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Abstract To better understand the numerous solutions related to watershed
transform (WT), this paper shows the relationships between some
discrete de�nitions of the WT: the watersheds based on image
foresting transform (IFT), topographic distance (TD), local condi-
tion (LC), and minimum spanning forest (MSF). We demonstrate
that the tie-zone (TZ) concept, that uni�es the multiple solutions of
a given WT, when applied to the IFT-WT, includes all the solutions
predicted by the other paradigms: the watershed line of TD-WT
is contained in the TZ of the IFT-WT, while the catchment basins
of the former contain the basins of the latter; any solution of LC-
WT or MSF-WT is also solution of the IFT-WT. Furthermore, the
TD-WT can be seen as the TZ transform of the LC-WT.

Keywords: image segmentation, watershed transform, graph theory, minimum
spanning forest, shortest-path forest.

1. Introduction

The watershed transform (WT) is a famous and powerful segmentation tool
in morphological image processing. First introduced by Beucher and Lan-
tuéjoul [7] for contour detection and applied in digital image segmentation
by Beucher and Meyer [8], it is inspired from a physical principle well-known
in geography: if a drop of water falls on a topographic surface, it follows
the greatest slope until reaching a valley. The set of points which lead to
the same valley is called a (catchment) basin. Watershed lines separate dif-
ferent basins. In the WT, an image is seen as a topographic surface where
gray level corresponds to altitude. In practice, the topography is made of a
gradient of the image to segment. In this case, it is expected that a region
with low gradient, a valley, corresponds to a rather homogeneous region
and possibly to the same object. Ideally, basins correspond to segmented
objects separated by watershed lines.

Many de�nitions and numerous algorithms for WT exist in literature.
Furthermore, multiple WT solutions are sometimes returned by an algo-
rithm according to its implementations or even by the theoretical de�nition
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itself. This disconcerting fact motivated the investigation of the relation-
ships between theoretical WT de�nitions.

De�nitions in continuous space have been proposed [7, 18, 19, 21] and
consider the watershed as a skeleton by in�uence zones (SKIZ) generalized
to gray-scale images. In discrete space (of interest in this paper), there
are many de�nitions which can be classi�ed in �ve main paradigms. The
WT based on local condition (LC-WT) mimics the intuitive drop of water
paradigm. The inclusion of a pixel to a basin is achieved by iteratively re-
specting a local condition of label continuity along a path of steepest descent
that reaches the basin minimum. It is why this de�nition includes algo-
rithms of �arrowing�, �rain simulation�, �downhill�, �toboggan�, �hill climb-
ing� [14, 20, 22]. The variation among them is due to processing strategy
(ordered or unordered data scanning, depth- or breadth-�rst, union-�nd)
and data structure.

The WT based on �ooding has a recursive de�nition [23] that simulates
the immersion of a topography representing the image. At each �ooding
level, growing catchment basins invade �ooded regions that belong to their
respective in�uence zone. The watershed corresponds to the SKIZ.

The topological WT [10] cannot be viewed as a generalized SKIZ but in
fact, as the ultimate homotopic thinning that transforms the image while
preserving some topological properties as the number of connected compo-
nents of each lower cross-section and the saliency between any two (basin)
minima.

The WT based on path-cost minimization associates a pixel to a catch-
ment basin when the topographic distance is strictly minimum to the re-
spective regional minimum in the case of the WT by topographic distance
(TD-WT) [18]; or it builds a forest of minimum-path trees, each tree repre-
senting a basin, in the case of the WT by image foresting transform (IFT-
WT) [12,15].

The WT based on minimum spanning forest (MSF-WT) associates a
graph to an image and builds a MSF [17], i.e., a spanning forest minimizing
the sum of the weights of the arcs used for its construction. Trees correspond
to basins.

Table 1 summarizes some characteristics of these WT de�nitions. Only
�ooding-WT and TD-WT de�nitions (not the related algorithms) return
unique solution (Figure 1(b)(i)), but the concept of tie zone (TZ) can be
applied to the IFT-WT to unify the set of multiple solutions by creating
litigious zones when solutions di�er.

The LC-WT, IFT-WT (Figure 1(e)-(h)) and MSF-WT, are sometimes
called �region�-WT because all pixels are assigned to basins, by de�nition.
Watershed lines are considered as located between basin pixels, but can
be visualized by ad-hoc algorithms. The other de�nitions are known as
�line�-WT because some pixels are labeled as watershed. Yet, except for the
topological WT de�nition (Figure 1(c)(d)), they do not de�ne lines that
consistently separate basins but, instead, possibly thick and disconnected
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watershed lines.

Table 1. Characteristics of the main watershed transform (WT) de�nitions.

Watershed Unique Watershed Separating Thin Grayscaled
de�nitions solution pixels lines lines lines
LC-WT no no � � �
Flooding-WT yes* yes no no no
Topological-WT no yes yes no yes
TD-WT yes* yes no no no
IFT-WT no no � � �
TZ-IFT-WT yes tie-zone no no no
MSF-WT no no � � �

* The strict de�nitions have a unique solution but the algorithms derived in [8, 23] do
not respect the de�nitions and, therefore, return multiple solutions.

Observe that among these paradigms, TD-WT, IFT-WT and MSF-WT
are based on a global optimality criterion. Both IFT-WT and MSF-WT are
only de�ned in discrete space. The other paradigms attempt to mimic a con-
tinuous de�nition, i.e., they may be de�ned in both discrete and continuous
spaces.

This paper shows the relationships between the discrete de�nitions of
IFT-WT, TD-WT, MSF-WT and LC-WT. We show that the TZ water-
shed, derived from the solutions of the IFT-WT, contains all the solutions
predicted by the other paradigms.

In Section 2, we present the IFT-WT formalism, and the TZ concept.
Section 3 recalls the de�nition of LC-WT and demonstrates that any solu-
tion of LC-WT is also solution of the IFT-WT. Section 4 shows that the
watershed region of TD-WT is contained in the TZ (derived from the IFT-
WT), and the basins of the former contain the basins of the latter. In
addition, the TD-WT can be seen as the TZ transform of the LC-WT. Fi-
nally, Section 5 demonstrates that any solution of MSF-WT is also solution
of the IFT-WT.

2. The image foresting transform (IFT)

The IFT is a general framework based on graph theory in which an image is
seen as a graph and pixels (or voxels) as its nodes. This transform returns
a shortest path forest (SPF) from an input image-graph. Depending on
the path-cost function utilized and other input parameters (adjacency, arc
weights), the IFT can compute di�erent image processing operations [11,
12]: distance transforms, connected �lters, interactive object delineation
(�live-wire�), segmentation by fuzzy connectedness [3] and segmentation by
watershed.
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Figure 1. (a): Lower-complete input grayscale image with four minima. (b)�(j):
Its WTs using 4-adjacency, according to de�nitions from literature. Label map is
shown (W represents watershed line and TZ tie-zone) except for topological WT
where watershed lines are valued. (c)�(h) show only two of the possible solutions.
Watershed line in (b)(i) is not separating. Arrows (pointing to predecessors)
represent the lower complete graph (i) and multipredecessor optimal graph (j).

2.1 Watershed by image foresting transform (IFT-WT)

Under the IFT framework, an image is interpreted as a weighted graph
G = (V,A, w) consisting of a set V of nodes or vertices that represent
image pixels, a set A of arcs weighted by w, a function from A to some
nonnegative scalar domain. N(v) denotes the neighborhood of node v, i.e.,
the set of nodes adjacent to it. Nodes u and v are adjacent when the arc
〈u, v〉 belongs to A. A graph (V ′, A′) is subgraph of (V,A) if V ′ ⊆ V , A′ ⊆ A

and A′ ⊆ V ′×V ′. A forest F of G is an acyclic subgraph F of G. Trees are
connected components of the forest (any two nodes of a tree are connected
by a path). A path π(u, v) from node u to node v in graph (V,A, w) is a
sequence 〈u = v1, v2, . . . , vn = v〉 of nodes of V such that ∀i = 1 . . . n − 1,
〈vi, vi+1〉 ∈ A. A path is said simple if all its nodes are di�erent from each
other. A path with terminal node v is denoted by πv. The path πv is trivial
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when it consists of a single node 〈v〉. Otherwise, it can be de�ned by a path
resulting from the concatenation πu · 〈u, v〉. A path-cost function f assigns
to each path π a path cost f(π), in some totally ordered set of cost values.

Let S ⊆ V be a set of particular nodes si called seeds. For a given
weighted graph (V,A, w) and a set S of seeds, the image foresting transform
(IFT) returns a forest F of (V,A, w) such that (i) there exists for each node
v ∈ V a unique and simple path π(si, v) in F from a seed node si ∈ S to v

and (ii) each such path is optimum, i.e., has a minimum cost for linking v

to some seed of S, according to the speci�ed path-cost function f . In other
words, the IFT returns a shortest (cheapest in fact) path forest (SPF),
also called optimal forest in this paper, where each tree is rooted to a seed.
Although path costs are uniquely de�ned, the IFT may return many optimal
forests because many paths of same minimum cost may exist for some nodes.

The watershed transform by IFT (IFT-WT) assumes that (i) the seeds
correspond to regional minima of the image (or to imposed minima, i.e.,
markers [8]); (ii) the max-arc path-cost function fmax is used:

fmax (〈v〉) = h(v),

fmax (πu · 〈u, v〉) = max {fmax(πu), w(u, v)} , (2.1)

where h(v) is a �xed but arbitrary handicap cost [16] for any paths starting
at pixel v, and w(u, v) is the weight of arc 〈u, v〉 ∈ A, ideally higher on the
object boundaries and lower inside the objects. Usual arc weight functions
are: w1(u, v) = |I(u) − I(v)|, I(u) being the intensity of pixel u (cf. the
so-called watershed by dissimilarity [15]); w2(u, v) = G(v), where G(v) is
the (morphological) gradient of image I at pixel v (cf. the IFT-WT on
gradient [12, 15]). With this arc weight function, the max-arc path-cost
function of Equation 2.1 can be simpli�ed into: fmax(〈v1, v2, . . . , vn〉) =
max {G(v1), G(v2), . . . , G(vn)}. Note that the �nal cost map is unique and
corresponds to the morphological superior reconstruction of the gradient
image from the seeds using a �at structuring element. However, the forests
and then the labelings may be multiple. Observe that a forest can be simply
represented by a predecessor map P where P (v) is the predecessor of node v

in the minimum path. A label map L assigns to each node v the label L(v)
of the corresponding minimum-path root. The catchment basins correspond
to the (labeled) trees: CBIFT (si) = {v ∈ V,L(v) = L(si)} .

The so-called �plateau problem� is reported in WT literature for the
internal non-minimum plateau pixels, i.e., non-minimum1 pixels which have
no lower neighbor. It can be solved by lower completion (cf. De�nition 3.4
of [22]): a lower complete image2 ILC is computed from I by taking into
account the geodesic distance of such internal pixels to the lower boundary
of the plateau; then WT is applied on ILC .

1Pixels which do not belong to regional minima.
2The improper term �image without plateau� is sometimes used instead.
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In IFT-WT, flex = (fmax, fd), a two-component lexicographic cost func-
tion, is used [15] to avoid a prior lower completion but has strictly the
same role [4]. The �rst component, of highest priority, is the max-arc func-
tion representing the �ooding process. The second one corresponds to the
geodesic distance to the lower boundary of the plateau and makes di�erent
waters propagate on plateau at a same speed rate:

fd(〈v1, . . . , vn〉) = max
k∈[0,n−1]

{k, fmax(〈v1, . . . , vn〉) = fmax(〈v1, . . . , vn−k〉)} .

2.2 Tie zone

The choice of a single IFT-WT solution when many are possible is arbitrary
and can be seen as a bias. Indeed, variations from one solution to another
are sometimes signi�cant and even unacceptable for some applications (e.g.,
reliable measures on segmented structures). In some images, an entire region
is reached passing by a bottleneck pixel [2] and consequently included to
the basin that �rst invades the bottleneck (like in Figure 1(g)(h)). This
problem is not related to the plateau problem and corresponds �to special
pixel con�gurations which are not so rare in practice� as referred by [23].

It is why the tie-zone concept was proposed [4, 5] to unify the multiple
solutions of a WT. Brie�y speaking, considering all possible solutions de-
rived from a speci�c WT de�nition, parts segmented in the same manner
remain as catchment basins whereas di�ering parts are put in the tie zone
(TZ). So, the TZ may be thick as well as empty.

In the case of IFT-WT, the tie-zone watershed by IFT (TZ-IFT-WS),
returns a unique partition (cf. Figure 1(j)) of the image such that: A node
is included in catchment basin CBTZ−IFT (si) when it is linked by a path
to a same seed si in all the optimal forests (Φ denotes the set of the optimal
forests F ), otherwise it is included in the tie zone TZ:

CBTZ−IFT (si) = {v ∈ V, ∀F ∈ Φ, ∃π(si, v) in F} , (2.2)

TZIFT = V \
⋃

i

CBTZ−IFT (si).

The area of the TZs, their distribution and number and distribution
of their sources, the so-called bottlenecks, can be correlated with the ro-
bustness of a segmentation, i.e., with the degree of con�dence a particular
segmentation by WT has [2].

2.3 Multipredecessor optimal graph and lower com-
plete graph

We introduce now a special graph, unique for each image, that will be used
in Section 3. Roughly speaking, the multipredecessor optimal graph (MOG)
of a weighted graph is the �union� of its optimal forests. More precisely, it
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is a directed acyclic subgraph of (V,A) such that its arc set A′′ is the union
of the (oriented) arcs of all the optimal forests F ∈ Φ (cf. Figure 1(j)):

MOG : (V,A′′) = (V,
⋃

∀F=(V,A′)∈Φ

A′).

Once we have the lexicographical cost map of the image, i.e., a lower
complete image, the following local property is valid: node p is predecessor
of node v in the MOG if and only if p is neighbor of v with optimal lexico-
graphic cost strictly lower than that of v (the superscript ∗ denotes optimal
paths).

〈v, p〉 ∈ A′′ ⇔ p ∈ P(v) ⇔ p ∈ N(v), flex(π∗v) ≻ flex(π∗p), (2.3)

where P(v) denotes the set of predecessors of node v, as the number of
predecessors by node is no longer restricted to one as for the forests. Another
property of the MOG is that if we independently choose one predecessor by
non-minimum node, we obtain an optimal forest (A′ ⊆ A′′ ⊆ A).

The lower complete graph (V,A′′′) (LCG, cf. De�nition 3.5 of [22]) is
analog to the MOG. Both are directed acyclic graphs built from the lower
complete image. While all the lower neighbors in the lower complete image
are predecessors of a node in the MOG, only the steepest lower neighbors
are considered for a node in LCG (cf. Figure 1(i)).

〈v, p〉 ∈ A′′′ ⇔ p ∈ Psteepest(v) ⇔ p ∈ N(v), ILC(v) > ILC(p), (2.4)
ILC(v)−ILC(p)

d(v,p) = maxq∈N(v)
ILC(v)−ILC(q)

d(v,q) ,

d(p, q) being the distance between p and q. From Equation 2.3 and Equa-
tion 2.4, we deduce that Psteepest(v) ⊆ P(v). Consequently, A′′′ ⊆ A′′ ⊆ A

and the LCG (V,A′′′) of an image-graph (V,A) is a subgraph of its MOG
(V,A′′).

3. Watershed based on a local condition

As we said in Section 1, the watershed transform based on a local condition
(LC-WT) is of �region� type because it has no watershed pixels [6, 9]. It
may have multiple solutions (cf. Figure 1(e)(f)). It assigns to each pixel the
label of some minimum mi, so as to form a partition of the image whose
disjoint sets are the basins CBLC(mi) = {v ∈ V,L(v) = L(mi)}.

As observed in refs. [6,22], this WT de�nition is particularly well-suited
for parallel implementations because it is based on a local condition. How-
ever, the overall WT computation is still a global operation. The meaning
of locality in this de�nition is that one may subdivide an image in blocks,
do a labeling of basins in each block independently, and make the results
globally consistent in a �nal merging step.
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De�nition 1 (Watershed based on local condition). For any lower complete
image ILC , a function L assigning a label to each pixel is called a watershed
segmentation if:

1. L(mi) 6= L(mj) ∀i 6= j, with {mk} the set of minima of ILC ;

2. for each pixel v with Psteepest(v) 6= {},∃p ∈ Psteepest(v), L(v) = L(p).

The condition Psteepest(v) 6= {} means that v has at least one lower
neighbor.

In other words, we can obtain a LC-WT by independently choosing one
predecessor by non-minimum node in the precomputed LCG, and assigning
a di�erent basin label to each tree of the disjoint-set forest we obtained.

As the LCG (V,A′′′) generating such forests is a subgraph of the MOG
(V,A′′) generating any optimal forest, we conclude straightaway that these
forests are optimal forests. Therefore: any LC-WT is also an IFT-WT.

4. Watershed based on topographic distance

We recall here the de�nition of WT by topographic distance (TD-WT) and
some propositions from [18] for completeness.

De�nition 2 (Watershed transform by topographic distance). Let I be a
gray-scale image, ILC its lower completion, and {mi} the set of minima of
I. Basin of I for minimum mi and watershed are respectively:

CBTD(mi) =
{

v ∈ V, ∀j 6= i, ILC(mi) + TILC
(v, mi) < ILC(mj) + TILC

(v, mj)
}

WTD = V \
⋃

i

CBTD(mi) (4.5)

TILC
(p, q) being the topographic distance [18] between p and q:

TILC
(p, q) = min

∀π(p,q)
T

π(p,q)
ILC

(p, q); T
π(p,q)
ILC

(p = p1, q = pn) =

n−1
∑

i=1

cost(pi, pi+1);

cost(pi, pi+1) =







LS(pi)d(pi, pi+1), if ILC(pi) > ILC(pi+1),
LS(pi+1)d(pi, pi+1), if ILC(pi) < ILC(pi+1),
1
2

[LS(pi) + LS(pi+1)] d(pi, pi+1), if ILC(pi) = ILC(pi+1).

The lower slope LS(p) of ILC at a pixel p is de�ned as the maximal slope
linking p to any of its neighbors of lower altitude.

We call (p1, p2, . . . , pn) a path of steepest descent from p1 = p to pn = q

if pi+1 ∈ Psteepest(pi) for i = 1, . . . , n−1. A pixel p belongs to the upstream
of q if there exists a path of steepest descent from p to q.
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Proposition 1 (from [18]). Let ILC(p) > ILC(q). A path π from p to q is
of steepest descent if and only if Tπ

ILC
(p, q) = ILC(p) − ILC(q). If a path π

from p to q is not of steepest descent, Tπ
ILC

(p, q) > ILC(p) − ILC(q).

This proposition implies that paths of steepest descent are the geodesics
(shortest paths) of the topographical distance function. Consequently, from
De�nition 2 CBTD(mi) is the set of points in the upstream of a single
minimum mi, i.e., there is (at least) one path of steepest descent to mi and
no path of steepest descent to any other minimum. The watershed consists
of the points p which are in the upstream of at least two minima, i.e., there
are at least two paths of steepest descent starting from p which lead to
di�erent minima.

4.1 Relationship with local-condition watershed

The forests representing the possible LC-WT generated from the LCG (Sec-
tion 3) are made of paths of steepest descent. By strict analogy with Equa-
tion 2.2, we can conclude that: TD-WT is the tie-zone transform of
LC-WT.

Proof. A node is included in catchment basin CBTD(mi) when it is linked by
a path to a same minimum mi in all the forests made of steepest paths (the
set of solutions for LC-WT, e.g., Figure 1(e)(f)), otherwise it is included
in the tie zone WTD (cf. Figure 1(i)). As a consequence, we have also
CBTD(mi) ⊆ CBLC(mi) (cf. Figure 1(i)), as demonstrated in Theorem 2
of [6].

4.2 Relationship with tie-zone watershed by IFT

We saw in Section 3 that the set of LC-WT solutions is a subset of the
set of IFT-WT solutions, so the tie zone derived from the LC-WT
solutions, i.e., WTD, is a subset of TZIFT : WTD ⊆ TZIFT .

Proof. If pixel p ∈ WTD, there are at least two paths of steepest descent
from p to di�erent minima. These paths belong to the LCG and to the
MOG too (LCG is subgraph of MOG). So, there exist at least two optimal
forests containing these paths leading to di�erent minima. Consequently,
p ∈ TZIFT .

Besides, the catchment basins de�ned by TZ-IFT-WT are sub-
sets of the corresponding basins de�ned by TD-WT :
∀mi, CBTZ−IFT (mi) ⊆ CBTD(mi).

Proof. If pixel p ∈ CBTZ−IFT (mi), all the paths from p in the MOG lead
to minimum mi. So do the paths from p in the LCG (because LCG is
subgraph of MOG, Psteepest(v) ⊆ P(v),∀v). So, p ∈ CBTD(mi).
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Input graph:
[0] [2] [2] [0]

◦

2
←→•

1
←→•

2
←→◦

[max-arc path-cost ]
arc weights

A ←− A ←− A B

(a) MSF 1 and SPF 1

A B −→ B −→ B

(b) MSF 2 and SPF 2

A ←− A B −→ B

(c) SPF 3 is not a MSF

Figure 2. A weighted graph with two markers (◦) and its 3 possible SPF-max and
2 MSF (total weight = 3). SPF 3 is not a MSF (total weight = 4).

5. Watershed based on a minimum spanning forest

The WT introduced in [17] is in fact a WT from markers (some signi�-
cant minima are selected to avoid oversegmentation). It uses a weighted
neighborhood graph whose nodes are the primitive catchment basins corre-
sponding to regional minima of the image. Arcs are placed between neighbor
catchment basins and weighted by the altitude of the pass between them. A
watershed based on minimum spanning forest (MSF-WT) is de�ned on this
weighted graph: the many possible MSFs on the graph de�ne partitions that
are considered solutions of this WT. Each tree of the MSF is a catchment
basin of the MSF-WT.

A tree (V, T ) is a minimum spanning tree (MST) of graph (V,A, w) if
its total weight

∑
t∈T w(t) (sum of the weight of its arcs) is minimum. It

is unique when all the arc weights of the graph are di�erent. A minimum
spanning forest (MSF) is a forest whose total weight (sum of the weight of
its arcs) is minimum and where each node is linked to a seed si ∈ S by a
unique simple path. The MSF problem for weighted graph (V,A, w) can be
solved by constructing the MST of (V ∗, A∗, w∗) where a �cticious root node
z and arcs of weight −1 linking z to each seed were added. In a �nal step,
these negative arcs will be removed to obtain a MSF.

Theorem 1 (Minimum spanning tree [13]). (V, T ) is a tree of minimum
weight for graph (V,A, w) if and only if for every arc u ∈ A − T the cycle
µu (such that µu ⊂ T + {u}) satis�es: w(u) ≥ w(v), ∀v ∈ µu (v 6= u).

Now, we demonstrate3 that the set of MSF solutions is a subset of the
set of IFT-WT solutions de�ned by the same weighted graph using the same
seed set with seed handicaps h(si) = 0 and the max-arc path cost4.

Theorem 2 (Shortest-path forest and minimum spanning forest).
Given a weighted graph and a seed set, any minimum spanning forest (MSF)
is also a shortest-path forest (SPF-max) using max-arc path cost fmax.

F is a MSF ⇒ F is a SPF-max (or IFT-WT).

3This result was obtained independently in [1].
4Until now, lexicographic path-cost flex = (fmax, fd) was used for IFT-WT.
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Reciprocal is false (cf. examples and counter-example in Figure 2).

Proof. Suppose that F is a MSF and T the corresponding MST using a
�cticious root z. Suppose that there exists a path π from p to z, π belongs
to T and π is non optimal in the SPF-max sense (i.e., using fmax). Suppose
that there exists another path π′ from p to z such that fmax(π

′) < fmax(π).
Then for every arc v in π′, its weight w(v) ≤ fmax(π

′) < fmax(π). Now,
there exists an arc u in π′, u not in T (because T has no cycle: p and z

are linked by only one simple path). Therefore, w(u) < fmax(π). Now,
T is a MST. Therefore, from Theorem 1, w(u) ≥ fmax(π · π′) ≥ fmax(π),
π · π′ being the cycle µu formed by concatenation of the two paths. That
is a contradiction with the previous conclusion. So, any MSF is necessarily
SPF-max.

6. Conclusion and future works

In this paper, we used the IFT-WT and the TZ concept (that uni�es the
set of multiple solutions of a given WT) to relate some discrete WT de�ni-
tions and, thereby, better understand the di�erences between the multiple
solutions given by such de�nitions. We demonstrate that (i) the TD-WT
corresponds to the tie-zone transform of the LC-WT; (ii) the possibly thick
and not separating watershed line of TD-WT is contained in the TZ of the
TZ-IFT-WT (with lexicographic cost function), while (iii) the catchment
basins of the former contain the basins of the latter; (iv) any solution of
LC-WT is also solution of the IFT-WT; (v) any solution of MSF-WT is
also solution of the IFT-WT (with max-arc path-cost function).

We are preparing an extended version of this paper which will also in-
clude the comparative analysis of �ooding-WT de�nition with IFT-WT and
TZ, as well as some issues on related algorithms.
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