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Abstract Viscous closings have been presented at ISMM'02 as an e�cient
tool for regularizing the watershed lines in gray-scale images. We
consider now the problem of reconnecting several edge portions of
a same object. In the binary case, this is very nicely solved via
the computation of the distance function to the grains: the down-
stream of the saddle points reconnects the grains, and is known as
the perceptual graph. As a particular case, overlapping particles
may be separated by computing the watershed line of the inverse
distance function. This paper extends the approach to grey-tone
images using the concept of viscous dilations. Finally, combina-
tions of both viscous dilations and viscous closings are proposed
for segmenting objects with dotted and irregular contours.
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1. Introduction

Crest lines of numerical functions play a fundamental role in many image
analysis applications. In segmentation for example crest lines of gradient
images coincide with shapes edges. And there are many other situations
where crest lines are meaningful: road detection in air images, vessel ex-
traction in medical images or writing analysis... (see Figure 1).

There are two major di�culties when trying to detect crest lines in gray-
tone images. First, crest lines are generally not iso-level lines: the luminance
varies, the lines are dotted; a prior reconnection of the lines sections is
required before engaging their extraction. Second, when images are noisy
or fuzzy, crest lines are often irregular and a geometrical regularization is
necessary.

The problem of regularizing thin crest lines in gray-tone images has been
addressed in previous works [4�6, 8] and has led to the powerful concept of
viscous transformation.

What is the fundamental idea of the viscous transformations ? Basically,
morphological �ltering is based on openings or closings. The shapes in im-
ages are simpli�ed according to a structuring element having a prede�ned
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(a) (b) (c) (d)

Figure 1. Some applications where crest lines have to be detected on gray-tone
images. (a) Original gray-scale image. (b) its gradient. Crest lines of the gradient
image correspond to the shapes edges. (c) A problem of road detection in a
gray-tone air image. (d) A hand writing example (in a binary image).

shape and size. The �ltering activity increases with the size of the structur-
ing element. In classical gray-tone morphology, the same transformation is
applied on all level sets of the function.

For di�erent reasons, it is often necessary to adapt the regularization
to the local luminance information available in the images: structures of
high luminance are supposed to be perfectly known while structures of low
luminance require a higher amount of modeling. The idea of the viscous
transformations is to combine the e�ects of a whole family of closings (or
openings) of decreasing activity in such a way that low luminance areas are
severely smoothed whereas points of high luminance are left unchanged.

Two di�erent combinations where proposed in [8] inspired by the behav-
ior of viscous �uids. The �rst mimics the propagation by an oil type �uid,
the second by a mercury type �uid. It has been proven in [8] that the two
models are equivalent for functions which are cylinders, i.e., functions made
of thin crest lines (of one pixel thick) and of null points.

In [5] viscous closings have been extended to any family of increasing
operators of decreasing activity, as for example families of dilations. The
present paper will show how dotted thin crest lines in gray-tone images may
be reconnected and at the same time smoothed using viscous transforma-
tions. As we will see, this idea is not completely new.

The questions we mentioned are completely classical in the binary case.
However, their resolution in the case of numerical functions raises some
di�culties. A binary example is presented in Figure 2. By closing, irregu-
lar portions of the curve are enlarged while linear ones are left unchanged.
A smoothed and thin version of the original curve is very easily obtained
by extracting the median axis of the closed set. In this example, the me-
dian axis is computed by successive morphological thinning. Of course, the
structuring element used must be homotopic [1, 7].

Independently of the smoothing, the question of the connection of the
di�erent curve portions is very easily solved by the use of the distance
function.
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(a) (b) (c)

Figure 2. Regularization of a thin line by closing. (a) Original binary image. (b)
Result of a closing by a disk. (c) Extraction of the median axis by homotopic
thinning.

(a) (b) (c) (d) (e)

Figure 3. (a) Original binary image. (b) Distance map computed on a narrow
band. (c) Homotopic numerical thinning of the distance map. (d) Crest lines of
the thinned image. (e) Crest lines remaining after pruning.

(a) (b) (c) (d) (e) (f)

Figure 4. Standard morphological algorithm for connecting binary contours. (a)
Dotted square. (b) Inverse distance function. (c) Inverse distance function and its
regional minima (corresponding to the the ultimate eroded of the negative original
set). (d) Watershed line of the inverse distance function. (e) Original square and
imposed markers. (f) Watershed line associated to a set of markers.

Let X represents a thin binary structure made of several connected com-
ponents and suppose that we want to join the components of X in order to
produce a unique thin connected set while minimizing the length of the �nal
structure. The standard method in the binary case consists in two steps:

� �rst, the computation of the distance of any point x of the space to
the set X. This step issue is the formation of a distance map fd:

fd(x) = d(x, X) = inf{d(x, y), y ∈ X}. (1.1)

Of course, fd(x) = 0 if x belongs to X. Note that the connected
components of X are the regional minima of fd.

� second, the extraction of the minimal paths in fd connecting the set
X. Or equivalently, detecting the saddle points and their downstream,
yielding the so-called perceptual graph [3], which can also be done
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f −→ {χh(f)}h≥0

decomposition

‖ ↓ Id∨
h≥0 h.χh(f) ←− {χh(f)}h≥0

reconstruction

Figure 5. Level set decomposition and reconstruction of an upper semi-continuous
function

f −→ {χh(f)}h≥0

decomposition

T v
N ↑ ↓ TN−h∨

h≥0 h.TN−h[χh(f)] ←− {TN−h[χh(f)]}h≥0

reconstruction

Figure 6. The oil model viscous transformation: each level set is processed inde-
pendently

by extracting the most signi�cant crest lines of the inverted distance
function. As a particular case, overlapping particles may be separated
by computing the watershed line of the inverted distance function.

This very classical algorithm is illustrated in Figures 3 and 4. In practice,
only interesting crest lines are selected. The watershed transform associated
with a prede�ned set of markers is one of the most elegant solution for this
task (see Figure 4). In the example presented in Figure 3 however, the
standard algorithm has been modi�ed: the distance map is computed in
a narrow band (of width 20 pixels); it is then thinned by an homotopic
numerical thinning [1, 7]. The regional minima being eliminated, the �nal
set results from a morphological pruning of the crest lines.

The purpose of the work presented in this paper is to extend the pro-
cedure developed for binary sets to gray-tone images. This will be possible
thanks to the viscous dilations. The general framework of viscous transfor-
mations being recalled in the next section, viscous dilations are then intro-
duced and their properties studied. Several examples are then presented for
illustrating the pertinence of the proposed method.

2. Viscous transforms

Viscous transformations were �rstly introduced for regularizing the water-
shed transform but their applications �eld largely exceeds the strict segmen-
tation framework. What we discuss here was essentially already developed
in [8]. The current presentation is however notably di�erent. In [8], only
viscous closings were studied; in the present paper, the concept is enlarged
to any increasing operator as suggested in [5].
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(a) (b) (c) (d) (e) (f)

Figure 7. Viscous transformation (oil type). Tn correspond to closings; (a) f

is a thin angular line. (b)1.TN−1[χ1(f)] (c) 2.TN−2[χ2(f)] (d) 3.TN−3[χ3(f)] (e)
4.TN−4[χ4(f)] (f) T (f) =

∨
h≥0

h.TN−h[χh(f)].

(a) (b) (c) (d) (e) (f)

Figure 8. Viscous transformation (mercury type). (a) f (b) TN [f ] (c) TN−1[f +1]
(d) TN−2[f + 2] (e) TN−3[f + 3] (f) T (f) =

∧
h≥0

TN−h[f + h].

Let us consider a family of morphological operators of increasing activity.
By morphological, we mean increasing operators. Let (Tn)n=0:N−1 denotes
the family. Tn being increasing, it preserves the order between sets or
functions: f < g ⇒ Tn(f) < Tn(g).

Tn being of increasing activity means: if n > p, Tp(f) is closer to f than
Tn(f). If, in addition, the Tn are supposed to be extensive, this leads to:
Id = T0 < Tp < Tn

Well known examples of such families are the granulometries (by open-
ing or by closing) or the pyramid of dilations or erosions (associated with
homothetic convex structuring elements). In order to simplify the presen-
tation, we restrict ourselves to extensive operators (closings or dilations for
example); the case of anti-extensive operators is dual; the case of auto-dual
operators is more delicate and will not be treated here.

Rather than computing each �lter resultant one by one as is the case in
granulometric analysis, the idea of the viscous transformations is to combine
the e�ects of the whole family of �lters in a unique formulation. The image
points are not anymore identically processed. The �ltering parameter n

is adapted to the local luminance so that regions with low luminance are
strongly smoothed whereas regions of high luminance are left unchanged.

The �rst solution consists in examining the function level set by level
set and in indexing the �ltering parameter n to the level h: n = N − h for
example.

Let Xh(f) and χh(f) denote the level set of the function f at level h
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and the associated indicatrix function:

Xh(f) = {x ∈ E, f(x) ≥ h} and χh(f) =

{
1 if x ∈ Xh(f)
0 otherwise.

(2.2)

The function f is supposed to be positive so h ≥ 0, and of course upper
semi-continuous so ∀h ≥ 0, Xh+1(f) ⊂ Xh(f), and

f =
∨

h≥0

h.χh(f), (2.3)

which means that f can be processed level set by level set if the process is
increasing (see Figure 5). As example, Tn being supposed to be increasing,
it satis�es:

Tn(f) =
∨

h≥0

h.Tn[χh(f)]. (2.4)

If now n depends of h (n = N − h), the level set decomposition leads to
the following de�nition (see Figure 6):

T v
N (f) =

∨

h≥0

h.TN−h(χh(f)). (2.5)

T v
N corresponds to the oil model described in [8]. For illustration, let

us consider a thin line presented in Figure 7. Tn being extensive, the thin
line is enlarged by Tn; the cone's interior is smoothed by decreasing size
openings: it grows as a viscous lake does, if one interprets the altitude h as
a temperature and the �ltering parameter (N − h) as a viscosity indicator.

Rather than indexing the �ltering parameter n on the luminance h, it
can be more interesting to index it on the contrast. The reasoning leading
to the second viscous transformation model is detailed in [8]. It is inspired
from the behaviour of a mercury type of �uid:

T̃ v
N (f) =

∧

h≥0

TN−h(f + h).

The mercury type viscous transformation behavior is illustrated on Fig-
ures 8 and 9. In both oil and mercury cases, the results of �lters Tn when
n varies, are stacked. It has been proved in [8] that these two models are
equivalent in the case where the function is a set of cylinders on top of a
background of value 0.

3. Viscous openings and closings

As said previously, operators Tn may be any extensive morphological trans-
formation whose activity decreases with n and notably closings. As example,
viscous closings are de�ned as follow:
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(a)

(b)

Figure 9. Di�erence between oil and mercury type of viscous dilation. (a) In the
�rst case (the oil type), details of high luminance are preserved. (b) In the second
type (the mercury type), the �ltering activity is function of the contrast and not
of the luminance.

(a) (b) (c) (d) (e) (f) (g)

Figure 10. Viscous opening. (a) Original set. (b-f) Results of openings by disk of
decreasing size. (g) Result of the viscous opening. Details of the original shape
are associated with low levels and coarse descriptions to high levels.

ϕv
R0

(f) =
∨

h≥0

h.ϕR0−h(χh(f)) and ϕ̃v
R0

(f) =
∧

k≥0

ϕR0−k(f + k), (3.6)

where R0 − h is the size of the structuring element.
The viscous openings expressions are derived by duality. However, the

formulation is simpler in the mercury case than in the oil case. In the
mercury case, it expresses as follow:

Γ̃v
R0

(f) =
∨

k≥0

γR0−k(f − k). (3.7)

Let us now examine what kind of images are build via viscous openings.
The Figures 10 and 11 illustrate viscous openings behavior. In these of the
set presented in Figure 10, oil and mercury models are equivalent. This
example of Figure 11 illustrates the openings granulometric property [2]:
details and coarse shapes are represented at opposite granulometric scales.
The viscous transform gathers the entire granulometric information in a
unique formulation where coarse sets and details are stacked: due to the
size-brightness correlation, details of shapes of low luminance are lost; the
luminance of the smallest shapes is lowered. Viscous closings have a dual
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(a) (b) (c)

Figure 11. E�ect of the viscous opening. (a) Original image of bubbles. (b)
Result of a standard opening by a Euclidian disk of size 20. (c) Result of a
viscous opening of size 20. Here, the mercury model is chosen since the image is
made of catchment basins located at di�erent altitudes.

e�ect on crest lines as illustrated in Figures 12 and 13. After a viscous or
non viscous closing, a thin line is very simply restored by thinning.

4. The viscous dilations

We arrive now at the heart of the paper: the relation between distance
maps and viscous transforms and their use for reconnecting structures in
gray-tone images.

Let us consider a binary set X in a space E. We want to compute the
Euclidean distance from any point x ∈ E to X. When restricting ourselves
to the discrete case, the distance map (also called distance function) can
easily be computed via erosions by disks of increasing size. And conversely,
the negative distance map is computed via dilations of increasing size. Let
δn denote the dilation by an Euclidean disk of radius n. Any point belonging
to the dilated set δn(X) is at a distance lower or equal to n from X:

x ∈ δn(X)⇔ d(x, X) ≤ n. (4.8)

Considering functions rather than sets:

δn(χ)(x) = 1⇔ d(x, X) ≤ n, (4.9)

where ∀x ∈ E, χ(x) = 1 if x ∈ X and χ(x) = 0 otherwise. χ is nothing but
the numerical function of value 0 or 1 de�ned on the space E and associated
with the binary set X.

The computation of the distance map in a narrow band of size N − 1
around X involves the partial sum:

N−1∑

n=0

δn(χ) with
N−1∑

n=0

δn(χ)(x) =





N if x ∈ X,

N − n if d(x, X) = n,

0 if d(x, X) ≥ N.

(4.10)
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(a) (b) (c) (d) (e)

Figure 12. (a) Original image. (b) Its morphological gradient. (c) The homotopic
thinning of the gradient. (d) Standard closing of the gradient. (e) Homotopic
thinning of (d)

(a) (b) (c) (d)

Figure 13. E�ect of the viscous closings on the gradient image. (a) Mercury
model. (b) Oil model. (c-d) Homotopic thinning of (a-b). Note that, only the oil
model preserves the crest lines of low contrast.

The points of the set X form the crest lines of the negative distance
function. Moreover the operator

∑N−1
n=0 δn(χ) is nothing but a viscous dila-

tion. Indeed, the sets δn(X) are nested: X = δ0(X) ⊂ ... ⊂ δn(X) ⊂ ... ⊂
δN−1(X). Points belonging to δn(X) \ δn−1(X) are at distance n from X.
Instead of summing the dilated sets, the distance function can be computed
by translating and superposing the dilated sets:

N−1∑

n=0

δn(χ) =

N∨

n=1

n.δN−n(χ) =

N∨

n=0

n.δN−n(χ), (4.11)

where n.χ corresponds to the set X represented with the luminance n.
Suppose now that the set X is replaced by a cylinder of high N and let

f denote this function. All level sets Xh(f) are identical if 0 ≤ h ≤ N and
empty for h > N . This example allows to rewrite the precedent formulation
for functions as follow:

∨

h≥0

h.δN−h(χh(f)). (4.12)
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Figure 14. Principle of the viscous dilation (oil type of �uid). The original function
level sets are dilated then stacked. The viscous dilation results from a supremum.

Figure 15. Viscous dilation computation (case of a mercury type of �uid). The
original function is shifted then dilated. The original dilation results from an
in�mum.

Figure 16. E�ect of the viscous dilations on walls of di�erent altitudes (case of a
oil type of �uid).

This expression as to be compared to the oil type viscous transforma-
tions:

T v
N (f) =

∨

h≥0

h.TN−h(χh(f)). (4.13)

The similitude is illustrated in Figure 14: dilations of decreasing activ-
ity are progressively stacked as it was the case for the oil model viscous
transformations. As a consequence, distance functions may be interpreted
as viscous transformations associated with dilations of decreasing activity.
We will call this transformation viscous dilation.

By analogy with viscous closings two viscous dilations (inspired from the
oil and the mercury models) may be de�ned:

δv(f) =
∨

h≥0

h.δN−h(χh(f)) and δ̃v(f) =
∧

h≥0

δN−h(f + h). (4.14)

These transformations are illustrated on Figures 14, 15 and 16.
Of course, these transforms are equivalent to the sum

∑N−1
n=0 δn(f) for

binary functions but the three transformations di�er in the case of gray-scale
functions.

As an illustration, the viscous transformations have been tested on gray-
scale images: in the Figures 17, the goal is the segmentation of the bird.
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(a) (b) (c) (d) (e)

Figure 17. (a) Original image. (b) Gradient image. (c) Associated watershed
transform. (d) Viscous dilation of the gradient image. (e)Associated viscous
watershed transform (watershed computed after viscous closing of the relief).

The bird is �rst roughly localized. Then, the gradient norm of the original
function is computed. For reference, we present the segmentation obtained
by computing the watershed transform directly on the original gradient
image. A more robust segmentation can be obtained if a viscous dilation is
applied on the gradient before computing the watershed transform. And a
more regularized solution is obtained if, in addition to the viscous dilation,
the standard watershed is replaced by the viscous watershed. We recall that
the viscous watershed is a standard watershed computed after a viscous
closing of the relief.

Another example is presented on Figure 18. The original image is
�rst thinned, then a viscous dilation is computed and the derived image
is thinned. So, one can observe how crest lines are connected. The re-
sult obtained via oil and mercury types of viscosity are compared. Lastly,
watersheds are computed and compared.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 18. (a) Original image. (b) Markers. (c) Thinned original image. (d)
Watershed segmentation. (e) Viscous dilation of the thinned original image (oil
model). (f) Thinning of the result of the viscous dilation. (g) Watershed segmen-
tation. (h-j) The same than (e-g) using the mercury model.
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The viscous dilation allows to reconnect disconnected contours portions
while viscous closings have a regularization e�ect. It is possible to combine
the advantage of both dilations and closings by considering the family of
the closing dilated sets. For the �oi� model, it expresses as:

∨

h≥0

ϕr(h)δr(h)(h.χh(f)).

5. Conclusion

Viscous transformations appear to be extensions to grey-tone functions of
distance functions or opening function of binary sets (sum of dilations or
openings of increasing size). As distance functions of binary sets are useful
for connecting binary dots or separating particles, viscous dilations are use-
ful for �lling missing gaps in grey-tone contours. They may be used besides
or in conjunction with viscous closings in order not only to �ll in gaps but
also to regularize the contours of gray-tone images. In a next paper we will
further study the properties of these transformations.
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