1 = f(i; j; k) 2 D: f(i; j; k) > T; g(i; j; k) > Tg

D2 = f(i; j; k) 2 D: f(i; j; k) T; g(i; j; k) Tg

D3 =D �D1 [ D2: (13)

Thus, using the linearity ofk k2, kf � gk2 can be broken into three
terms

kf � gk
2 = kf � gk

2

D + kf � gk
2

D + kf � gk
2

D : (14)

Fig. 3. Slices from an MRI study of a monkey showing the successfully
located MSP.

Fig. 4(a) and (b) schematically illustrate the problem that can occur
when s(f ; g) is used. The imagef (thick boundary) is deliberately
chosen to be asymmetric by removing a part of the “brain.” The
reflected imageg is also shown (thin boundary). The intensity of the
image in the brain region is assumed to be relatively constant. The
values off � g along the cross-section AB are also sketched.

The imagesf andg overD2 only consist of background voxels.
Therefore, the sum of squares in this region,kf � gk2D , is assumed
to be small. Clearly a large contribution tokf � gk2 will come
from regionD3. In this situation, in order to minimizekf � gk2,
the optimization algorithm may drive the MSP away from the true
position in order to reduce the contribution fromkf�gk2D . In effect
it would be minimizing the area ofD3 by trying to fit the reflected
image to the original image with as little nonoverlapping area as
possible. Such a solution is shown in Fig. 4(b) where the detected
MSP is placed to the left of the actual (defined) MSP. It is still true
that a large contribution tokf � gk2 comes fromD3, but now the
nonoverlapping region is smaller so thatkf � gk2 is also smaller.
Clearly, the way to avoid this problem is to ignore the contribution
fromD3. This is achieved by defining the similarity measure in terms
of f 0 andg0, as prescribed in Section II-A, so that only points within
D1 are considered.

A pertinent question is how this algorithm performs in the presence
of asymmetries in the image which are due to clinical conditions.
The modified symmetry measure used in this paper is designed to
handle cases where the image intensity in the asymmetric regions
falls below the threshold levelT (e.g., missing data). However, if the
intensity is above the threshold, it will be included inf 0 andg0 and
thus decreases(f 0; g0). Nevertheless, in our experience such regions
are only a small fraction of the image volume and the remaining
symmetric regions will be sufficient to guide the algorithm into
finding an accurate set of parameters. In the case of gross asymmetry,
the underlying assumption of our algorithm that the MSP divides the
brain into two almost symmetric halves is violated. One example
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(a) (b)

Fig. 4. An illustration of how missing data can cause the similarity measure
s(f ; g) to yield an inaccurate MSP. In (a) the MSP is placed at its best
possible position and in (b) it has been moved to the left. Also in (a),D1

marks the region whereboth the original image and its reflection are above the
thresholdT , D2 is the region whereneither is above the threshold, andD3

whereonly oneis above the threshold. Similar regions can be assigned for (b).

where the algorithm failed is presented in Fig. 2. This provides an
idea of the extent of asymmetry that must exist for failure to occur.

As pointed out in Section II-C, the choice of the initial plane for
optimization is crucial to the success of the algorithm. Therefore,
any method that improves the initial guess for the location of the
MSP will enhance the performance of the program. In this paper, the
method of selecting the starting point for the optimization algorithm
relies on two steps. First, the choice of the initial plane is limited to
those that pass through the computed center of mass of the image.
Second, from a large number of random selections amongst these
planes, we choose the one that produces maximum cross correlation
as computed on an image of reduced size. Although we have not
explored this further, one suggestion for improving the initial guess
is to use the principal axes of the image [10].

V. CONCLUSIONS

In this paper, we have described a technique which locates the
MSP of a 3-D brain image. The algorithm is independent of the
imaging modality and is truly 3-D in the sense that it is insensitive
to the initial orientation of the image in space. The technique finds
the plane which divides the image into two regions (one on either
side) with maximum symmetry. The measure of symmetry is a cross-
correlation function. The key to the success of the algorithm is
twofold. First, careful attention is paid to the construction of the
vectors used in the symmetry measure so that certain undesirable
solutions are avoided. Second, the search of the parameter space
is performed on smaller images with lower resolution. The use of
smaller images dramatically reduces the computational cost while
still producing satisfactory results.

When applied to a large number of clinical images, the results
were satisfactory in 19 out of 20 patients. The one patient for which
the program failed had gross asymmetries in the brain and skull.

The algorithm also performs satisfactorily for MR and PET images
scanned from animals.
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