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Levelings, Image Simplification Filters for Segmentation

FERNAND MEYER
Centre de Morphologie Mathématique, Ecole des Mines de Paris, 35, rue Saint Honoré, 77305 Fontainebleau

Abstract. Before segmenting an image, one has often to simplify it. In this paper we investigate a class of filters
able to simplify an image without blurring or displacing its contours: the simplified image has less details, hence less
contours. As the contours of the simplified image are as accurate as in the initial image, the segmentation may be
done on the simplified image, without going back to the initial image. The corresponding filters are called levelings.
Their properties and construction are described in the present paper.

1. Introduction

Segmenting an image into a meaningful partition is of-
ten not possible without a preliminary filtering step,
in order to suppress noise but also small meaningless
details and textures. Morphological segmentation is
mainly based on the detection of edges as watershed
lines of a gradient image. But gradient operators are
extremely sensitive to noise and give a high response
in textured areas. Hence the image has to be smoothed
before differentiation. Linear smoothing by convolving
the image by Gaussian kernels were the first to be used
[7]. Many authors searched the “optimal edge detector”
[2]. The drawback of linear smoothing is the blurring
of the contours and the smoothing across object bound-
aries. For this reason non linear smoothing techniques
have emerged [11] with the goal to avoid smoothing
across object boundaries. The problem is to find the
good trade-off between smoothing and good localiza-
tion of the contours: a large smoothing simplifies the
detection but creates poorly localized contours whereas
a reduced smoothing does not suppress enough noise.
To circumvent this problem Berghom [1] proposed to
detect edges at coarser scales and to follow these to
finer scales using edge focusing.

In the present paper we investigate the possibility to
construct filters which do not suffer from this draw-
back: combine a perfect localization of the contours
with an efficient suppression of details. Such a filtered
image may then be segmented without any need to go
back to the initial image and the contours which are

found match perfectly with contours already present
in the initial image. Such filters are called levelings.
The simplest of them are known since a long time:
they are reconstruction closing and openings [3, 16],
which extend to grey tone images the classical parti-
cle reconstruction. Another class has been introduced
by Luc Vincent, area openings, in which each peak is
clipped until the plateau forming the new maximum
reaches an area above a given threshold [15]. Open-
ings operate only on peaks and closings on valleys;
they may be applied iteratively as alternate sequential
filters [14]. All these transforms are particular levelings
and particular cases of the more general connected op-
erators introduced by Salembier and Serra [12]. All
these operators are flat, enlarge the flat zones and pro-
duce new flat zones. Levelings have been introduced
by Meyer [9] and extensively studied by Matheron [8].
Their scale space properties and PDE formulation stud-
ied in [6, 10]. Binary levelings have been studied by
Serra [13].

Basically a leveling completely suppresses or atten-
uates a number of contours in an image. In a first part
we give a general definition of contours; zones with-
out inside contours will be called smooth zones. They
serve as seeds for region growing techniques during the
segmentation, whereas the contours will be detected in
regions of strong transition.

In a second step we characterize the family of im-
ages which have “less contours” than a given reference
image: they are levelings of this image. We then study
the sub-family of levelings which are “between” the
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function f and a “marker function” g, and particu-
larly its maximal element when it exists. This maximal
leveling inherits properties from both its “parent func-
tions” f and g: we call this function the leveling of f
constrained by g.

Finally we will illustrate the use of levelings in prac-
tice, for the construction of simplified images before
segmentation. Levelings also may be applied on gradi-
ent images, yielding families of nested partitions.

2. Up, Down and Smooth Transitions in an Image

2.1. Representation of Dilations and Erosions
with Pulse Functions

We follow the presentation of Henk Heijmans in [5],
pp. 124–126.

Let T be some complete totally ordered lattice, and
let D, E be arbitrary sets (in the continuous or discrete
space). We call O the smallest element and� the largest
element of T . Fun(D, T ) represents the image defined
on the support D with value in T . For h, x ∈ D and
t ∈ T we define the up-pulse function

↑t
h (x) =

{
t if x = h

O if x �= h

}

and the down-pulse function

↓t
h (x) =

{
t if x = h

� if x �= h

}

As shown by Fig. 1 up-pulse functions form a sup-
generating family and down-pulse functions an inf-
generating family in

Fun(D, T ) : f =
∨
x∈D

↑ f (x)
x =

∧
x∈D

↓ f (x)
x .

We consider an arbitrary dilation α: Fun(D, T ) →
Fun(E , T ) and its adjunct erosion β: Fun(E , T ) →

Figure 1. f = ∨
x∈D ↑ f (x)

x = ∧
x∈D ↓ f (x)

x .

Figure 2. fy = s is lower than fx = t as { fy < αx,y ( fx ) ⇔
βy,x ( fy ) < fx }.

Figure 3. For x and y neighbors on a digital grid, gy � gx In part
A, we have the ordinary dilation δ and gy � gx means gy < gx . In
part B, as we dilate gx by a cone gy � gx means gy < gx − 1.

Fun(D,T ). We define αx,y(t) = α(↑t
x )(y) and βy,x (s) =

β(↓s
y)(x). αx,y is a dilation on T and βy,x is its ad-

junct erosion : fy < αx,y( fx ) ⇔ βy,x ( fy) < fx (see
Fig. 2).

2.2. Up and Down Transitions

Let us consider Fig. 3 where a function g defined on
a digital grid takes two distinct values gx and gy indi-
cating that a contours passes between the neighbor-
ing points x and y. Starting from this example we
want to define a general mechanism for expressing
that x and y are neighbors and that gy < gx . We di-
late the pulse function ↑gx

x by the elementary flat dila-
tion δ and observe the value δx,y(gx ) taken at pixel y:
since δx,y(gx ) > O , we say that x and y are compara-
ble neighbors and since δx,y(gx ) > gy we say that gy is
lower than gx . Replacing dilation δ by another dilation
will give a new meaning to “be neighbor” and “to be
lower”. For instance, in Fig. 3B we dilate gx by a cone
(δ̂ = I d ∨ (δ−1), where I d is the identity) . The pixels
x and y are still neighbors, but gy is lower than gx in
the sense gy < gx − 1.

More generally, let us consider an adjunct pair (α, β)
of dilation and erosion verifying for k, l ∈ T and O ≤
k ≤ � : {αx,y(k) ≤ k ≤ βx,y(k)} and {O < αx,x (k) =
k = βx,x (k) < �}, which implies that α is extensive
and β antiextensive.
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Let us consider now the values taken by a function f
at two pixels x and y. We suppose that O < fx , fy <

�.

Definition 1. fx and fy are comparable if and only if
αx,y( fx ) > O and βy,x ( fy) < �.

The relation “to be comparable” is not a symmetrical
relation: we may have αx,y ( fx ) > O and αy,x

(
fy

) =
O.

Definition 2. fy is lower than fx (we write fy � fx )
if and only if fy < αx,y ( fx ) (which is equivalent to
βy,x ( fy) < fx ) (see Fig. 2).

Notice that fy � fx is not a preorder relation as it is
not transitive: if ( fx , fy) are comparable, ( fy, fz) are
comparable, then ( fx , fz) are not necessarily compa-
rable. Negating the relation { fy � fx } for comparable
pixels permits to define the relation “greater or equal”:

Definition 3. fy is greater or equal than fx and we
write fy 	 fx if and only if fy ≥ αx,y( fx ) > O (which
is equivalent to fx ≤ βy,x ( fy) < �).

Let f and g be two functions of Fun(D,T ) and (p, q)
two pixels of T . The following algebraic relations will
be useful:

a)

∣∣∣∣ gq � gp

fq � gp

∣∣∣∣ ⇒ (gq ∨ fq ) � gp

b)

∣∣∣∣ gp � gq

gp � fq

∣∣∣∣ ⇒ gp � (gq ∧ fq )

c) gq � gp ≤ f p ⇒ gq � f p

Proof: For instance let us prove (a).

∣∣∣∣ gq � gp

fq � gp

∣∣∣∣ ⇒
∣∣∣∣ O < gq < αp,q (gp)

O < fq < αp,q (gp)

∣∣∣∣
⇒ O < gq ∨ fq < αp,q (gp) ⇒ (gq ∨ fq ) � gp

Let us consider the case where T =R or Z . Each
function f has then a complementary function − f. Let
us suppose furthermore that the erosion β and dilation
α commute with the addition of a constant k ∈ T :
α( f +k) = α( f )+k. Then { fy � fx ⇔ − fx � − fy} if
and only if α and β are symmetrical, βy,x = βx,y .

2.3. Similar Values of a Function and Smooth Zones

Let f be a function of Fun(D, T ). Combining the re-
lations { fy 	 fx } and { fx 	 fy} yields a symmetrical
relation, expressing that there is a smooth transition
between fy and fx .

Definition 4. We define the similarity of fy and fx

by: { fx � fy} ⇔ {O < αx,y( fx ) ≤ fy ≤ βx,y( fx ) <

�} ⇔ {O < αy,x ( fy) ≤ fx ≤ βy,x ( fy) < �}. We say
that fx and fy are at level.

As α and β verify {αx,y(k) ≤ k ≤ βx,y(k)} we con-
clude that if fx = fy = k at two comparable pixels x
and y, then fx � fy . Furthermore, as {O < αx,x (k) =
k = βx,x (k) < �} for k /∈ {O, �} we have fx � fx .

Figure 4(A) presents examples of a dilation of a pulse
function ↑t

x : compared to (x, t), all pixels below are in
dark grey, above or equal in light grey, not comparable
in white. Figure 4(B) presents the adjunct erosion of the
down-pulse function ↓t

x : compared to (x, t), all pixels
above are in dark grey, below or equal in light grey, not
comparable in white. Figure 4(C) presents in light grey
the pixels which are at level with (x, t); it is the set of
pixels which are neither above nor below (x, t); they
are obtained by intersection of the light grey domains
of Fig. 4(A) and (B); this domain is symmetrical with
respect to (x, t).

Figure 4. (A) dilation of a pulse function ↑t
x : compared to (x, t),

all pixels below are in dark grey, above or equal in light grey, not
comparable in white. (B) adjunct erosion of the down-pulse function
↓t

x : compared to (x, t), all pixels above are in dark grey, below or
equal in light grey, not comparable in white. (C) the intersection of
the light grey zones give contains the pixels at level with (x, t); the
union of the white zones represents the pixels not comparable with
(x, t).
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We are now able to define smooth zones based on
arcwise connectivity.

Definition 5. We say that two values fx and fy are
smoothly linked and we write fx � fy if there exists a
series of pixels {x0 = x, x1, x2, . . . xn = y} such that
fxi � fxi+1 .

Definition 6. A set X is a smooth zone of an image f
if and only if fx � fy for any two pixels x and y in X.

The relation � is an equivalence relation. The as-
sociated equivalence classes are the maximal smooth
zones. It is easy to verify that the smooth zones of f
form a connection of D [13]. For the pair of elemen-
tary dilation and erosion (δ, ε), one obtains ordinary
flat zones.

Regional minima and maxima are easily defined:

Definition 7. A set X is a regional minimum of an
image f if and only if it is a smooth zone of f and for
any two pixels x and y, x ∈ X and y /∈ X, such that
fx and fy are comparable, we have fx � fy .

2.4. Uniformly Smooth Zones

Definition 8. A set X is uniformly smooth if fx � fy

for any two mutually comparable pixels x and y in X :
{ fx � fy} ⇔ {O < αx,y( fx ) ≤ fy ≤ βx,y( fx ) < �}.

But for non comparable pixels we have O = αx,y( fx )
and βx,y( fx ) = � and αx,y( fx ) ≤ fy ≤ βx,y( fx ) is also
verified

Hence if X is an αβ-smooth zone of f and y ∈ X,

we have∨
x∈X,x �=y

αx,y( fx ) ≤ fy ≤
∧

x∈X,x �=y

βx,y( fx ).

But since

αyy fy = βyy fy = fy,

we also have∨
x∈X

αx,y( fx ) ≤ fy ≤
∧
x∈X

βx,y( fx ),

that is

αX ( fy) ≤ fy ≤ βX ( fy),

where αX and βX are respectively the restrictions of
α and β to X . But since αX is extensive and βX anti-

extensive, we finally have αX ( fy) = fy = βX ( fy). In-
versely, it is obvious that if this last relation is true, then
X is an αβ-smooth zone of f. In fact {αX ( fy) = fy} ⇔
{ fy = βX ( fy)} as αX ( fy) = fy implies αX ( fy) ≤ fy,

which by adjunction implies fy ≤ βX ( fy); but since
βX is anti-extensive, we obtain fy = βX ( fy).

Proposition 9. A set X is a uniformly smooth zone
of f if and only if {αX ( f ) = f } or equivalently { f =
βX ( f )}.

Uniformly smooth zones of f do not form a con-
nection: if X and Y are uniformly smooth zones of f,
such that X ∧ Y �= ∞, then X ∨ Y is not necessarily
a uniformly smooth zone of f . For the cone dilation
δ1(g) = g ∨ (δg − 1), X = 3 2

4 1 is a smooth zone since
there exists a path with a slope smaller or equal to 1 be-
tween any couple of pixels. However, there exist within
X a sharp transition between values 1 and 4, hence X
is not a uniformly smooth zone. And the sets X1 = 3

4
2

and X2 = 3 2
1 are each uniformly smooth, have a non

empty intersection; however, their union X is smooth
but not uniformly smooth.

3. Levelings, Razings, Floodings and Flattenings

3.1. Definition of Levelings and Flattenings

Being able to compare the values of “neighboring pix-
els”, we may now define a particular class of images
with less contours than a given image f , called level-
ings of f .

Definition 10. A function g is a leveling of the func-
tion f if and only if for any pair of comparable pixels
(p, q) : gq � gp ⇒ fq ≤ gq and gp ≤ f p.

Each transition gq � gp of g for two neighboring
pixels p and q induces a pointwise relation between
f and g on each pixel p and q. Levelings are called
monotone planings [9] as gq � gp implies fq � f p.

The inequality gq � gp means gq < αp,q (gp) and
implies by definition of levelings fq ≤ gq and
gp ≤ f p. On the other hand, αp,q being increasing,
gp ≤ f p implies αp,q (gp) ≤ αp,q ( f p), hence fq ≤ gq

< αp,q (gp) ≤ αp,q ( f p), yielding fq � f p.

Levelings enlarge smooth zones: gq � gp ⇒ fq � f p

is equivalent with fq 	 f p ⇒ gq 	 gp from which
we derive fq � f p ⇒ gq � gp this last relation shows
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that any smooth (resp. uniformly smooth) zone for f
is also a smooth zone (resp. uniformly smooth) for
g. Serra and Salembier called connected operators
which enlarge flat zones in [12]. Levelings preserve
or enlarge smooth zones : they are a generalization
of connected operators.

Levelings create smooth zones: The implication
[gq � gp ⇒ fq ≤ gq and gp ≤ f p] is equivalent to
[ fq > gq or gp > f p ⇒ gq 	 gp]. Now, if two com-
parable pixels (p, q) verify fq > gq and f p > gp, we
conclude that simultaneously gq 	 gp and gp 	 gq ,

that is gp and gq are at level. That means that on
{g > f } (resp. {g < f }) any two mutually compati-
ble pixels are at level. Any smooth zone of {g > f }
(resp. {g < f }) is uniformly smooth.

3.2. Characterization of Levelings

In order to characterize the levelings, it is useful to
consider two subclasses, the upper and lower levelings.

3.2.1. Upper Levelings.

Definition 11. A function g is an upper-leveling of
the function f if and only if for any pair of comparable
pixels (p, q): gq � gp ⇒ gp ≤ f p.

The meaning of gq � gp being βq,pgq < gp, the
implication gp > βq,p(gq ) ⇒ gp ≤ f p may be inter-
preted as [gp ≤ βq,p(gq ) or gp ≤ f p] that is [gp ≤
f p ∨ βq,p(gq )].

This criterion should be satisfied for any pair of com-
parable pixels (p, q). However since for non compara-
ble pixels we have βq,p(gq ) = �, the criterion will be
fulfilled for any couple of pixels:

Criterion up-lev2: A function g is a upper-leveling of
the function f if and only if for any pair of pixels (p,q)
the following criterion holds:

gp ≤ f p ∨ βq,p(gq ).

Fixing the central pixel p repeating the criterion
for all pixels comparable with p yields Criterion up-
lev3: A function g is a upper-leveling of the function
f if and only if g ≤ f ∨ βg.

Algebraic properties: If g and h are both upper-
levelings of the function f , then f ∨h, f ∧h, g ∨h,

g ∧ h and the morphological center [ f ∧ (g ∨ h)] ∨
(g ∧ h) also are upper levelings of f .

Lets for instance prove that g ∨ h and g ∧ h are
upper-levelings: by criterion up-lev3 g ≤ f ∨βg and
h ≤ f ∨βh which implies g∨h ≤ f ∨βg∨ f ∨βh ≤
f ∨β(g∨h), since β is increasing. On the other hand
g ∧ h ≤ ( f ∨ βg) ∧ ( f ∨ βh) = f ∨ (βg ∧ βh) =
f ∨ β (g ∧ h) , since β is an erosion, i.e commutes
with the infimum.

3.2.2. Floodings. Floodings are anti-extensive upper
levelings. Flat floodings are known as reconstruction
closings and are largely used for segmenting images:
they allow to suppress minima in gradient images be-
fore the construction of the watershed line [16].

Definition 12. A function g is a flooding of the func-
tion f if and only if g ≥ f and g is an upper-leveling
of the function f .

But then for any pair of comparable pixels (p, q),
we have gq � gp ⇒ gp ≤ f p as g is an upper leveling
of f , but also fq ≤ gq as g ≥ f . This shows that a
flooding is in fact a particular leveling.

The following characterization of floodings are all
equivalent

– Flood1: g ≥ f and for any pair of comparable pixels

(p, q) : gq � gp ⇒ gp = f p

– Flood2: g = f ∨ βg

Criterion Flood1 has an obvious physical meaning.
Fig. 5(A) and (B) represent respectively a possible and
an impossible flooding g of a relief f : if for two com-
parable pixels a lake verifies gq � gp, then the highest
pixel is necessarily at ground level (gp = f p), other-
wise the lake presents an unconstrained wall of water
as in Fig. 5(B).

The relation g = f ∨ βg may be interpreted as
an algorithm on a digital grid: applied to a couple of

Figure 5. gq � gp ⇒ gp = f p .
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functions f and g until stability, one recognizes the
algorithm for constructing reconstruction closings.

Algebraic properties: If g and h are both floodings of
the function f, then g ∨ h, g ∧ h also are floodings
of f .

If h is a flooding of the function f and f ≤ g ≤ h,

then h also is an flooding of the function g.
Order relation between floodings: The relation “to be

a flooding of” is a reflexive, antisymmetric and tran-
sitive relation: it is an order relation. The family of
all floodings of a function f form a complete lattice.
The order relation is the ordinary order relation >.
Infimum and supremum also are the ordinary infi-
mum and supremum of images. In the binary case,
successive floodings fill holes. In the grey tone case,
they fill lakes. Figures 6 and 7 present successive
floodings respectively of a binary image and of a
grey tone function. In this case α = δ.

3.2.3. Lower Levelings and Razings. Lower level-
ings and razings are the dual counterpart of respectively

Figure 6. Successive floodings.

Figure 7. Successive floodings.

upper-levelings and floodings. We summarize here the
definitions and criteria

Lower levelings: A function g is a lower-leveling of the
function f if and only if:

– Low-lev1: for any pair of comparable pixels

(p, q1) : gq � gp ⇒ fq ≤ gq

– Low-lev2: for any pair of comparable pixels

(p, q) : f p ∧ αq,p(gq ) ≤ gp

– Low-lev3: f ∧ αg ≤ g

Razings: A function g is a razing of the function f if
and only if:

– Raz1: g is a lower-leveling of the function f and
g ≤ f

– Raz2: g ≤ f and for any pair of comparable
pixels (p, q):

gq � gp ⇒ fq = gq

– Raz3: for any pair (p, q) of comparable pixels

f p ∧ αq,p(gq ) ≤ gp ≤ f p

– Raz4: g = f ∧ αg.

3.2.4. Levelings.

Definition 13. A function g is a leveling of the func-
tion f if and only if g is both an upper and a lower
leveling.

Levelings are characterized by a number of criteria
[8].

A function g is a leveling of the function f if and
only if:

– Lev1: for any pair of comparable pixels

(p, q) : gq � gp ⇒ fq ≤ gq and gp ≤ f p

– Lev2: for any pair of pixels

(p, q) : f p ∧ αq,p(gq ) ≤ gp ≤ f p ∨ βq,p(gq )
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– Lev3:

f ∧ αg ≤ g ≤ f ∨ βg

– Lev4:
∣∣∣∣ gp > βg(p) ⇒ gp ≤ f p

gp < αg(p) ⇒ f p ≤ gp

∣∣∣∣
– Lev5:

∣∣∣∣ f ∨ g = f ∨ βg

f ∧ g = f ∧ αg

∣∣∣∣
– Lev6:

∣∣∣∣ On{ f ≤ g} g = f ∨ βg

On{ f ≥ g} g = f ∧ αg

∣∣∣∣
– Lev7:

g = ( f ∨ βg) ∧ αg = ( f ∧ αg) ∨ βg

Order relation between levelings: The relation {to be
a leveling of} is a preorder relation. Obviously re-
flexive, it is also transitive. Suppose that {h level-
ing of g} and {g leveling of f }, let us show that
{h leveling of f }. Since h is a leveling of g, we
have for any couple of comparable pixels x and
y : hy � hx ⇒ gy ≤ hy and hx ≤ gx . But as seen
earlier hy � hx implies gy � gx . And g being a lev-
eling of f, gy � gx ⇒ fy ≤ gy and gx ≤ fx . Finally
we get fy ≤ gy ≤ hy . The other inequality hx ≤ fx

is obtained by duality.

Figures 8–10 present successive levelings respectively
of a binary image, of a grey tone function. and of a grey
tone image. In this case α = δ.

3.2.5. Levelings and Regional Minima. If (α, β) are
flat operators, i.e. for comparable pixels p and q, we
have αp,q (t) = t = βp,q (t), implying that gq�gp ⇒
gq > gp, then the leveling based on (α, β) does not
create regional minima or maxima. More precisely if g
is a leveling of f , and X a regional minimum of g, then
there exists a set Z ⊂ X, which is a regional minimum
for f. The idea of the proof is as follows : if x is a pixel
for which f is minimal within X, then the flat zone
of f containing x is necessarily contained in X and
is a regional minimum of f . However, this is not true
if (α, β) are not flat operators, as shows the following

Figure 8. Sequential leveling : each figure levels all preceding ones.

Figure 9. Sequential leveling : each figure levels all preceding ones.

Figure 10. Initial image and 3 increasing levelings.
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counter-example.

f =

9 9 9 9 9

9 3 1 2 9

9 2 4 3 9

9 9 9 9 9

and g =

9 9 9 9 9

9 4 4 4 9

9 4 4 4 9

9 9 9 9 9

.

Obviously, g is a leveling of f for cone dilation and ero-
sion. The pixels with value 4 form a regional minimum
of g but do not contain a regional minimum for f.

4. Construction of Floodings, Razings
and Levelings

The largest flooding of an image is a flooding cover-
ing everything. A maximal leveling or razing also is
completely flat. But completely flat images are use-
less; therefore one has to find extremal levelings of f
which satisfy some additional constraint, so that they
are not completely flat. Let us start with the simplest
flat floodings, razings and levelings, those associated
to the elementary couple of dilation and erosion (δ, ε).
Since the associated smooth zones are flat, there exist
simple means for constructing levelings. The simplest
is the threshold

Th+
λ : fx → gx = fx if fx ≤ λ

λ if fx > λ

transforms the image f into a razing. It replaces all
zones where f > λ into a flat zone of level λ. By
duality one obtains floodings. A razing followed by a
flooding produces a leveling.

As the threshold operates uniformly on the whole im-
age, it is often of limited interest and more refined op-
erations are needed. Luc Vincent has introduced “area
filters”, Corinne Vachier “volume filters”. The idea here
is to threshold the function locally, starting from each
maximum and clipping the corresponding peak until
some condition is met. Area filters introduced by Luc
Vincent stop clipping a peak as soon a flat zone with a
minimal area is produced. Corinne Vachier stops at the
highest flat zone for which the volume of the removed
part of the peak reaches a given threshold [14].

In the next section, we will go back to the general
levelings associated to (α, β) and will constrain the
levelings of f by a constraining function g. We will
construct the largest flooding of f below g, the highest
razing above g, and the largest leveling in some sense
between f and g.

4.1. The f -Activity Lattice

This section sets the framework in which we will work
and introduces the f -activity lattice. It closely follows
[8].

Definition 14. For g, h, f ∈ T E , we say h separates
g and f , and we write (g h f ) or equivalently ( f h g)
if and only if for any x ∈ E, the series (gx hx fx ) is
monotonous: ∀ x ∈ E : gx ≤ hx ≤ fx or gx ≥ hx ≥ fx .

Definition 15. We will call Inter(g, f ) the class of
functions h ∈ T E , which separate g and f.

Obviously h ∈ Inter(g, f ) ⇔ g ∧ f ≤ h ≤ g ∨ f .
In particular, g ∧ f is the smallest element of

Inter(g, f ) and g ∨ f its largest element.

4.2. The Order g > f h

Definition 16. We say that g is more far away from
f than h, or that g is bigger than h in the order f and
we write g > f h if and only if h separates g and f :
g > f h ⇔ (g h f ).

Proposition 17. > f is an order relation on T E , and
moreover g > f h ⇔ f >g h.

Proposition 18. For a, f ⊂ T E , Inter(a, f ) is a com-
plete lattice for the order f . The function a is then the
highest element. For any family hi of Inter(a, f ):

∧
f

hi =
∣∣∣∣∨hi on {a ≤ f }
∧hi on {a ≥ f }

∣∣∣∣;
∨

f

hi =
∣∣∣∣∧hi on {a ≤ f }
∨hi on {a ≥ f }

∣∣∣∣
Considering a pair of functions f and h we will

study the family of floodings, razings and levelings of
f within Inter( f, h). We will search for maximal ele-
ments in this family for the order > f . Such maximal el-
ements exist for floodings and for razings; they exist for
levelings only if h verifies some additional condition.

4.3. Construction of Floodings and Razings

Given two functions f and h, we search the largest
flooding of f in Inter ( f, h). The floodings of f form
a lattice: if (gi ) is a family of floodings of f, then

∨
gi
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Figure 11. If (gi ) is a family of floodings of f, then
∨

gi also is a
flooding of f . Hence the supremum (for both order relations > and
> f ) of the family of floodings of f belonging to Inter ( f, h) is the
largest flooding in Inter( f, h) and we will write Fl( f, h).

also is a flooding of f . Hence the supremum (for both
order relations > and > f ) of the family of floodings
of f belonging to Inter ( f, h) is the largest flooding
in Inter ( f, h) and we will write Fl( f, h) (see Fig. 11.
Any flooding g of f included in Inter ( f, h) verifies
f ≤ g ≤ f ∨βg as a flooding and f ∧ h ≤ g ≤ f ∨ h
as element of Inter ( f, h).

Now, how can we construct it? If we write h0 = f ∨h,

as β is increasing, g ≤ h0 implies βg ≤ βh0. Putting
everything together we obtain the inequalities: f ≤
g ≤ f ∨ βg ≤ f ∨ βh0. Defining the recurrence hn =
f ∨ βhn−1, the same arguments produce f ≤ g ≤ hn.

But then f ≤ g ≤ ∧
hn.β being an anti-extensive

operator, the sequence hn is decreasing and bounded
by f. Its limit is equal to h∞ = ∧

hn; and this limit,
verifying f ≤ h∞ ≤ f ∨βh∞ is itself a flooding of f ;
so it is necessarily equal to Fl( f, h), the largest flooding
of f within Inter ( f, h) . For finite digital images, the
limit is obtained by finite iteration until stability of
hn = f ∨ βhn−1, with h0 = f ∨ h. We recognize the
usual reconstruction closing if β = ε [16].

Similarly the largest razing of f for the order relation
> f in Inter ( f, h), which is also the smallest razing for
the order relation > is equal to

∨
hn , where hn =

f ∧αhn−1, with h0 = f ∧ h; we write Rz( f, h). In the
case of finite digital images, this supremum is obtained
by finite iteration until hn+1 = hn.

4.3.1. Properties of Rz( f, h) and Fl( f, h). For the
order relation > f and considered as functions of h,
Rz( f, h) and Fl( f, h) are increasing, anti-extensive and
idempotent: they are openings.

4.4. Construction of Levelings

Given two functions f and h, we search the largest (for
> f ) leveling of f in Inter ( f, h), if it exists (which it
does not always). If g is a leveling of f, then f ∨g is an

Figure 12. g1 and g2 are both levelings of f in Inter( f, h), but
g1 ∨ f g2 = h is not a leveling of f but only a flattening.

extensive leveling of f, that is a flooding and f ∧ g an
anti-extensive leveling of f, that is a razing. Hence, it
may seem only natural to combine the largest flooding
of f below f ∨ h, that is Fl( f, h) with the smallest
razing of f for the order relation >, above f ∧ h,

that is Rz( f, h). The supremum Fl( f, h) ∨ f Rz( f, h)
should produce the largest leveling in Inter ( f, h). Un-
fortunately, the supremum ∨ f of two levelings is not
necessarily a leveling but a flattening, as shows Fig. 12
where g1 and g2 are both levelings of f in Inter ( f, h),
but g1 ∨ f g2 which equals h itself is not a leveling of f.
As a matter of fact, levelings are particular flattenings
and the supremum ∨ f of two flattenings is a flattening,
as is g1 ∨ f g2.

As levelings, flattenings attenuate or suppress con-
tours, but contrarily to levelings, they may transform
an upwards transition into a downwards transition and
inversely:

Definition 19. A function g is a flattening of the func-
tion f if and only for any pair of comparable pixels

(p, q) : gq � gp ⇒

∣∣∣∣∣∣∣
fq ≤ gq and gp ≤ f p

or

fq 	 gp and gq 	 f p

∣∣∣∣∣∣∣
We will be able to construct maximal levelings

thanks to the following lemma.

Lemma 20. It h is of the form αk ∧ f βk for some
function k, then all flattenings in Inter ( f, h) are
levelings.

Hence we will define the leveling of f constrained by
h and write �( f, h) as the largest flattening contained
in Inter( f, αh ∧ f βh). Defining k as k = αh ∧ f βh,

we obtain �( f, h) = Fl( f, k) ∨ f Rz( f, k).

4.4.1. Levelings are Strong Filters. If we write g0
+ =

f ∨ βh, we define �+
h f = ∧

gn
+, where gn

+ is defined
by the recurrence gn

+ = f ∨ βgn−1
+ and �−

h f = ∨
gn

−,
where gn

− is defined by the recurrence gn
− = f ∧αgn−1

− ,
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g0
− = f ∧ αh. Then the levelings are obtained by

∣∣∣∣ on {h ≥ f } : �+
h f

on {h ≤ f } : �−
h f

∣∣∣∣.
It is possible to prove that they are also obtained by
the commutative product of the opening �−

h and the
closing �+

h : �h = �+
h �−

h = �−
h �+

h , which shows
that levelings are strong filters (see also [13]).

5. Floodings, Razings and Levelings in Practice

We are now able to associate to each couple (α, β) of
adjunct extensive dilation and anti-extensive erosion a
type of contours, of smooth zones and a series of trans-
formations which extend these smooth zones. Further-
more, we are able to construct levelings of an image
constrained by another image. The last part of this paper
presents how these tools may be used for image simpli-
fication and segmentation. We first discuss the choice
of the couple (α, β), according to the desired type of
simplification. We then discuss the choice of markers,
in particular for constructing a hierarchy of simplifi-
cations. We conclude by presenting two strategies for
segmenting an image : the first based on floodings a
gradient image, the second on detecting smooth zones
in the image to segment and expanding them with the
watershed transform.

5.1. Choice of the Leveling Type

The problem here is to chose the right couple (α, β)
for a given task and to compare the effect of various
choices. In the case where two couples (α1, β1) and
(α2, β2) verify α1 ≤ α2 and β1 ≥ β2, it is possible to
predict their effect on the contours, smooth zones and
levelings:

• fy � fx ⇔ fy < αx,y( fx ) : then obviously fy � 1 fx

⇒ fy � 2 fx

• on smooth zones which are the complementary
part of transition, we have the opposite inclusion:
fx � 2 fy ⇒ fy � 1 fx

• Levelings being characterized by f ∧ αg ≤ g ≤
f ∨ βg when g is a leveling of f ; we conclude that
any leveling of f for (α2, β2) is also a leveling of f
for (α1, β1) as f ∧α2g ≤ g ≤ f ∨β2g ⇒ f ∧α1g ≤
g ≤ f ∨ β1g.

We will now compare two couples of levelings:
based on flat and cone dilations on one hand, based

on connected and non connected structuring elements
on the other hand.

5.1.1. Comparison Between a Flat and a Cone
Dilation. We compare here the elementary dilation
δ and the dilation by a cone δ̂ defined earlier and il-
lustrated in Fig. 3. We call flat zones the smooth zones
associated to (ε, δ) and slope zones the smooth zones
associated to (ε̂, δ̂). The associated levelings will be
called respectively flat and slope levelings. We detect
the smooth zones on the same image (see Fig. 13) for
both (ε, δ) and (ε̂, δ̂): as expected, the number of flat
zones (41854) is much higher than the number of slope
zones (22261). The flat zones are composed exclu-
sively of small particles, whereas some slope zones
already appear as larger areas in uniform regions. We
then construct a marker image by an alternate sequen-
tial filter based on increasing openings and closings by
disks. Associated to this marker image we construct
the slope leveling of the initial image: a number of
small details, as the eye brows disappear, and the con-
tours, which were displaced in the marker image are
restored to their original position. The pattern of the
slope zones detected after slope leveling is character-
istic: their number again drastically reduced (12532
against 22261 before leveling); more important is their
distribution: large zones inside the object separated by
a large number of small slope zones in the transitions
zones, along the contours.

5.1.2. Comparison Between a Dilation by a Con-
nected and a non Connected Structuring Element.
We compare now two levelings on the same reference
image f (see Fig. 15 left) and marker image h (not
illustrated here: it is completely black with a white dot
on the hand holding the telephone). The first leveling
is associated to the dilation δ++ and its adjunct erosion
ε−− and is illustrated in Fig. 15 center; the structur-
ing element of the dilation δ++ and the erosion ε−− is
composed by a hexagon and two pixels at a distance of
4 pixels apart on each side (see Fig. 14). The central
part cares for the normal connectivity reconstructions
whereas the couple of added pixels permits jumps from
one zone to another. Indeed the ordinary leveling based
on (ε, δ) illustrated by Fig. 15 right is unable to recon-
struct some parts of the image, although it uses the
same marker; it is unable to jump from one book to
the next on the shelve in the background. As expected,
since δ++ > δ, the (ε, δ) leveling has larger flat zones
than the (ε−−, δ++) leveling.
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Figure 13. Comparison of flat zones and smooth zones on the same
image, before and after leveling. Selection of the largest smooth zones
as markers for a watershed segmentation.

Figure 14. Non connected structuring element.

5.2. Choice of Markers

The series of “cameraman” images illustrate the im-
portance of the choice of the marker and of the level-
ing. The first marker, m1, which is used is alternative
sequential filter, with openings and closings by disks.
The second marker, m2, preserves more details; it is
also an alternative sequential filter, where the opening
is a supremum by openings by segment and the clos-
ing its dual. For each of the markers, one compares the
effect of a flat and of a slope opening.

5.2.1. Markers for the Construction of a Hierarchy
of Levelings. As the relation “to be a leveling” is
transitive, it is interesting to produce a sequence of lev-
elings of a function f associated to a series of markers



70 Meyer

m1, m2, . . .:

f1 = f

f2 = �( f1, m1)

f3 = �( f2, m2) etc.

One produces like that a series of simpler and sim-
pler images, with less and less smooth zones. Figure 10
presents an example where the markers used were al-
ternate sequential filters applied on the initial image.
Alternatively, one may use as markers larger and larger
blurrings by increasing gaussians.

5.2.2. Markers for Tracking Objects in Sequences.
The design of markers may take advantage of the
knowledge we already have from the scene. In case
of the segmentation of sequences, this knowledge is
particularly high. The following two examples illus-
trate the problem of tracking a face of interest in a se-
quence. In steady state of the segmentation, one knows
the mask of interest for the frame t −1 and is interested
in producing the new mask in frame t .

In this first example the lighting conditions of the
sequence are such that the face in the foreground is
darker than the background. For this reason an interest-
ing marker d2 is produced by computing in each region
of the mask d1 computed in frame t −1 its mean value.
Taking this image as marker and the image of frame
t + 1 (image d3) as reference image yields the slope
leveling d4, where almost only the outside contour of
the face is contrasted, and all other details, whether in
the face or in the background have disappeared. This
new image is now extremely easy to segment in order
to produce the mask of the face for frame t .

In the next example the lighting conditions are more
balanced and we will construct a new marker. In the

Figure 15. Left: f = original image. The marker image h is com-
pletely black with a white dot on the left hand of the girl. Center:
leveling �h f associatet to the dilation δ++ and erosion ε−−; Left:
leveling �h f associated to the dilation δ and erosion ε; without
jumps, the reconstruction is much less complete (see for instance the
books).

next series of figures, the image e1 represents frame t +
1 in which we have to track the zone of interest; image
e2 represents the zone of interest detected in frame t .
We will produce a leveling which suppresses almost
all information in frame t + 1 except the contours of
the new region of interest. For this we construct a first
marker in the following manner. We produce a ribbon
like mask around the boundary of the mask in image
e2: we take all pixels which are within a distance ρ of
this boundary.

The parameter ρ is chosen in such a way that the
ribbon contains the contours of the zone of interest of
frame t + 1. We now construct a composite image,
by cutting out the content of frame t + 1 within the
ribbon and the white (255) outside the ribbon. This
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produces the first marker image represented as image
e3. The slope flooding of frame t + 1 with this marker
image is represented in image e4. It is already much
simpler than the original image. We then take advantage
from another interesting feature of levelings, namely
that a the concatenation of levelings still is a leveling.
So we will construct a new leveling, in fact a razing
for which the reference image is the result of the first
leveling and the marker is the same ribbon as before,
but on a black background (image e5). The result of
this second leveling is illustrated in image e6, where
only the contour of the object of interest appears with
its original strength, whereas the contours of all other
objects of the scene have vanished or their contrast has
been drastically reduced.

5.3. Levelings for Segmentation

5.3.1. Increasing Floodings. The watershed trans-
form is the tool of choice for detecting the contours;
generally it is used on a gradient image, associated to
a set of markers. In some cases, one is interested in
producing a hierarchy of segmentations, that is a series
of nested partitions. To this effect one may flood the
gradient image and take as segmentations the catch-
ment basins of a series of increasing floodings. As
the flooding increases, adjacent basins progressively
merge producing coarser and coarser segmentations.
Depending on the law governing the progression of the
flooding, one obtains different results. Size oriented
flooding [4, 14] is produced by placing sources at each
minimum and flooding the surface in such a way that
all lakes share some common measure (height, volume
or area of the surface). As the flooding proceeds, the
level of some lakes cannot grow any further, as the
level of the lowest path point has been reached. In the
Fig. 16, a flooding starts from all minima in such a way
that all lakes always have uniform depth. Size oriented
flooding permits to produce hierarchical segmentation
with good psychovisual properties. The depth criterion
ranks the region according to their contrast, the area
according their size and the volume offers a nice bal-
ance between size and contrast as shows the example of
the segmentation of the cameraman, where 3 segmen-
tations are compared with the same number of regions:
the first based on the depth, the second on the area and
the last on the volume of the lakes.

5.3.2. Segmentation Based on the Detection of
Smooth Zones and Watershed. The Fig. 18 shows
another way to use levelings in the segmentation pro-

Figure 16. Example of a height synchronous flooding. Four levels
of flooding are illustrated; each of them is topped by a figuration of
the corresponding catchment basins.

Figure 17. Comparison of 3 segmentations based resp. on depth,
area and volume based flooding of a gradient image.

Figure 18. The major steps for constructing a segmentation: level-
ing, detection of flat zones, extraction of seeds and final watershed.

cess, based on the extraction and growing of smooth
zones. The image f has to be segmented. To this pur-
pose a marker image g is created and the leveling g′ of
f constrained by g offers a simplified representation
of f, sharing with f the same steep transition and de-
parting from f through large flat zones. The detection
of the flat zones produces some large flat zones and a
manifold of tiny flat zones in the transition zones. The
smaller flat zones are replaced by the modulus of the
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gradient of the image and the larger flat zones are used
as markers for the watershed transform applied on this
gradient. The result is a tesselation in which each large
flat zone gave rise to a region.

On the result of the slope leveling (in Fig. 13), there
are still 12532 quasi flat zones, but they obviously are
of two different natures: tiny quasi flat zones within the
transition zones, and larger quasi flat zones within the
objects of interest. The smaller flat zones are replaced
by the modulus of the gradient of the image and the
larger flat zones are used as markers for the watershed
transform applied on this gradient. The result is a tesse-
lation in which each large flat zone gave rise to a region.

6. Conclusion

We have proposed a general family of filters able to
simplify images without blurring their contours. Each
filter is associated to a particular definition of transi-
tions and smooth zones, and precisely enlarges existing
smooth zones and creates new ones: they are as numer-
ous as there are couples of adjunct extensive dilations
and anti-extensive erosions. We have concluded the pa-
per by presenting a few examples of applications.
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