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The identification of individual differences in brainmorphology is important to understand the background
of individual differences in brain functions. In the present study, we investigated whether brain
morphology is discernibly different among individuals and is personally identifiable information. Using
structural magnetic resonance imaging data from 215 healthy subjects scanned twice (scan interval =
1.0 ± 0.1 years), we performed brain recognition by image normalization using a voxel-based
morphometry approach, feature extraction based on principal component analysis, and calculating the
Euclidean distances between image pairs projected into the subspace. Even with only 32 dimensions used
for projection, the rank-one identification rate was 99.5%. With ≥112 dimensions used, the rank-one
identification rate was 100%. At a false accept rate of 0.01%, the genuine accept rates were 95.8% and 100%
with 32 and≥128 dimensions used for projection, respectively. There was little difference in the Euclidean
distances among different combinations of scanners used or between probe–gallery image pairs with and
without scanner upgrade. These results indicate that brain morphology can identify a specific individual;
i.e., brain morphology is personally identifiable information. Individually different brain morphology may
occur as a collection of differences in brain structures that reflect individual differences in a variety of
performances and various psychological characteristics and behavior patterns, and may provide the
background of individual differences in personality and brain function.
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1. Introduction

To understand the background of individual differences in brain
functions, it is important to identify individual differences in brain
morphology. Brainmorphology is the study of the size and shape of the
brain and its structures. With recent advances in magnetic resonance
imaging (MRI) and image analysis techniques, brainmorphometry has
been widely used to study brain structures and their differences in
normal brains, in developing and aging brains, and in a variety of
neurological and neuropsychiatric disorders. Structural changes occur
during brain development, maturation, and aging that are related to
changes in brain functions. Moreover, a variety of neurological and
neuropsychiatric disorders cause and/or are related to changes in brain
structures. In addition to its association with brain development and
aging, as well as neurological and neuropsychiatric disorders, brain
morphology is also related to various types of high-level performance
such as those displayed by taxi drivers [1], musicians [2,3], mathema-
ticians [4], and bilingual individuals [5]. Even learning and training
have been shown to cause changes in brain structures [6]. In addition,
brainmorphometryhas beenperformed to investigate the relationship
of brain structures to a wide range of personality dimensions and
behavioral traits.Morphometric changes in the brainmanifest as a gain
or loss of brain tissue, which can be detected by structural MRI. Most
typically, T1-weighted images are used for morphometric analysis of
the brain with MRI.

Techniques for morphometric analysis of these brain images
include visual assessment, manual tracing of regions of interest, and
automated methods such as voxel-based morphometry (VBM) [7].
Manual tracing of regions of interest is a widely used form of brain
morphometry; however, it is a subjective and time-consuming
procedure, requires considerable anatomical expertise, and is gener-
ally limited to brain structures that have constant anatomical
boundaries. Recently, a number of automated, unbiased, objective
techniques have been developed and widely used to examine brain
morphology, including volume-based methods such as VBM [7],
tensor-based morphometry, and deformation-based morphometry;
and surface-based methods such as cortical thickness analysis. VBM is
one of the most commonly used automated techniques for assessing
brain structures. Briefly, VBM involves segmenting images into gray
matter, white matter, and cerebrospinal fluid; warping these tissue
maps into standard space; smoothing these spatially normalized tissue
maps; before performing voxel-by-voxel statistical analysis.
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Recently, large-scale brain imaging studies have been conducted to
overcome the limited power of smaller studies and to increase
reliability of the findings. These studies include the Alzheimer's
DiseaseNeuroimaging Initiative study [8], amulti-center observational
study of healthy elders and patients with mild cognitive impairment
and Alzheimer's disease; and the Human Connectome Project [9], a
project to construct a map of the complete structural and functional
neural connections in vivowithin andacrosshealthy individuals. These
large-scale brain imaging studies have made “de-identified” data,
including imaging and clinical information andDNAsequences,widely
available to the scientific community for examination and exploration.

The recent proliferation of digital networks and the growth of the
information society have further enhanced the need for information
security and reliable personal identification. Biometrics use physical
characteristics such as fingerprints, iris properties, and face extraction to
establish the identity of a person. The unique nature of the fingerprint is
one of the most well-known and commonly used biometric traits.
Fingerprint recognition has been in use for over a century and has
recentlybecomeautomated followingadvances incomputer technology.
In contrast, humans most commonly recognize individuals on the basis
of facial features. Althoughautomated face recognitionby computers has
improved, this method is more difficult than automated fingerprint
recognition, and the need for a high-accuracy system remains.

In the present study, we investigated whether brain morphology is
discernibly different among individuals and is personally identifiable
information. Using structural MRI data from 215 healthy subjects who
were scanned twice, for this purpose, we performed brain recognition
by image normalization using the VBM approach [10], feature
extraction based on principal component analysis (PCA), and calcula-
tion of the Euclidean distances between image pairs in the subspace.

2. Materials and methods

2.1. Subjects

The present study included data from 215 healthy subjects (153
males, 62 females, mean age = 56 ± 9 years, age range = 40–83
years) [11]. None of the subjects had a history of neuropsychiatric
Fig. 1. Summary of image processing
disorders, including serious head trauma, psychiatric disorder, or
alcohol/substance abuse or dependence. The mean mini-mental
state examination score was 29.6 ± 0.7 (range = 27–30). A
board-certified radiologist reviewed all scans including T1-weighted
and T2-weighted images and found no gross abnormalities such as
infarct, hemorrhage, or brain tumor in any subject. Fazekas score
(range, 0–3) was 0 (absence) or 1 (caps, pencil-thin lining and/or
punctate foci) [12]. The Ethical Committee of the University of Tokyo
Hospital approved the study. After a complete explanation of the
study to each subject, written informed consent was obtained.

2.2. Imaging data acquisition

Magnetic resonance data were obtained on two 3.0-T Signa
scanners (GE Medical Systems, Milwaukee, WI) with an 8-channel
brain phased-array coil. The scanners were the exact same model,
and were simultaneously upgraded from HDx to HDxt. Each subject
was scanned twice, at an interval of about 1 year (mean interval =
1.0 ± 0.1 years, range = 0.6–1.3 years) [11]. Of the 215 subjects, (A)
67were scanned twicewith scanner 1; (B) 44werefirst scannedwith
scanner 1 and then with scanner 2; (C) 56 were first scanned with
scanner 2 and then with scanner 1; and (D) the remaining 48 were
scanned twice with scanner 2. Of the 215 subjects, 151 underwent
both scans before scanner upgrade, and the remaining 64 underwent
the first scan before upgrade and the second after the upgrade.

T1-weighted images were acquired using three-dimensional
inversion recovery prepared fast spoiled gradient recalled acquisi-
tion in the steady state in 176 sagittal slices (repetition time = 5.3–
5.4 ms; echo time = 1.7 ms; inversion time = 450 ms; flip angle =
15°; field of view= 250 mm; slice thickness = 1.0 mmwith no gap;
acquisition matrix = 256 × 256; number of excitations = 0.5; image
matrix = 256 × 256). Parallel imaging (array spatial sensitivity
encoding technique) was used with an acceleration factor of 2.0.
Voxel dimensions were 0.977mm× 0.977mm×1.0mm. The images
were corrected for spatial distortion due to gradient non-linearity
using grad_unwarp [13–15] and for intensity non-uniformity using
the nonparametric non-uniform intensity normalization algorithm
N3 [14–16].
for brain recognition using PCA.
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2.3. PCA-based brain recognition

Image processing was performed mainly using MATLAB 7.13
(Mathworks, Sherborn, MA) and statistical parametric mapping 8
software (http://www.fil.ion.ucl.ac.uk/spm) developed in the Well-
come Department of Imaging Neuroscience, Institute of Neurology,
University College London.

The first scans were used as a training and gallery set and the
second scans were used as a probe set. Fig. 1 shows a summary of
image processing steps. All images were normalized using unified
segmentation [10] implemented in statistical parametric mapping 8
software (VBM approach). The "eigenbrain" space was created using
PCA on the normalized training images. Recognition was performed
by calculating the distances from the probe to gallery images
projected into the eigenbrain space.

2.3.1. Image normalization
The inversion recovery prepared fast spoiled gradient recalled

acquisition in the steady state images were spatially normalized and
segmented into gray matter, white matter, and cerebrospinal fluid
using an integrated generative model (unified segmentation) [10].
The International Consortium for Brain Mapping gray matter, white
matter, and cerebrospinal fluid templates were used as priors to
segment the images. The normalized gray matter images were
modulated to correct voxel signal intensity for volume displacement
during normalization and reflect brain volume [17], smoothed by an
isotropic Gaussian kernel (sigma = 2 mm). The final voxel size was
2 mm × 2 mm × 2 mm.

2.3.2. Principal component analysis
The mean image m was calculated and subtracted from the

normalized training images. We performed PCA to determine
eigenvectors v1, v2, …, vn-1 (“eigenbrains”), where n is the number
of the training images (215). The dimensions were reduced to
decrease the number of eigenbrains used while minimizing the loss
of information by keeping those eigenbrains with the largest
eigenvalues. Each (mean-subtracted) image can be projected into
this space and the projected image is represented as a weighted
sum of the eigenbrains. The weight vector (feature vector)
Fig. 2. Mean image and the first 11 eigenbrains calculated from the training (gallery) set.
represents the position of the brain in this space and is the result of
the projection.

2.3.3. Recognition
Recognition was performed by projecting a probe image into the

eigenbrain space, and comparing it with the gallery images projected
into the eigenbrain space by measuring the Euclidean distances
between their respective feature vectors.

3. Results

3.1. Eigenbrains and variance explained

Fig. 2 shows the mean image and eigenbrains calculated from the
training (gallery) set. Fig. 3 shows the cumulative percentages of
variance explained by the principal components (eigenbrains). Of the
214 principal components (eigenbrains) calculated, the first 21, 38,
60, 86, 119, and 159 principal components (eigenbrains) explained
40%, 50%, 60%, 70%, 80%, and 90% of the total variance, respectively.

3.2. Euclidean distances and dimensions used

Fig. 4 and Table 1 show the relationship between the number of
dimensions (eigenbrains) used and Euclidean distances between the
probe and gallery images. As the number of dimensions (eigenbrains)
used increased, the distances from the others increased, while the
distances from oneself were almost stable. Evenwith a small number
of dimensions (eigenbrains) used, the distances from the otherswere
sufficiently long compared with the distances from oneself.

3.3. Identification and dimensions used

Fig. 5 shows the relationship between the number of dimensions
(eigenbrains) used and the rank-one identification rate. The gallery
imagewith the smallest Euclidean distance from a probe image is the
top (rank-one) match. When 16, 32, 48, 64, 80, 96, and 112
dimensions (eigenbrains) were used for projection, the rank-one
identification rates were 97.2% (209/215), 99.5% (214/215), 99.5%,
99.5%, 99.5%, 99.5%, and 100% (215/215), respectively.

http://www.fil.ion.ucl.ac.uk/spm


Fig. 3. Cumulative percentage of variance explained by the principal component
(eigenbrains).

Fig. 4. Euclidean distances between the probe and gallery images. Blue dots are the
distances from oneself, red dots are the distances from the nearest other, and green dot
are the distances from all the others. The error bars represent the standard deviation.

Table 1
Euclidean distances between the probe and gallery images.

Number of dimensions (eigenbrains) used

16 32 48 64 80 96 112 128 144 160 176 192 208 214

Distance from oneself
Mean 8 8 9 9 9 9 9 9 10 10 10 10 10 10
SD 4 4 4 4 4 4 4 4 4 4 4 4 4 4

Distance from the nearest other
Mean 18 24 29 32 35 37 39 41 43 45 46 48 50 51
SD 4 6 7 7 8 8 8 8 8 8 8 7 6 5

Distance from the others
Mean 37 42 45 48 51 53 54 56 57 59 60 61 62 62
SD 12 11 11 11 11 11 10 10 10 9 9 9 8 8

Difference between the distance from oneself and that from the nearest other
Mean 10 16 20 23 25 28 30 31 33 35 37 38 40 41
SD 5 7 8 8 9 9 9 9 9 9 9 8 7 7

p⁎ All p values were b 0.0001.

⁎ - Wilcoxon signed-rank test
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3.4. Verification and dimensions used

Matching all the probe images (n = 215) against all the gallery
images (n = 215) yielded 215 genuine scores (Euclidean distances)
(where images are from the same subject) and 215 × 214 (46,010)
imposter scores (Euclidean distances) (where images are from
different subjects). Fig. 6 shows receiver operating characteristic
curves calculated with different numbers of dimensions (eigen-
brains) used for projection.When 16 dimensions (eigenbrains) were
used, the genuine accept rates were 89.8% and 82.8% at false accept
rates of 0.01% and 0.001%, respectively. When 32 dimensions
(eigenbrains) were used, the genuine accept rates were 95.8% and
90.7%, at false accept rates of 0.01% and 0.001%, respectively. When
48 dimensions (eigenbrains) were used, the genuine accept rates
were 98.1% and 97.2% at false accept rates of 0.01% and 0.001%,
respectively. When 64 dimensions (eigenbrains) were used, the
genuine accept rates were 98.6% and 98.6% at false accept rates of
0.01% and 0.001%, respectively. When 80, 96, or 112 dimensions
(eigenbrains) were used, the genuine accept rates were 99.1% and
99.1% at false accept rates of 0.01% and 0.001%, respectively. When
128 dimensions (eigenbrains) were used, the genuine accept rates
were 100% and 99.1% at false accept rates of 0.01% and 0.001%,
respectively. When 144 dimensions (eigenbrains) were used, the
genuine accept rates were 100% and 99.5% at false accept rates of
0.01% and 0.001%, respectively. When 160 dimensions (eigenbrains)
were used, the genuine accept rates were 100% and 100% at false
accept rates of 0.01% and 0.001%, respectively.
s
Fig. 5. Rank-one identification rate. When 16, 32 (48, 64, 80, 96), and 112 dimensions
(eigenbrains) were used for projection, the rank-one identification rates were 97.2%
99.5%, and 100%, respectively.
3.5. Effects of scanner and upgrade

Figs. 7 and 8 show the effects of using different scanners and of
scanner upgrade on the Euclidean distances calculated between the
probe and gallery images. There was little difference in the
Euclidean distances among the different combinations of scanners
used or between the probe–gallery image pairs with and without
scanner upgrade.

4. Discussion

The results of the present study indicate that brainmorphology can
identify a specific individual; i.e., brain morphology is personally
identifiable information. Even with only 32 dimensions (eigenbrains)
used for projection, the rank-one identification rate was 99.5%. The
rank-one identification rate was 100% with ≥112 dimensions
(eigenbrains) used. At a false accept rate of 0.01%, the genuine accept
rates were 95.8% and 100% with 32 and ≥128 dimensions
(eigenbrains) used for projection, respectively. Brain morphology
undergoes change during brain development, maturation, and aging.
Moreover, a variety of neurological and neuropsychiatric disorders
cause and/or are related to changes in brain morphology. In addition,
previous studies have reported a relationship betweenbrain structures
and various types of high-level performance, and even personality
dimensions and behavioral traits. Individual differences in brain
morphologymay occur as a collection of differences in brain structures
,



Fig. 6. Receiver operating characteristic curves. At a false accept rate of 0.01%, the
genuine accept rates were 89.8%, 95.8%, 98.1%, 98.6%, 99.1%, 99.1%, 99.1%, 100%, 100%
and 100% with 16, 32, 48, 64, 80, 96, 112, 128, 144, and 160 dimensions (eigenbrains
used for projection, respectively. At a false accept rate of 0.001%, the genuine accept rate
were 82.8%, 90.7%, 97.2%, 98.6%, 99.1%, 99.1%, 99.1%, 99.1%, 99.5%, and 100%, respectively

ig. 7. Euclidean distances between the probe and gallery images for each
ombination of scanners used (A–D). Blue dots are the distances from oneself, red
ots are the distances from the nearest other, and green dots are the distances from al
e others (A = thick line, B = thick dotted line, C = thin dotted line, D = thin line)
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that reflect individual differences in a variety of performances andvarious
psychological characteristics and behavior patterns, andmay provide the
background of individual differences in personality and brain function.

To our knowledge, few previous studies have evaluated inter-
individual differences in brain morphology from the point of view of
biometrics [18–20]. Aloui et al. reported preliminary results of brain
recognition using a single slice of structural MRI [18,19]. Chen et al.
performed brain recognition using image normalization and a simple
pixel-level matching method [20] or gray matter extraction and
Chamfer matching. Chen et al. reported results collected using
structural MRI data obtained from the Open Access Series of Imaging
Studies database [21,22], which consists of non-demented and
demented subjects, including patients with mild to moderate
Alzheimer’s disease, who thus had larger inter-subject variability in
brain morphology compared with healthy subjects.
l
.

Fig. 8. Euclidean distances between the probe and gallery images for probe–gallery
image pairs with andwithout scanner upgrade. Blue dots are the distances from oneself
red dots are the distances from the nearest other, and green dots are the distances from
the others (without and with upgrade of scanner 1 = thick line and thick dotted line
without and with upgrade of scanner 2 = thin line and thin dotted line).
F
c
d
th
For the purpose of demonstrating the possibility of brain
morphology as personally identifiable information, in the present
study, we used VBM [7] for image normalization and PCA for feature
extraction. Despite the relative simplicity of this method, it was
possible to identify a specific individual on the basis of structural MRI
of the brain. Brain morphology is three-dimensional information and
that is richer in information compared with other biometrics such as
fingerprints, iris patterns, and face recognition. If the method for
brain recognition becomes more sophisticated like those used for
recognition of these other biometrics (which itself is out of the main
scope of the present study), brain recognition will become more
accurate and precise. Recent large-scale brain imaging studies, such
as the Alzheimer's Disease Neuroimaging Initiative study [8] and the
Human Connectome Project [9] have made de-identified data,
including imaging and clinical information and DNA sequences,
widely available to the scientific community. However, images of the
brain also include personally identifiable information. It is necessary
to handle data with careful attention. On the other hand, in a clinical
setting such as a hospital, brain recognition can be applied for
verifying a patient’s identity, preventing patients’ imaging data from
being erroneously confused, or for other potential applications in
the future.

The brain rapidly grows during early development, the changes
become more subtle during maturation and aging, and the brain
gradually atrophies with aging. Brain atrophy accelerates with
increasing age and the observed rate varies according to the age
range of the studied sample [23]. Annual atrophy rates vary across
the cortex, but are typically ~0.5% in the aged [24]. Atrophy in
patients with Alzheimer’s disease is muchmore rapid than in normal
individuals, with most areas showing an annual atrophy rate of 1% or
more [24]. As gallery and probe data sets, in the present study, we
used structural MRI data from 215 healthy subjects scanned twice at
an interval of about 1 year, and achieved successful brain
recognition. We consider that this result was due to inter-subject
variability in brain morphology being much larger than 1-year
change in brain structures. Excluding the principal component
(eigenbrain) related to aging from brain recognition may enable
successful brain recognition, even for data pairs with a much longer
scan interval.

Many previous studies have evaluated the effects of using
different scanners and/or scanner upgrade on morphometric results
[11,25–38]. Regarding volumetric measurements, there is generally
greater inter-scanner variability than intra-scanner variability. Even
with scanners of the exact same model, the use of different scanners
,

;
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can influence morphometric results, and scanner upgrade can also
have effects comparable to those of the use of different scanners (of
the exact same model) [11,37]. In the present study, we used
grad_unwarp and N3 to correct for geometric distortion due to
gradientnon-linearityandintensitynon-uniformity, respectively. Intensity
non-uniformity is caused by factors such as inhomogeneous radiofre-
quency fields, inhomogeneous reception sensitivity, and electromagnetic
interaction with the object being scanned [39]. Grad_unwarp corrects for
geometric distortion caused by gradient non-linearity but not that caused
by scanner-dependent geometrical inaccuracies. It is impossible to
completely eliminate scanner effects themselves, which are considered
inevitable to a greater or lesser extent [11,37].

In the present study, we used structural imaging data obtained on
two MRI scanners of the exact same model. Each subject was
scanned twice. The combination of scanners used was different
between individuals. In addition, both scanners were simultaneously
upgraded during the scan period. However, there was little
difference in the Euclidean distances among the different combina-
tions of scanners used or between the probe–gallery image pairs
with and without scanner upgrade. This finding is likely to be due to
inter-subject variability in brain morphology being much larger than
inter-scanner variability and the effect of scanner upgrade. It is
generally assumed that inter-scanner variability increases when
using scanners of different models and/or manufacturers. We used
VBM [7] for image normalization; however, a more sophisticated
method of image normalization optimized for brain recognition
could possibly suppress the effects of using different scanners and
scanner upgrade, even when using scanners of different models and/
or manufacturers.

In conclusion, we examined whether brain morphology is personally
identifiable information and is discernibly different among individuals (as
the basis of individual differences in brain functions), using structuralMRI
data from 215 healthy subjects who were scanned twice. The results
indicate that brainmorphology can identify a specific individual; i.e., brain
morphology is personally identifiable information. The use of different
scanners and scanner upgrade had little effect compared with inter-
subject variability in brain morphology.

Acknowledgments

We wish to thank Dr. Eriko Maeda and Dr. Takeharu Yoshikawa for
their help in collecting data. This work was supported by a Grant-in-Aid
for Young Scientists (A) 24689047 and a Grant-in-Aid for Scientific
Research on Innovative Areas 221S0003 (Comprehensive Brain Science
Network) from the Japan Society for the Promotion of Science.

References

[1] Maguire EA, Gadian DG, Johnsrude IS, Good CD, Ashburner J, Frackowiak RS, et al.
Navigation-related structural change in the hippocampi of taxi drivers. Proc Natl
Acad Sci U S A 2000;97(8):4398–403.

[2] Schlaug G, Jancke L, Huang Y, Steinmetz H. In vivo evidence of structural brain
asymmetry in musicians. Science 1995;267(5198):699–701.

[3] Munte TF, Altenmuller E, Jancke L. The musician's brain as a model of
neuroplasticity. Nat Rev Neurosci 2002;3(6):473–8.

[4] Aydin K, Ucar A, Oguz KK, Okur OO, Agayev A, Unal Z, et al. Increased gray matter
density in the parietal cortex of mathematicians: a voxel-based morphometry
study. AJNR Am J Neuroradiol 2007;28(10):1859–64.

[5] Mechelli A, Crinion JT, Noppeney U, O'Doherty J, Ashburner J, Frackowiak RS,
et al. Neurolinguistics: structural plasticity in the bilingual brain. Nature 2004;
431(7010):757.

[6] Draganski B, Gaser C, Busch V, Schuierer G, Bogdahn U, May A. Neuroplasticity:
changes in grey matter induced by training. Nature 2004;427(6972):311–2.

[7] Ashburner J, Friston KJ. Voxel-based morphometry—the methods. Neuroimage
2000;11(6 Pt 1):805–21.

[8] Jack Jr CR, Bernstein MA, Borowski BJ, Gunter JL, Fox NC, Thompson PM, et al.
Update on the magnetic resonance imaging core of the Alzheimer's disease
neuroimaging initiative. Alzheimers Dement 2010;6(3):212–20.

[9] Van Essen DC, Smith SM, Barch DM, Behrens TE, Yacoub E, Ugurbil K. The WU-
Minn Human Connectome Project: an overview. Neuroimage 2013;80:62–79.
[10] Ashburner J, Friston KJ. Unified segmentation. Neuroimage 2005;26(3):839–51.
[11] Takao H, Hayashi N, Ohtomo K. Effects of the use of multiple scanners and of

scanner upgrade in longitudinal voxel-based morphometry studies. J Magn
Reson Imaging 2013;38(5):1283–91.

[12] Fazekas F, Chawluk JB, Alavi A, Hurtig HI, Zimmerman RA. MR signal
abnormalities at 1.5 T in Alzheimer's dementia and normal aging. AJR Am J
Roentgenol 1987;149(2):351–6.

[13] Jovicich J, Czanner S, Greve D, Haley E, van der Kouwe A, Gollub R, et al.
Reliability in multi-site structural MRI studies: effects of gradient non-linearity
correction on phantom and human data. Neuroimage 2006;30(2):436–43.

[14] Takao H, Abe O, Hayashi N, Kabasawa H, Ohtomo K. Effects of gradient non-
linearity correction and intensity non-uniformity correction in longitudinal
studies using structural image evaluation using normalization of atrophy
(SIENA). J Magn Reson Imaging 2010;32(2):489–92.

[15] Takao H, Abe O, Ohtomo K. Computational analysis of cerebral cortex.
Neuroradiology 2010;52(8):691–8.

[16] Sled JG, Zijdenbos AP, Evans AC. A nonparametric method for automatic
correction of intensity nonuniformity inMRI data. IEEE TransMed Imaging 1998;
17(1):87–97.

[17] Good CD, Johnsrude IS, Ashburner J, Henson RN, Friston KJ, Frackowiak RS. A
voxel-based morphometric study of ageing in 465 normal adult human brains.
Neuroimage 2001;14(1 Pt 1):21–36.

[18] Aloui K, Nait-Ali A, Naceur MS. A novel approach based brain biometrics: some
preliminary results for individual identification. Computational Intelligence in
Biometrics and Identity Management (CIBIM), 2011 IEEE Workshop on; 2011.
p. 91–5.

[19] Aloui K, Nait-Ali A, Naceur MS. New biometric approach based on
geometrical human brain patterns recognition: some preliminary results.
Visual Information Processing (EUVIP), 2011 3rd European Workshop on;
2011. p. 258–63.

[20] Chen F, Su L, Liu Y, Hu D. Confirming the diversity of the brain after
normalization: an approach based on identity authentication. PLoS One 2013;
8(1):e54328.

[21] Marcus DS, Fotenos AF, Csernansky JG, Morris JC, Buckner RL. Open access series
of imaging studies: longitudinal MRI data in nondemented and demented older
adults. J Cogn Neurosci 2010;22(12):2677–84.

[22] Marcus DS,Wang TH, Parker J, Csernansky JG, Morris JC, Buckner RL. Open Access
Series of Imaging Studies (OASIS): cross-sectional MRI data in young, middle
aged, nondemented, and demented older adults. J Cogn Neurosci 2007;19(9):
1498–507.

[23] Takao H, Hayashi N, Ohtomo K. A longitudinal study of brain volume changes in
normal aging. Eur J Radiol 2012;81(10):2801–4.

[24] Fjell AM,Walhovd KB, Fennema-Notestine C, McEvoy LK, Hagler DJ, Holland D, et al.
One-year brain atrophy evident in healthy aging. J Neurosci 2009;29(48):15223–31.

[25] Kruggel F, Turner J, Muftuler LT. Impact of scanner hardware and imaging
protocol on image quality and compartment volume precision in the ADNI
cohort. Neuroimage 2010;49(3):2123–33.

[26] Huppertz HJ, Kroll-Seger J, Kloppel S, Ganz RE, Kassubek J. Intra- and interscanner
variability of automated voxel-based volumetry based on a 3D probabilistic atlas of
human cerebral structures. Neuroimage 2010;49(3):2216–24.

[27] Jovicich J, Czanner S, Han X, Salat D, van der Kouwe A, Quinn B, et al. MRI-derived
measurements of human subcortical, ventricular and intracranial brain volumes:
reliability effects of scan sessions, acquisition sequences, data analyses, scanner
upgrade, scanner vendors and field strengths. Neuroimage 2009;46(1):177–92.

[28] Pardoe H, Pell GS, Abbott DF, Berg AT, Jackson GD. Multi-site voxel-based
morphometry: methods and a feasibility demonstration with childhood absence
epilepsy. Neuroimage 2008;42(2):611–6.

[29] Stonnington CM, Tan G, Kloppel S, Chu C, Draganski B, Jack Jr CR, et al.
Interpreting scan data acquired from multiple scanners: a study with
Alzheimer's disease. Neuroimage 2008;39(3):1180–5.

[30] Dickerson BC, Fenstermacher E, Salat DH, Wolk DA, Maguire RP, Desikan R, et al.
Detection of cortical thickness correlates of cognitive performance: reliability across
MRI scan sessions, scanners, and field strengths. Neuroimage 2008;39(1):10–8.

[31] Han X, Jovicich J, Salat D, van der Kouwe A, Quinn B, Czanner S, et al. Reliability of
MRI-derivedmeasurements of human cerebral cortical thickness: the effects of field
strength, scanner upgrade and manufacturer. Neuroimage 2006;32(1):180–94.

[32] Ewers M, Teipel SJ, Dietrich O, Schonberg SO, Jessen F, Heun R, et al. Multicenter
assessment of reliability of cranial MRI. Neurobiol Aging 2006;27(8):1051–9.

[33] Schnack HG, van Haren NE, Hulshoff Pol HE, Picchioni M, Weisbrod M, Sauer H,
et al. Reliability of brain volumes frommulticenter MRI acquisition: a calibration
study. Hum Brain Mapp 2004;22(4):312–20.

[34] Focke NK, Helms G, Kaspar S, Diederich C, Toth V, Dechent P, et al. Multi-site voxel-
based morphometry—not quite there yet. Neuroimage 2011;56(3):1164–70.

[35] Takao H, Hayashi N, Ohtomo K. Effect of scanner in longitudinal studies of brain
volume changes. J Magn Reson Imaging 2011;34(2):438–44.

[36] Shuter B, Yeh IB, Graham S, Au C, Wang SC. Reproducibility of brain tissue
volumes in longitudinal studies: effects of changes in signal-to-noise ratio and
scanner software. Neuroimage 2008;41(2):371–9.

[37] Takao H, Hayashi N, Ohtomo K. Effects of study design in multi-scanner voxel-
based morphometry studies. Neuroimage 2014;84:133–40.

[38] Suckling J, Barnes A, Job D, Brenan D, Lymer K, Dazzan P, et al. Power calculations
for multicenter imaging studies controlled by the false discovery rate. Hum Brain
Mapp 2010;31(8):1183–95.

[39] Vovk U, Pernus F, Likar B. A review of methods for correction of intensity
inhomogeneity in MRI. IEEE Trans Med Imaging 2007;26(3):405–21.

http://refhub.elsevier.com/S0730-725X(15)00097-1/rf0005
http://refhub.elsevier.com/S0730-725X(15)00097-1/rf0005
http://refhub.elsevier.com/S0730-725X(15)00097-1/rf0005
http://refhub.elsevier.com/S0730-725X(15)00097-1/rf0010
http://refhub.elsevier.com/S0730-725X(15)00097-1/rf0010
http://refhub.elsevier.com/S0730-725X(15)00097-1/rf0015
http://refhub.elsevier.com/S0730-725X(15)00097-1/rf0015
http://refhub.elsevier.com/S0730-725X(15)00097-1/rf0020
http://refhub.elsevier.com/S0730-725X(15)00097-1/rf0020
http://refhub.elsevier.com/S0730-725X(15)00097-1/rf0020
http://refhub.elsevier.com/S0730-725X(15)00097-1/rf0025
http://refhub.elsevier.com/S0730-725X(15)00097-1/rf0025
http://refhub.elsevier.com/S0730-725X(15)00097-1/rf0025
http://refhub.elsevier.com/S0730-725X(15)00097-1/rf0030
http://refhub.elsevier.com/S0730-725X(15)00097-1/rf0030
http://refhub.elsevier.com/S0730-725X(15)00097-1/rf0035
http://refhub.elsevier.com/S0730-725X(15)00097-1/rf0035
http://refhub.elsevier.com/S0730-725X(15)00097-1/rf0040
http://refhub.elsevier.com/S0730-725X(15)00097-1/rf0040
http://refhub.elsevier.com/S0730-725X(15)00097-1/rf0040
http://refhub.elsevier.com/S0730-725X(15)00097-1/rf0045
http://refhub.elsevier.com/S0730-725X(15)00097-1/rf0045
http://refhub.elsevier.com/S0730-725X(15)00097-1/rf0050
http://refhub.elsevier.com/S0730-725X(15)00097-1/rf0055
http://refhub.elsevier.com/S0730-725X(15)00097-1/rf0055
http://refhub.elsevier.com/S0730-725X(15)00097-1/rf0055
http://refhub.elsevier.com/S0730-725X(15)00097-1/rf0060
http://refhub.elsevier.com/S0730-725X(15)00097-1/rf0060
http://refhub.elsevier.com/S0730-725X(15)00097-1/rf0060
http://refhub.elsevier.com/S0730-725X(15)00097-1/rf0065
http://refhub.elsevier.com/S0730-725X(15)00097-1/rf0065
http://refhub.elsevier.com/S0730-725X(15)00097-1/rf0065
http://refhub.elsevier.com/S0730-725X(15)00097-1/rf0070
http://refhub.elsevier.com/S0730-725X(15)00097-1/rf0070
http://refhub.elsevier.com/S0730-725X(15)00097-1/rf0070
http://refhub.elsevier.com/S0730-725X(15)00097-1/rf0070
http://refhub.elsevier.com/S0730-725X(15)00097-1/rf0075
http://refhub.elsevier.com/S0730-725X(15)00097-1/rf0075
http://refhub.elsevier.com/S0730-725X(15)00097-1/rf0080
http://refhub.elsevier.com/S0730-725X(15)00097-1/rf0080
http://refhub.elsevier.com/S0730-725X(15)00097-1/rf0080
http://refhub.elsevier.com/S0730-725X(15)00097-1/rf0085
http://refhub.elsevier.com/S0730-725X(15)00097-1/rf0085
http://refhub.elsevier.com/S0730-725X(15)00097-1/rf0085
http://refhub.elsevier.com/S0730-725X(15)00097-1/rf0190
http://refhub.elsevier.com/S0730-725X(15)00097-1/rf0190
http://refhub.elsevier.com/S0730-725X(15)00097-1/rf0190
http://refhub.elsevier.com/S0730-725X(15)00097-1/rf0190
http://refhub.elsevier.com/S0730-725X(15)00097-1/rf0195
http://refhub.elsevier.com/S0730-725X(15)00097-1/rf0195
http://refhub.elsevier.com/S0730-725X(15)00097-1/rf0195
http://refhub.elsevier.com/S0730-725X(15)00097-1/rf0195
http://refhub.elsevier.com/S0730-725X(15)00097-1/rf0090
http://refhub.elsevier.com/S0730-725X(15)00097-1/rf0090
http://refhub.elsevier.com/S0730-725X(15)00097-1/rf0090
http://refhub.elsevier.com/S0730-725X(15)00097-1/rf0095
http://refhub.elsevier.com/S0730-725X(15)00097-1/rf0095
http://refhub.elsevier.com/S0730-725X(15)00097-1/rf0095
http://refhub.elsevier.com/S0730-725X(15)00097-1/rf0100
http://refhub.elsevier.com/S0730-725X(15)00097-1/rf0100
http://refhub.elsevier.com/S0730-725X(15)00097-1/rf0100
http://refhub.elsevier.com/S0730-725X(15)00097-1/rf0100
http://refhub.elsevier.com/S0730-725X(15)00097-1/rf0105
http://refhub.elsevier.com/S0730-725X(15)00097-1/rf0105
http://refhub.elsevier.com/S0730-725X(15)00097-1/rf0110
http://refhub.elsevier.com/S0730-725X(15)00097-1/rf0110
http://refhub.elsevier.com/S0730-725X(15)00097-1/rf0115
http://refhub.elsevier.com/S0730-725X(15)00097-1/rf0115
http://refhub.elsevier.com/S0730-725X(15)00097-1/rf0115
http://refhub.elsevier.com/S0730-725X(15)00097-1/rf0120
http://refhub.elsevier.com/S0730-725X(15)00097-1/rf0120
http://refhub.elsevier.com/S0730-725X(15)00097-1/rf0120
http://refhub.elsevier.com/S0730-725X(15)00097-1/rf0125
http://refhub.elsevier.com/S0730-725X(15)00097-1/rf0125
http://refhub.elsevier.com/S0730-725X(15)00097-1/rf0125
http://refhub.elsevier.com/S0730-725X(15)00097-1/rf0125
http://refhub.elsevier.com/S0730-725X(15)00097-1/rf0130
http://refhub.elsevier.com/S0730-725X(15)00097-1/rf0130
http://refhub.elsevier.com/S0730-725X(15)00097-1/rf0130
http://refhub.elsevier.com/S0730-725X(15)00097-1/rf0135
http://refhub.elsevier.com/S0730-725X(15)00097-1/rf0135
http://refhub.elsevier.com/S0730-725X(15)00097-1/rf0135
http://refhub.elsevier.com/S0730-725X(15)00097-1/rf0140
http://refhub.elsevier.com/S0730-725X(15)00097-1/rf0140
http://refhub.elsevier.com/S0730-725X(15)00097-1/rf0140
http://refhub.elsevier.com/S0730-725X(15)00097-1/rf0145
http://refhub.elsevier.com/S0730-725X(15)00097-1/rf0145
http://refhub.elsevier.com/S0730-725X(15)00097-1/rf0145
http://refhub.elsevier.com/S0730-725X(15)00097-1/rf0150
http://refhub.elsevier.com/S0730-725X(15)00097-1/rf0150
http://refhub.elsevier.com/S0730-725X(15)00097-1/rf0155
http://refhub.elsevier.com/S0730-725X(15)00097-1/rf0155
http://refhub.elsevier.com/S0730-725X(15)00097-1/rf0155
http://refhub.elsevier.com/S0730-725X(15)00097-1/rf0160
http://refhub.elsevier.com/S0730-725X(15)00097-1/rf0160
http://refhub.elsevier.com/S0730-725X(15)00097-1/rf0165
http://refhub.elsevier.com/S0730-725X(15)00097-1/rf0165
http://refhub.elsevier.com/S0730-725X(15)00097-1/rf0170
http://refhub.elsevier.com/S0730-725X(15)00097-1/rf0170
http://refhub.elsevier.com/S0730-725X(15)00097-1/rf0170
http://refhub.elsevier.com/S0730-725X(15)00097-1/rf0175
http://refhub.elsevier.com/S0730-725X(15)00097-1/rf0175
http://refhub.elsevier.com/S0730-725X(15)00097-1/rf0180
http://refhub.elsevier.com/S0730-725X(15)00097-1/rf0180
http://refhub.elsevier.com/S0730-725X(15)00097-1/rf0180
http://refhub.elsevier.com/S0730-725X(15)00097-1/rf0185
http://refhub.elsevier.com/S0730-725X(15)00097-1/rf0185

	Brain morphology is individual-specific information
	1. Introduction
	2. Materials and methods
	2.1. Subjects
	2.2. Imaging data acquisition
	2.3. PCA-based brain recognition
	2.3.1. Image normalization
	2.3.2. Principal component analysis
	2.3.3. Recognition


	3. Results
	3.1. Eigenbrains and variance explained
	3.2. Euclidean distances and dimensions used
	3.3. Identification and dimensions used
	3.4. Verification and dimensions used
	3.5. Effects of scanner and upgrade

	4. Discussion
	Acknowledgments
	References


