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Abstract

The hit-or-miss transform (HMT) is a fundamental operation on binary images, widely used since 40 years. As it is not increasing, its
extension to grey-level images is not straightforward, and very few authors have considered it. Moreover, despite its potential usefulness,
very few applications of the grey-level HMT have been proposed until now. Part I of this paper, developed hereafter, is devoted to the
description of a theory leading to a unification of the main definitions of the grey-level HMT, mainly proposed by Ronse and Soille,
respectively (part II will deal with the applicative potential of the grey-level HMT, which will be illustrated by its use for vessel segmentation
from 3D angiographic data). In this first part, we review the previous approaches to the grey-level HMT, especially the supremal one of
Ronse, and the integral one of Soille; the latter was defined only for flat structuring elements (SEs), but it can be generalized to non-flat
ones. We present a unified theory of the grey-level HMT, which is decomposed into two steps. First a fitting associates to each point the set
of grey-levels for which the SEs can be fitted to the image; as in Soille’s approach, this fitting step can be constrained. Next, a valuation
associates a final grey-level value to each point; we propose three valuations: supremal (as in Ronse), integral (as in Soille) and binary.
� 2006 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Consider a Euclidean or digital space E (E = Rn or Zn).
For X ∈ P(E), write Xc = E\X (the complement of X),
X̌ = {−x | x ∈ X} (the symmetrical of X), and for p ∈ E,
Xp = {x + p | x ∈ X} (the translate of X by p). Then the
Minkowski addition � and subtraction � are defined by
setting for X, B ∈ P(E):

X�B =
⋃
b∈B

Xb and X�B =
⋂
b∈B

X−b.

This leads to the operators �B : X �→ X�B (dilation by B)
and εB : X �→ X�B (erosion by B); here B is considered
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as a structuring element (SE) that acts on the binary image
X. (NB: Our terminology follows [1,2], in accordance with
the algebraic theory of dilations and erosions; it is slightly
different from that of Refs. [3,4], in the sense that for some
operations, the SE B is replaced by its symmetrical B̌, see
Refs. [2,5] for a more detailed discussion.)

The hit-or-miss transform (in brief, HMT) uses a pair
(A, B) of SEs, and looks for all positions where A can be
fitted within a figure X, and B within the background Xc, in
other words it is defined by

X�(A, B) = {p ∈ E | Ap ⊆ X and Bp ⊆ Xc}
= (X�A) ∩ (Xc�B). (1)

One assumes that A ∩ B = ∅, otherwise we have always
X�(A, B) = ∅. One calls A and B, respectively, the fore-
ground and background SE. In practice, one often uses
bounded SEs A and B.

http://www.elsevier.com/locate/patcog
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This operation was devised by Matheron and Serra in
the mid-sixties [3,6], and has been widely used since. It
represents the morphological expression of the notion of
template matching.

The binary HMT is often applied in shape recognition, for
example in document analysis [7–9]. Hardware implemen-
tations with optical correlators have been studied in Refs.
[10–15]. These implementations seem interesting, since
computational time is independent from the size of the SE
used, which is obviously not the case with software ones.

A recurrent issue consists in determining the SEs in order
to cope with the noise and the variability of the patterns to
be recognized.

Zhao and Daut [16] propose a method to match imperfect
shapes in an image. They start with a set of shapes to be
recognized, then smooth each element of this set by some
kind of opening. The boundaries of these smoothed sets are
then used as SEs for the HMT.

Doh et al. [17] discuss the choice of SEs for the recogni-
tion of a class of various objects. They start from two sets: a
set of hit SEs (i.e., SEs that fit the objects to be recognized)
and a set of miss SEs (SEs that fit the background). Their
conclusion is to use a synthetic hit SE composed of the in-
tersection of all hit SEs and a synthetic miss SE composed
of the union of all miss SEs.

Bloomberg et al. [8,9] introduce a blur HMT which con-
sists in dilating both set X and complement Xc. They also
propose to subsample the SEs by imposing a regular grid.
This allows the HMT to be less sensitive to noise while pre-
serving the global characteristics of the shape.

The operator X �→ (X�(A, B))�A has been considered
in Ref. [18] (it was suggested to the author by Heijmans),
and later in Ref. [4, p. 149], where it was called hit-or-miss
opening. It is idempotent and anti-extensive, like an opening,
but not increasing.

Although the HMT is widely used in binary image pro-
cessing, there are only a few authors who considered its
possible extension to grey-level images (we review the main
works in the next section). The main difficulty resides in the
fact that this operator uses both the set X and its comple-
ment Xc, and is thus neither increasing nor decreasing. Let
us explain how to remove Xc from definition (1).

Let A, B ∈ P(E) such that A ⊆ B. Consider the interval

[A, B] = {C ∈ P(E) | A ⊆ C ⊆ B}.
Then we define �[A,B], the interval operator by [A, B], by
setting for every X ∈ P(E):

�[A,B](X) = {p ∈ E | X−p ∈ [A, B]}
= {p ∈ E | Ap ⊆ X ⊆ Bp}. (2)

Heijmans and Serra [19] were the first to consider such an
operation, but they wrote it X (A, B) instead of �[A,B](X).
Clearly �[A,B](X) = X�(A, Bc). Here the inclusion con-
straint A ⊆ B (without which we always get �[A,B](X)=∅)
corresponds to the disjointness condition A ∩ Bc = ∅ of the

corresponding HMT X�(A, Bc). In practice, one usually
chooses A and the complement Bc of B to be bounded.

This variant formulation was fruitful. First it allowed to
give a very short proof of the theorem of Banon and Bar-
rera [20], namely that every translation-invariant operator
is a union of HMTs. More precisely, given a translation-
invariant operator � : P(E) → P(E), Matheron’s kernel
[6] is the set

V(�) = {A ∈ P(E) | 0 ∈ �(A)}, (3)

and indeed Matheron showed that if � is increasing, we have

�(X) =
⋃

A∈V(�)

X�A (4)

for every X ∈ P(E), in other words � is a union of erosions.
Consider now the bi-kernel [19]

W(�) = {(A, B) ∈ P(E)2 | A ⊆ B, [A, B] ⊆ V(�)}, (5)

then an elegant proof in Ref. [19] shows that for every X ∈
P(E) we have

�(X) =
⋃

(A,B)∈W(�)

�[A,B](X), (6)

in other words � is a union of interval operators (equiva-
lently, of HMTs).

However, the main advantage of considering an interval
operator (2) instead of a HMT (1), is that it gave way to the
first theory (by Ronse [18]) of interval operators on grey-
level images and more generally on complete lattices, in
particular the operators �A�[A,B] are part of a very interesting
family of idempotent and anti-extensive operators, called in
Ref. [18] open-over-condensations.

A few years later, Soille [4,21] gave independently another
definition of a HMT for grey-level images. His framework
was restricted to the use of flat SEs and of discrete grey-
levels. However, as we will see in the next section, it can
easily be generalized to non-flat structuring functions and to
images with arbitrary grey-levels (continuous or discrete).
Moreover, he introduced the possibility of constraining the
HMT; as we will see later on, this constraining of the HMT
can also be applied to Ronse’s version.

When it is extended to non-flat SEs, the unconstrained
version of Soille’s HMT has some resemblance with Ronse’s
interval operator [18], and is also very similar to an opera-
tion introduced by Barat et al. [22–24] under the name of
morphological probing.

The authors have successfully applied grey-level HMTs
to the detection of blood vessels in 3D angiographic images
[25–28]. In fact, we used both Ronses and Soille’s uncon-
strained versions, but also some new variants. Therefore we
have felt that it would be useful to make a review of the dif-
ferent grey-level HMTs found in the literature, and to give
a unified theory containing each one as a particular case.
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The paper is organized as follows. In Section 2 we re-
view the various approaches to the grey-level HMT found in
the literature, mainly the ones of Ronse [18], Soille [4,21]
and Barat et al. [22–24]; we generalize Soille’s approach to
arbitrary (not necessarily flat) SEs and arbitrary (not nec-
essarily discrete) grey-levels. We will see that these HMTs
can be better understood by expressing them as grey-level
extensions of the interval operator �[A,B] (2).

In Section 3 we give a unified theory of grey-level interval
operators. Such an operator can be decomposed into two
steps:

(i) a fitting which extracts from a grey-level image and a
pair of structuring functions, a set of pairs (p, t) (p a
point, t a grey-level); we have two versions (following
the approaches of Ronse and Soille), and each one can
optionally be constrained as in Soille’s approach;

(ii) a valuation which constructs from this set of pairs (p, t)

the resulting grey-level image; we have three versions:
a supremal one (following Ronse), an integral one
(following Soille), and a binary one (which produces a
binary image).

This gives thus in theory a set of six unconstrained grey-
level HMTs, and six constrained ones (however, there is
some redundancy in this set).

The Conclusion summarizes our findings and gives some
perspectives for further research. In particular, we have not
extended our theory to the general framework of complete
lattices, nor have we analysed the operators obtained by
composition of the HMT and the dilation by the foreground
SE (both things were done in Ref. [18] for one version of
the HMT).

Part II of this paper [29] will provide a review of our work
on the application of grey-level HMTs to the detection and
enhancement of blood vessels in 3D angiographic images,
but also algorithmic remarks about grey-level HMT, still
valid for more general applications.

2. Existing approaches to the grey-level HMT

We will review the various forms given in the literature for
the grey-level HMT. But let us beforehand recall the basics
from grey-level morphology [1,30].

We consider a space E of points, which can in general
be an arbitrary set. However, in order to define translation-
invariant operators (like the dilation and erosion by a SE),
we need to add and subtract points, so in this case we assume
E to be the digital space Zn or the Euclidean space Rn,
for which the addition and subtraction of vectors are well-
defined.

We have a set T of grey-levels, which is part of the ex-
tended real line R = R ∪ {+∞, −∞}. We require T to be
closed under non-void infimum and supremum operations
(equivalently, T is a topologically closed subset of R); for

example we can take T = R, T = Z = Z ∪ {+∞, −∞},
T = [a, b] (a, b ∈ R, a < b) or T = [a . . . b] = [a, b] ∩ Z
(a, b ∈ Z, a < b). Then T is a complete lattice [1] w.r.t. the
numerical order � . Write 
 and ⊥, respectively, for the
greatest and least elements of T.

Grey-level images are numerical functions E → T , they
are generally written by capital letters F, G, H, . . . The set
T E of such functions is a complete lattice for the compo-
nentwise ordering defined by

F �G ⇐⇒ ∀p ∈ E, F(p)�G(p),

with the componentwise supremum and infimum operations:∨
i∈I

Fi : E → V : p �→ sup
i∈I

Fi(p)

and∧
i∈I

Fi : E → V : p �→ inf
i∈I

Fi(p).

Let us now introduce some notation. Given F, G ∈ T E , we
write G?F (or equivalently, F>G) if there is some h > 0
such that for every p ∈ E we have G(p)�F(p) + h. For
F ∈ T E and p ∈ E, the translate of F by p is the function
Fp : E → T : x �→ F(x − p). The support of a function
F is the set supp(F ) of points of E having grey-level F(p)

strictly above the least value ⊥:

supp(F ) = {p ∈ E | F(p) > ⊥}, (7)

and the dual support of F is the set supp∗(F ) of points of E
having grey-level F(p) strictly below the greatest value 
:

supp∗(F ) = {p ∈ E | F(p) < 
}. (8)

For every t ∈ T , write Ct for the function E → T with
constant value t: ∀p ∈ E, Ct(p) = t . We see in particular
that the least and greatest elements of the lattice T E of
numerical functions are the constant functions C⊥ and C
,
respectively. For any B ⊆ E and t ∈ T , the cylinder of base
B and level t is the function CB,t defined by

∀p ∈ E, CB,t (p) =
{

t if p ∈ B,

⊥ if p /∈ B.
(9)

Note in particular that Ct =CE,t . Also, for h ∈ E and t ∈ T ,
the impulse ih,t is the cylinder C{h},t , thus

∀p ∈ E, ih,t (p) =
{

t if p = h,

⊥ if p �= h.
(10)

For F ∈ T E , we have ih,t �F iff t �F(h), and

F =
∨

{ih,t | h ∈ E, t ∈ T , t �F(h)},
in other words every function is a supremum of the impulses
below it.
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The dual cylinder of base B and level t is the function
C∗

B,t defined by

∀p ∈ E, C∗
B,t (p) =

{
t if p ∈ B,


 if p /∈ B.
(11)

For V, W ∈ T E with V �W , we have the interval [V, W ]=
{F ∈ T E | V �F �W }.

Every increasing operator � : P(E) → P(E) on sets
extends to a flat operator �T : T E → T E on grey-level
images [31]. For every F ∈ T E and t ∈ T we define the
threshold set [1]

Xt(F ) = {p ∈ E | F(p)� t}.
Clearly Xt(F ) is decreasing with respect to t. Now �T is
defined by applying � to each threshold set and stacking the
results. Formally:

�T (F ) =
∨
t∈T

C�(Xt (F )),t , (12)

so that for every point p ∈ E we have

�T (F )(p) =
∨

{t ∈ T | p ∈ �(Xt (F ))}. (13)

In particular, when E=Rn or Zn, the dilation �B and erosion
εB by a SE B extend as follows:

�T
B(F ) =

∨
b∈B

Fb and εT
B(F ) =

∧
b∈B

F−b, (14)

so that for every point p ∈ E we have

�T
B(F )(p) =

∨
b∈B

F(p − b)

and

εT
B(F )(p) =

∧
b∈B

F(p + b). (15)

We will also write F�B and F�B for �T
B(F ) and εT

B(F ),
respectively.

Let us now consider morphological operations with SEs
that are functions instead of sets. Here grey-levels will be
added and subtracted in formulas, thus in order to avoid grey-
level overflow in computations, T must necessarily be un-
bounded (so 
=+∞ and ⊥ =−∞), in fact we assume that
T =R or Z (however, T =aZ={az | z ∈ Z}∪ {+∞, −∞},
where a > 0, is also possible). Let T ′ = T \{+∞, −∞}, the
set of finite grey-levels. We saw above that a function F can
be translated by a point p ∈ E, this is a horizontal trans-
lation; now there is also a vertical translation, namely by a
finite grey-level t ∈ T ′, transforming F into F + t . Combin-
ing both, we get the translation by (p, t), the translate of F
by (p, t) is F(p,t) = Fp + t : x �→ F(x − p) + t . We con-
sider impulses ih,t only for t ∈ T ′. The umbra of a function
F ∈ T E is the set

U(F) = {(h, t) | h ∈ E, t ∈ T ′, t �F(h)}. (16)

Note that for an impulse ih,t , we have ih,t �F iff (h, t) ∈
U(F), and

F =
∨

{ih,t | (h, t) ∈ U(F)}. (17)

For F, G ∈ T E , we can define the Minkowski addition
F�G and subtraction F�G as follows:

F�G =
∨

(h,t)∈U(G)

F(h,t)

and

F�G =
∧

(h,t)∈U(G)

F(−h,−t). (18)

At every point p ∈ E we have

(F�G)(p) = sup
h∈E

(F (p − h) + G(h))

= sup
h∈supp(G)

(F (p − h) + G(h))

and

(F�G)(p) = inf
h∈E

(F (p + h) − G(h))

= inf
h∈supp(G)

(F (p + h) − G(h)).

Since T =R or Z, the terms F(p−h), F(p+h), and G(h) can
have an infinite value, so the expressions F(p − h) + G(h)

and F(p+h)−G(h) can take the form +∞−∞ or −∞+∞,
which are arithmetically undefined; then their evaluation is
achieved by the following rules:

• In the formula for (F�G)(p), we consider that
+∞=∨ T ′ and −∞=∨∅, so +∞−∞=∨t∈T ′

∨
t ′∈∅

(t + t ′) =∨∅ = −∞, in other words expressions of the
form +∞ − ∞ or −∞ + ∞ must be evaluated as −∞.

• Dually, in the formula for (F�G), we consider that
+∞ =∧∅ and −∞ =∧

T ′, so expressions of the form
+∞ − ∞ or −∞ + ∞ must be evaluated as +∞.

We obtain thus the dilation and erosion by G, namely �G :
F �→ F�G and εG : F �→ F�G. These two operations
form an adjunction [1]:

∀F1, F2 ∈ T E, F1�G�F2 ⇐⇒ F1 �F2�G. (19)

Consider the symmetrical Ǧ of G defined by Ǧ(x)=G(−x),
and the grey-level inversion T → T : t �→ −t , which
extends to functions by transforming F into −F : x �→
−F(x). From Eq. (18) is easily seen that

−(F�G) = (−F)�Ǧ

and

−(F�G) = (−F)�Ǧ, (20)

in other words, erosion is the dual under grey-level inversion
of the dilation with the symmetrical structuring function. Let
us define the dual of G as G∗ = −Ǧ : x �→ −G(−x).



B. Naegel et al. / Pattern Recognition 40 (2007) 635–647 639

Taking a set B ∈ P(E) as SE, the flat dilation and erosion
by B seen in Eqs. (14) and (15) are a particular case of
dilation and erosion by a grey-level function, since we have

F�B = F�CB,0 and F�B = F�CB,0. (21)

More generally, for t ∈ T ′, we have

F�CB,t = (F�B) + t

and

F�CB,t = (F�B) − t . (22)

Structuring functions of the form CB,0 are also called flat
SEs.

Grey-level Minkowski operations do not always preserve
the bounds of image grey-levels:

Lemma 1. Let F, G ∈ T E such that F(p) ∈ [a, b] for all
p ∈ E, and let g=supp∈E G(p). Then for all p ∈ E we have
(F�G)(p) ∈ [a+g, b+g] and (F�G)(p) ∈ [a−g, b−g].

Proof. From Eq. (18) we check easily that for any t ∈
T , Ct�G = Ct+g and Ct�G = Ct−g . The fact that
∀p ∈ E, F(p) ∈ [a, b], means that Ca �F �Cb. Hence
we get Ca+g = Ca�G�F�G�Cb�G = Cb+g and
Ca−g = Ca�G�F�G�Cb�G = Cb−g , that is ∀p ∈ E,
(F�G)(p) ∈ [a + g, b + g] and (F�G)(p) ∈ [a − g,

b − g]. �

The next result is fundamental for our analysis:

Proposition 2. Let F, V, W ∈ T E , p ∈ E and t ∈ T ′.
Then:

(i) V(p,t) �F iff (F�V )(p)� t .
(ii) V(p,t)>F iff (F�V )(p) > t .

(iii) F �W(p,t) iff (F�W ∗)(p)� t .
(iv) F>W(p,t) iff (F�W ∗)(p) < t .

Proof. (1) (F�V )(p)� t means i(p,t) �F�V , and by
adjunction (19) this is equivalent to i(p,t)�V �F ; but
i(p,t)�V = Vp,t , so the result follows.

(2) V(p,t)>F iff there is some h > 0 with V(p,t) �F − h;
by item 1, this is equivalent to ((F − h)�V )(p)� t , in
other words (F�V )(p) − h� t for some h > 0, that is
(F�V )(p) > t .

(3) By grey-level inversion, F �W(p,t) iff −F � −
(W(p,t)) = (−W)(p,−t). Applying item 1, this is equiv-
alent to ((−F)�(−W))(p)� − t . Inverting again,
this means −((−F)�(−W))(p)� t ; by duality (20),
−((−F)�(−W)) = −(−F)�(−W)∨ = F�W ∗, and the
result follows.

(4) F>W(p,t) iff there is some h > 0 with F +h�W(p,t);
by item 3, this is equivalent to ((F + h)�W ∗))(p)� t , in
other words (F�W ∗)(p) + h� t for some h > 0, that is
(F�W ∗)(p) < t . �

Let us apply this result to the case where (F�V )(p) or
(F�W ∗)(p) has an infinite value:

Corollary 3. Let F, V, W ∈ T E and p ∈ E. Then:

(i) (F�V )(p) = +∞ iff (∀t ∈ T ′, V(p,t) �F) iff∨
t∈T ′ V(p,t) �F .

(ii) (F�V )(p) = −∞ iff (∀t ∈ T ′, V(p,t)�F).
(iii) (F�W ∗)(p) = +∞ iff (∀t ∈ T ′, F�W(p,t)).
(iv) (F�W ∗)(p) = −∞ iff (∀t ∈ T ′, F �W(p,t)) iff

F �
∧

t∈T ′ W(p,t).

Proof. Items 1 and 2 follow from item 1 of Proposition 2,
and the fact that +∞ is the only value � t for all t ∈ T ′,
while −∞ is the only one �t for all t ∈ T ′. Items 3 and 4
follow from item 3 of Proposition 2, and the fact that +∞
is the only value �t for all t ∈ T ′, while −∞ is the only
one � t for all t ∈ T ′. �

Note that if F has all its values in an interval [t0, t1] ⊂ R,
and supp∈EV (p) = v ∈ R and infp∈E W(p) = w ∈ R, then
by Lemma 1, F�V and F�W ∗ will have all their values in
the intervals [t0 −v, t1 −v] and [t0 −w, t1 −w], respectively,
hence infinite values do not occur in such a case.

2.1. Ronse’s supremal interval operator

The basic ideas in Ronse’s approach [18] are to start from
the interval operator (2) instead of the HMT, and to consider
the fact that a grey-level image is a supremum of impulses
(17) as the parallel of the fact that a set is a union of single-
tons. We still assume that T = Z or R. We define thus for
V, W ∈ T E such that V �W the supremal interval operator
�S
[V,W ] by setting for every F ∈ T E :

�S
[V,W ](F )

=
∨

{i(p,t) | (p, t) ∈ E × T ′, F(−p,−t) ∈ [V, W ]}
=
∨

{i(p,t) | (p, t) ∈ E × T ′, V(p,t) �F �W(p,t)}. (23)

Note that following Ref. [19], Ronse wrote F (V, W) for
�S
[V,W ](F ). By Proposition 2, for t ∈ T ′, V(p,t) �F �W(p,t)

iff (F�W ∗)(p)� t �(F�V )(p). Hence for every p ∈ E,

�S
[V,W ](F )(p) = sup{t ∈ T ′ | V(p,t) �F �W(p,t)}.

Now for a�b, we have b = sup{t ∈ T ′ | a� t �b}, except
if a = b = +∞, in which case we get the empty supremum,
that is −∞. We obtain thus:

�S
[V,W ](F )(p)

=
{

(F�V )(p) if (F�V )(p)�(F�W ∗)(p)

�= +∞,

−∞ otherwise.
(24)

Note that if (F�V )(p) = (F�W ∗)(p) = +∞, by
Corollary 3 we have F�W(p,t) for all t ∈ T ′, so that
�S
[V,W ](F )(p) = −∞, and not +∞.
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AB

V

W

E

T

a

b

B

Fig. 1. Top: The two structuring elements A (in black) and B (in grey).
Bottom: the cylinder V = CA,a (in black) has support A and the dual
cylinder W = C∗

B,b
(in grey) has dual support B.

In practice, one usually chooses V with bounded support,
and W with bounded dual support (i.e., W ∗ has bounded
support). For example, we can take V =CA,a and W =C∗

B,b,
see Fig. 1; then W ∗ = C

B̌,−b
and by Eq. (22), F�V =

(F�A) − a and F�W ∗ = (F�B̌) − b, so that Eq. (24)
gives here:

�S
[V,W ](F )(p)

=
⎧⎨
⎩

(F�A)(p) − a if (F�A)(p)

�(F�B̌)(p) + a−b �= + ∞,

−∞ otherwise.

For A, B and a fixed, �S
[V,W ](F ) increases with b, as more

and more points will get the value (F�A)(p) − a instead
of −∞. We illustrate this in Fig. 2.

The operator �V �S
[V,W ] maps F ∈ T E on∨

{V(p,t) | (p, t) ∈ E × T ′, V(p,t) �F �W(p,t)}.
It is idempotent and anti-extensive like an opening [18], but
not increasing. It is part of a family of operators called open-
over-condensations.

In Ref. [18] the theorem of Banon–Barrera, Refs. (5) and
(6) was also extended to grey-level images (and more gener-
ally, in a complete lattice where Minkowski operations are
properly defined [2]): every translation-invariant operator is
a supremum of supremal interval operators.

2.2. Soille’s integral HMT

Soille [4,21] assumes discrete grey-levels (an interval
in Z) and flat SEs. If we return to formula (13) for the

0
−1

T

E

A

B B

Fig. 2. Here E = Z and T = Z. On top we show the two structuring
elements A and B (the origin being the left pixel of A), with the associated
levels a = 0 and b = −1 (thus V = CA,0 and W = C∗

B,−1). Below we

show a function F, and in grey we have �S[V,W ](F ), forming three peaks.
The left peak would disappear for b� −2, and the right one for b� −3.

construction of the flat operator �T from an increasing set
operator �, the set of all t ∈ T such that p ∈ � (Xt (F )) is
a closed interval [⊥, b], where b gives the value �T (F )(p)

(NB: this holds because we have discrete grey-levels; oth-
erwise we could have the half-open interval [⊥, b[). This is
no longer valid if � is not increasing; in particular, if � is a
HMT, we will see below that it is an interval, but generally
not containing ⊥. The idea in Refs. [4,21] is to take as value
of the grey-level HMT the length of that interval.

Let A, B ∈ P(E) be disjoint SEs, and consider the finite
grey-level set T̂ = [t0 . . . t1] ⊂ Z. Soille’s (unconstrained)
HMT on grey-level images, written UHMTA,B , is defined
[4, Eq. (5.3), p. 143] by setting for every F ∈ T̂ E and p ∈ E:

UHMTA,B(F )(p)

= card{t ∈ T | p ∈ Xt(F )�(A, B)}. (25)

Note that the resulting grey-level values will be non-
negative, in fact they belong to the interval [0, t1 − t0]. We
illustrate it in Fig. 3 (to be compared with Fig. 2).

In order to analyse Soille’s operator, we embed the grey-
level set T̂ into Z:

Proposition 4. Let A, B ∈ P(E), T =Z and T̂ =[t0 . . . t1] ⊂
Z. For every t ∈ T , F ∈ T̂ E and p ∈ E, we have p ∈
Xt(F )�(A, B) iff

(CA,0)(p,t) = CAp,t �F>C∗
Bp,t = (C∗

B,0)(p,t),

iff (F�B̌)(p) < t �(F�A)(p).

Proof. Recall that q ∈ Xt(F ) iff F(q)� t . The condition
p ∈ Xt(F )�(A, B) means that Ap ⊆ Xt(F ) and Bp ⊆
Xt(F )c. The first part Ap ⊆ Xt(F ) translates as: for every
q ∈ Ap, F(q)� t ; on the other hand, for q /∈ Ap, we have
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AB

T

E

B

Fig. 3. Here E = Z and T = [0 . . . t1] ⊂ Z. On top we show the two
structuring elements A and B (the origin being the left pixel of A). Below
we show a function F (the same as in Fig. 2); the dots indicate the pairs
(p, t) with p ∈ Xt (F )�(A, B), and in grey we have UHMTA,B(F ).

always F(q)� − ∞; hence Ap ⊆ Xt(F ) ⇔ CAp,t �F .
The second part Bp ⊆ Xt(F )c translates as: for every q ∈
Bp, F(q) < t , that is F(q) + 1� t ; on the other hand, for
q /∈ Bp, we have always F(q) + 1� t1 + 1� + ∞; hence
Bp ⊆ Xt(F )c ⇔ F>C∗

Bp,t . Therefore p ∈ Xt(F )�(A, B)

iff CAp,t �F>C∗
Bp,t . Now clearly CAp,t = (CA,0)(p,t) and

C∗
Bp,t =(C∗

B,0)(p,t). Applying Proposition 2, and the fact that

(C∗
B,0)

∗ = C
B̌,0, the condition (CA,0)(p,t) �F>(C∗

B,0)(p,t)

is equivalent to (F�C
B̌,0)(p) < t �(F�CA,0)(p), in other

words by (22), (F�B̌)(p) < t �(F�A)(p). �

We get thus:

UHMTA,B(F )(p)

= max{(F�A)(p) − (F�B̌)(p), 0}, (26)

in other words [4, Eq. (5.4), p. 143] it has value

(F�A)(p) − (F�B̌)(p)

if (F�A)(p) > (F�B̌)(p), and 0 otherwise.
From Proposition 4, we see that Soille’s grey-level HMT

is not restricted to flat SEs; the two sets A and B corre-
spond implicitly to the cylinder CA,0 and the dual cylinder
C∗

B,0. Also, it does not require discrete grey-levels; we have
simply to measure at each point p the half-open interval
](F�B̌)(p), (F�A)(p)]. Now the Lebesgue measure in R
and the discrete measure (cardinal) in Z, when applied to a
half-open interval ]a, b], both give its length b − a.

Assume thus T = Z or R. Let mes be the measure used
on T ′ (Lebesgue’s for T ′ = R and discrete for T ′ = Z). For
V, W ∈ T E such that V �W , we define the integral interval
operator �I[V,W ] by setting for every F ∈ T E and p ∈ E:

�I[V,W ](F )(p)

= mes({t ∈ T ′ | V(p,t) �F>W(p,t)})
= mes({t ∈ T ′ | (F�W ∗)(p) < t �(F�V )(p)})
= max{(F�V )(p) − (F�W ∗)(p), 0}. (27)

0 1 2 3 4 5 6

0 1 2 3 4 5 6 0 1 2 3 4 5 6

0 1 2 3 4 5 6

0 1 2 3 4 5 6

(b)

(c)

(a)

(d)

(e)

Fig. 4. (a) The function F; we have F�V = F (with
V = C{0},0). (b) The function F ′ = F�W∗ (with W = C∗{−1},0)

is the translate of F by +1. (c) G = �I[V,W ](F ) is given by

G(p) = max{F(p) − F ′(p), 0}; we have G = �V (G) = �V �I[V,W ](F ),

and G = G�V . (d) G′ = G�W∗ is the translate of G by +1. (e)
H = �I[V,W ](G) is given by H(p) = max{G(p) − G′(p), 0}; we have

H = �V (H) = �V �I[V,W ](G) = (�V �I[V,W ])2(F ).

In the third line of the equation, an expression of the form
+∞−∞ or −∞+∞ for (F�V )(p)− (F�W ∗)(p) must
lead to the value 0. Indeed, if (F�V )(p)= (F�W ∗)(p)=
+∞, Corollary 3 gives F�W(p,t) for all t ∈ T ′, while
if (F�V )(p) = (F�W ∗)(p) = −∞, Corollary 3 gives
V(p,t)�F for all t ∈ T ′; in both cases the second line of the
equation gives mes(∅) = 0.

We can take, as above with Ronse’s operator, V = CA,a

and W = C∗
B,b. For A, B and a fixed, increasing b increases

�I[V,W ](F ) by the same amount on all points having non-
zero value. For flat SEs (V =CA,0 and W =C∗

B,0), we obtain
Soille’s original operator UHMTA,B .

As can be seen with Figs. 2 and 3, the two interval opera-
tors �S

[V,W ] and �I[V,W ] can be used to detect in an image all
locations p where the grey-level on Ap is higher than that
on Bp by at least some height h: here we take V = CA,a

and W = C∗
B,b with h = a − b. While �S

[V,W ] behaves as the

erosion εV at such locations, �I[V,W ] measures the effective
difference between the grey-levels in Ap and Bp.

Note that, contrarily to �V �S
[V,W ], the operator �V �I[V,W ] is

not necessarily idempotent. Take for example E=Z, the flat
SEs A={0} and B={−1} (thus V =C{0},0 and W =C∗{−1},0).
Then �V = εV is the identity, while �W ∗ is the translation by
+1. We illustrate in Fig. 4 the construction of �V �I[V,W ](F )

and (�V �I[V,W ])
2(F ) for F given by F(z) = z for z = 1 . . . 5

and F(z) = 0 otherwise.
Soille introduced a constrained variant CMHTA,B of his

HMT. Here we assume that one of the two SEs A and
B contains the origin o. If o ∈ A, in Eq. (25) we re-
quire that p ∈ Xt(F )�(A, B) for t = F(p), which means
that (F�B̌)(p) < F(p)�(F�A)(p); if the requirement
is not met, the result is 0. As o ∈ A, we always have
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(F�A)(p)�F(p), hence we get

CHMTA,B(F )(p)

= card{t ∈ T | (F�B̌)(p) < t �(F�A)(p) = F(p)},
in other words it is equal to⎧⎨
⎩

(F�A)(p) − (F�B̌)(p) if F(p) = (F�A)(p)

> (F�B̌)(p),

0 otherwise.

If o ∈ B, in Eq. (25) we require that p ∈ Xt(F )�(A, B)

for t = F(p) + 1, which means that (F�B̌)(p) < F(p) +
1�(F�A)(p) that is (F�B̌)(p)�F(p) < (F�A)(p),
and the result is 0 if this condition fails. As o ∈ B, we
always have (F�B̌)(p)�F(p), so we get

CHMTA,B(F )(p)

= card{t ∈ T | F(p) = (F�B̌)(p) < t �(F�A)(p)},
in other words it is equal to⎧⎨
⎩

(F�A)(p) − (F�B̌)(p) if (F�A)(p)

> (F�B̌)(p) = F(p),

0 otherwise.

In order to generalize this to arbitrary structuring func-
tions, we can forget the requirement that A or B contains the
origin, but keep only the constraint that F(p)= (F�A)(p)

or F(p) = (F�B̌)(p). Thus we obtain, for V, W ∈ T E

such that V �W , the constrained integral interval operator
�C
[V,W ], which gives for every F ∈ T E and p ∈ E:

�C
[V,W ](F )(p)

=
{�I[V,W ](F )(p) if F(p) = (F�V )(p)

or F(p) = (F�W ∗)(p),

0 otherwise.
(28)

2.3. Barat’s morphological probing

Barat et al. [22–24] introduced under the name of mor-
phological probing an operation which has some similarity
to the integral grey-level interval operator �I[V,W ]. We con-

sider again two structuring functions V, W ∈ T E ; the idea
is to measure at each point p ∈ E two numerical values
tv and tw defined as follows: tv is the greatest t such that
V(p,t) �F , while tw is the least t such that F �W(p,t); then
one associates to p the value tw − tv .

From Proposition 2 and Corollary 3, we have

(F�V )(p) = sup{t ∈ T ′ | V(p,t) �F }
and

(F�W ∗)(p) = inf{t ∈ T ′ | F �W(p,t)}. (29)

Moreover:

• if (F�V )(p) �= ±∞, (F�V )(p) is the greatest t ∈ T ′
such that V(p,t) �F ;

tv

tw

p

p

WW

V V

Fig. 5. Left: In morphological probing, we look for the least interval
[tv, tw] such that V(p,tv) �F and F �W(p,tw ). Right: In the integral in-
terval operator, we look for the greatest interval {t | V(p,t) �F>W(p,t)}.

• if (F�W ∗)(p) �= ±∞, (F�W ∗)(p) is the least t ∈ T ′
such that F �W(p,t).

Thus Barat’s morphological probing operator MP V,W is
given by

MP V,W (F )(p) = (F�W ∗)(p) − (F�V )(p) (30)

for every F ∈ T E and p ∈ E. We have �I[V,W ](F )(p) =
max{−MP V,W (F )(p), 0} by comparison to Eq. (27). We
illustrate in Fig. 5 the difference between morphological
probing and the integral grey-level interval operator.

Contrarily to the two interval operators seen above, here
we do not require on the structuring functions V and W that
V �W , but rather that we always have F�W ∗ �F�V . For
example consider two functions Gv, Gw defined on a support
S, such that −∞ < Gw(p)�Gv(p) <+∞ for all p ∈ S, and
let V, W be defined by V (p) = Gv(p) and W(p) = Gw(p)

for p ∈ S, while V (p) = −∞ and W(p) = +∞ for p /∈ S.
Here we will have

(F�W ∗)(p) = sup
h∈S

(F (p + h) − Gw(h))

� inf
h∈S

(F (p + h) − Gv(h))

= (F�V )(p).

In Refs. [22–24] the particular case where Gv = Gw was
considered. For instance, if Gv = Gw has constant value 0
on S, we get V = CS,0 and W = C∗

S,0, as in the left image
in Fig. 5.

2.4. Other works

Khosravi and Schafer [32] use a single structuring func-
tion V and define a grey-level HMT on F as the arithmetical
sum [F�V ]+[(−F)�(−V )]; by duality (20), this is equal
to [F�V ] − [F�V ∗]. This is thus the same as �I[V,V ], ex-
cept that negative values are not changed into 0.
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Schaefer and Casasent [13] use two structuring functions
V and W, and define a grey-level HMT on F as the meet
[F�V ] ∧ [(−F)�W ] (however, they use a non-standard
notation for expressing this).

Raducanu and Graña [33] compare the grey-level HMT
(GHMT) defined by Khosravi and Schafer [32] with an op-
erator called the level set HMT (LSHMT). This operator
consists in applying a binary HMT to the successive thresh-
olds of a function F and of a structuring function G, and
keep the supremum of all results:

F�G = sup{t ∈ T | p ∈ Xt(F )�(Xt (G), Xt (G)c)}.

3. Unified theory

From the two interval operators described in Sections 2.1
and 2.2, we see that both involve two steps: first a fitting
which associates to an image F a set of pairs (p, t) ∈ E×T ′,
for which the translates V(p,t) and W(p,t) have some relation
to F; it can eventually be associated to the operation of
constraining; second a valuation which derives from this set
of (p, t) a new grey-level image.

Assume V, W ∈ T E with V �W . The fitting used in
Ronse’s supremal interval operator will be written HV,W , it
is defined by

HV,W (F ) = {(p, t) ∈ E × T ′ | V(p,t) �F �W(p,t)}. (31)

Another one was used in Soille’s integral interval operator,
we write it KV,W , it is defined by

KV,W (F ) = {(p, t) ∈ E × T ′ | V(p,t) �F>W(p,t)}. (32)

Next, the constraining is the operator CV,W : T E →
P(E × T ′), associating to a function F : E → T the set

CV,W (F ) = {p ∈ E | F(p) = (F�V )(p)

or F(p) = (F�W ∗)(p)} × T ′. (33)

We get thus the two constrained fittings HC
V,W and KC

V,W

defined by

HC
V,W (F ) = HV,W (F ) ∩ CV,W (F )

and

KC
V,W (F ) = KV,W (F ) ∩ CV,W (F ). (34)

The valuation must associate to any subset of E × T ′ a
function E → T . The one used in Ronse’s supremal interval
operator is the upper envelope operator S, associating to any
Y ∈ P(E × T ′) the function

S(Y ) : E → T : p �→ sup{t ∈ T ′ | (p, t) ∈ Y }. (35)

Note that S is a dilation in the algebraic sense [1], that is

S

(⋃
i∈I

Yi

)
=
∨
i∈I

S(Yi); (36)

the adjoint erosion [1] is the map associating to a function
F its umbra U(F), see Eq. (16).

Soille’s integral interval operator uses another one, written
I, associating to any Y ∈ P(E × T ′) the function

I (Y ) : E → T : p �→ mes({t ∈ T ′ | (p, t) ∈ Y }), (37)

where mes means the measure (Lebesgue’s for T ′ = R and
discrete for T ′ = Z). Following Ref. [19], for a sequence
Xn of sets and a set X, we write Xn ↑ X to mean that the
sequence Xn (n ∈ N) is increasing (i.e., Xn ⊆ Xn+1 for all
n ∈ N) and converges to X (i.e., X = ⋃

n∈NXn); similarly
for a numerical sequence rn, rn ↑ r means that the sequence
is increasing and converges to r (i.e., rn �rn+1 for all n ∈
N, and r = supn∈N rn). A well-known property of measures
is that for a sequence Xn of measurable sets, Xn ↑ X �
⇒ mes(Xn) ↑ mes(X) (see Theorem 1.8(c) on p. 25 of
Ref. [34]). We have thus for a sequence Yn (n ∈ N) in E×T ′:

Yn ↑ Y �⇒ I (Yn) ↑ I (Y ), (38)

which is weaker than being a dilation, as in Eq. (36).
We introduce a third valuation, the binary one B, which

associates to any Y ∈ P(E × T ′) the set

B(Y ) = {p ∈ E | ∃t ∈ T ′, (p, t) ∈ Y }. (39)

We can represent it as a function with value +∞ on B(Y )

and −∞ elsewhere, this gives thus the binary mask valuation
M associating to Y the function

M(Y) : E → T :

p �→
{+∞ if ∃t ∈ T ′, (p, t) ∈ Y,

−∞ otherwise.
(40)

Note that B and M are also dilations in the algebraic sense,
that is

B

(⋃
i∈I

Yi

)
=
⋃
i∈I

B(Yi)

and

M

(⋃
i∈I

Yi

)
=
∨
i∈I

M(Yi); (41)

their adjoint erosions are, respectively; for B the map
P(E) → P(E × T ′) : X �→ X × T ′, and for M the map
{−∞, +∞}E → P(E ×T ′) : F �→ supp(F )×T ′ =U(F).

Composing one of HV,W or KV,W , optionally constrained
by intersection with CV,W , by one of S, I and M, we ob-
tain an interval operator. We have thus six unconstrained
operators SHV,W , SKV,W , IHV,W , IKV,W , MHV,W and
MKV,W , as well as six constrained ones, SHC

V,W , SKC
V,W ,

IHC
V,W , IKC

V,W , MHC
V,W and MKC

V,W . We see then that
Ronse’s supremal interval operator is SHV,W , Soille’s un-
constrained integral interval operator is IKV,W , while the
constrained one is IKC

V,W . In Refs. [27,28] we used a union
of BHV,W for various choices of pairs (V , W), as a form of
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segmentation of tubular shapes, while in Refs. [25,26] we
associated to an image F the image

F ∧ MKV,W (F ):

p �→
{

F(p) if ∃t ∈ T ′, V(p,t) �F>W(p,t),

−∞ otherwise,

which represents tubular shapes with their original grey-
level.

Let us compare, for each valuation S, I or M, the interval
operators according to the two fitting operators HV,W (31)
and KV,W (32). The relation between the two fittings differs
with the choice of Z or R for T:

T = Z :
HV,W = KV,W+1 and KV,W = HV,W−1;

T = R :
HV,W = ⋂

ε>0
KV,W+ε and KV,W = ⋃

ε>0
HV,W−ε.

(42)

Since intersection with the set CV,W distributes union and
intersection, by Eq. (33) these equalities remain valid for
constrained fittings, in other words if we replace H by HC

and K by KC in each expression.
For T = Z, each one of the six interval operators using

HV,W (with valuation S, I or M, with or without constrain-
ing) is equal to the corresponding operator with KV,W+1.
Consider now the case where T = R. As S is a dilation (36),
by Eq. (42) we get

T = R : SKV,W =
∨
ε>0

SHV,W−ε, (43)

and similarly for the constrained versions SKC
V,W and

SHC
V,W−ε. For the integral valuation I, the fact that a closed

interval [a, b] has the same Lebesgue measure as the corre-
sponding half-open interval ]a, b] (namely, its length b−a),
we get

mes({t ∈ T ′ | (F�W ∗)(p) < t �(F�V )(p)})
= max{(F�V )(p) − (F�W ∗)(p), 0}
= mes({t ∈ T ′ | (F�W ∗)(p)� t �(F�V )(p)}),

so that for T = R, IKV,W = IHV,W and IKC
V,W = IHC

V,W

(but this is not true for T = Z, where IKV,W (F )(p) =
max{IHV,W (F )(p)−1, 0}). Finally, as B and M are dilations
(41), we get

T = R : and
BKV,W = ⋃

ε>0
BHV,W−ε

MKV,W = ∨
ε>0

MHV,W−ε,
(44)

and similarly for the constrained versions.

3.1. Bounded grey-levels

As we did not make any restriction on structuring func-
tions, we presented our operators in the framework of un-
bounded grey-levels, namely T = Z or R, for which it is

guaranteed that the result of an operator will not produce
a grey-level overflow. In practical situations, one takes as
grey-level set a finite interval T̂ = [t0, t1] ⊂ Z, and we have
to see how the theory adapts to this situation.

The first problem is to ascertain that the results of our
operations will have their grey-levels in the interval [t0, t1].
If V and W are flat (V = CA,0 and W = C∗

B,0), or more
generally if

sup
h∈E

V (h) = inf
h∈E

W(h) = 0,

then by Lemma 1, F�V and F�W ∗ have their grey-levels
in [t0, t1]. This shows that V and W are not necessarily in
T̂ E . In other words, the space of grey-level images is often
different from that of structuring functions.

If we use Soille’s approach, hence the integral valuation
I, as we get only non-negative values in the result, we must
assume that t0 = 0, so [t0, t1] ⊂ N.

With Ronse’s approach, and the supremal valuation, we
use the lattice-theoretical supremum operation. Now in T̂ =
[t0, t1], all suprema and infima are the same as in Z and R,
except the empty ones: sup ∅= ⊥ gives −∞ in Z and R,
but t0 in [t0, t1], while inf ∅=
 gives +∞ in Z and R, but
t1 in [t0, t1]; thus the resulting value −∞ in Eq. (24) or in
an empty supremum returned by S, must be set to t0 instead
of −∞.

Note also that the special interpretation of the case
(F�V )(p) = (F�W ∗)(p) = +∞ in Eq. (24), and of
the case (F�V )(p) = (F�W ∗)(p) = ±∞ in Eq. (27),
which arose because ±∞ /∈ T ′, does not apply here for
(F�V )(p) = (F�W ∗)(p) = t1 or t0.

Finally, in the binary mask valuation M, the resulting val-
ues +∞ and −∞ should be replaced by t1 and t0.

We have thus the following guidelines for translating
our theory to the case of an arbitrary complete lattice T
of numerical values (with greatest element 
 and least
element ⊥):

(i) Choose the structuring functions V, W in such a way
that the results of the interval operators will have their
grey-levels in T (no overflow); in particular V and W do
not necessarily have their values in T.

(ii) Let T ′ =T ∩ R, the set of finite values of T. All special
cases given above for (F�V )(p) or (F�W ∗)(p) =
+∞ or −∞ do not apply to 
 and ⊥ when the latter
are finite.

(iii) An empty supremum (in the supremal approach) must
be set to ⊥ instead of −∞. The values +∞ and −∞
in the binary mask valuation M must be replaced by 

and ⊥.

We illustrate in Fig. 6 the application of the three uncon-
strained interval operators with fitting K in the case of
bounded non-negative integer grey-levels.

It is interesting to see what happens for binary im-
ages, that is for T = {0, 1}. Taking two disjoint SEs A, B,
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B B

T

E(a)

B B

T

E(b)

B B

T

E(c)

A

A

A

Fig. 6. Here E = Z and T = [0 · · · t1] ⊂ N. We use flat structuring
elements A and B (the origin being the left pixel of A), setting V = CA,0
and W = C∗

B,0. From top to bottom, we show SKV,W (F ), IKV,W (F )

and MKV,W (F), as they are computed in the framework of bounded
grey-levels; each time the result is given with F shown dashed.

the cylinder V =CA,0 and dual cylinder W =C∗
B,0, then the

three unconstrained and three constrained interval operators
using KV,W (namely, SKV,W , IKV,W , MKV,W , SKC

V,W ,

IKC
V,W and MKC

V,W ) are all equal; in fact for F : E →
{0, 1}, SKV,W (F ) (or anyone of the five others applied to
F) has value 1 on all points p ∈ E where (F�A)(p) =
1 and (F�B̌)(p) = 0, and value 0 on other points. Now
every subset X of E corresponds to its characteristic function
having value 1 on X and 0 on Xc; thus if F is the characteristic
function of X, then SKV,W (F ) is the characteristic function
of (X�A)\(X�B̌) = X�(A, B). To summarize, all six
interval operators with KV,W are equal, and correspond to
the original HMT by (A, B) for sets (1).

4. Conclusion

HMT have proved to be very useful in binary image pro-
cessing. However, they have seldom been considered in the
case of grey-level images, the greatest obstacle being the dif-
ficulty to extend this non-increasing operator to grey-level
images. This contribution provides a comprehensive theory
of the various forms of HMTs for grey-level images while
generalizing the previous approaches [4,18,21] and the vari-
ant of morphological probing [22–24].

Applications of morphological probing were given in
Ref. [22–24,35,36]. Several applications of the grey-level
HMT have been given in Ref. [4]. In Part II of this paper
[29] we will present some applications of the grey-level
HMT in the specific case of analysing 3D angiographic
image (i.e., medical images visualizing vessels) [25–28].
This should convince the reader of its wide applicability in
the field of grey-level image processing.

In the same way as the composition of dilation and ero-
sion leads to opening and closing, it would be interesting to
analyse the properties of the operators obtained by compo-
sition of an interval operator and the dilation by the first SE.
For example �V �S

[V,W ] is idempotent, but not �V �I[V,W ].
Also, a complete theory of interval operators in a complete

lattice still remains to be done. Some steps in that direction
were made in Ref. [18]. Let us give a further pointer. We
consider a complete lattice L with a sup-generating family
S, that is

∀X ∈ L, X =
∨

{s ∈ S | s�X}

(say, for L=P(E), S consists of all singletons, for L=T E ,
S is the set of impulses). Given two algebraic dilations �, �′
such that ���′, we define the interval operator �[�,�′] by

�[�,�′](X) =
∨

{s ∈ S | �(s)�X��′(s)}.
Using the tools of Ref. [18], it can be shown that ��[�,�′]
is idempotent. It would be interesting to see under which
conditions an arbitrary operator on L is a supremum of
interval operators �[�,�′]. This topic will be the subject of a
future paper.
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