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Abstract— Epithelial cells are present in many different
organs and are essential for physiology. Understanding the
molecular mechanisms via which cell-cell contacts are stabilised
has important implications for a variety of diseases and cancers.
To elaborate on such studies, we develop an automatic approach
to cell segmentation based on a simple but effective combination
of well-established image filters, morphological operations and
watershed segmentation. Aiming at preserving the localisation
of the different cell structures, we are able to extract nuclei,
cell walls and cell-cell contacts with high accuracy. These
turn out to be important for masking the image readouts
of cadherin receptors and actin reorganisation to distinguish
between junctional and cytoplasmic cell phenotypes, which
makes the proposed approach well-suited for image-based
high-throughput RNAi screens. Although we focus on epithelial
cells, our approach has general applicability to other cell-based
screens in confocal microscopy.

Index Terms— Cell segmentation, epithelial cells, high-content,
high-throughput screening, biological image analysis

I. INTRODUCTION

Image-based RNA interference (RNAi) screening has
become a widely used technique to knock-down targeted
genes to analyse their effect on specific cellular functions.
The identification of phenotypes corresponding to distinct
phases of the cell cycle in cells of different health status is
the first step to a better understanding of cellular function
in disease and in response to treatment. Large-scale high-
throughput, high-content screens produce thousands of images
and time-lapse videos capturing particular instants of these
cellular processes. Recent studies have emphasised the need
of robust and efficient computational tools to analyse this
overwhelming amount of data, which is the real bottleneck in
terms of data interpretation [1], [2], [3].

We are interested in studying the biological processes that
regulate cell-cell adhesion signalling. Cell-cell adhesion is
essential for the life of many different cell types and for
their organisation into higher ordered structures (tissues and
organs). Epithelial cells attach strongly to neighbouring cells
via specialised adhesive molecules. Sheets of tightly packed
epithelial cells play a key role in absorption, secretion and
as protective layers. Perturbation of their ability to interact
tightly is found in different pathologies such as detachment
of malignant tumour cells or pathogen infection [4], [5].
One of the master regulators of epithelial adhesion are
members of the cadherin family of receptors. Establishment
of E-cadherin cell-cell contacts is a multifactorial event;
signalling and structural actin-binding proteins contribute

Corresponding author: Luis Pizarro, email: luis.pizarro@imperial.ac.uk.

to receptor clustering and stabilisation at adhesive sites.
Clearly, disruption of actin cytoskeleton severely prevents
stable cell-cell adhesion, indicating the important role of
cytoskeletal attachment for junction morphology and function.
RNAi screens have successfully mapped important regulators
of cell attachment to substratum [6], [7] and potential
diagnostic tools for diseases and cancer [8]. Yet, in spite of
many previous studies, a comprehensive knowledge of the
molecules and processes required for stable cadherin adhesion
and junction morphology is not available.

Towards a better understanding of the adhesion properties of
epithelial cells, we performed a RNAi actin screen to identify
specific actin-binding proteins required for assembly of cell-
cell contacts and actin reorganisation. The screen produced
thousands of images for about 400 proteins considered in
our study. In the following, we will consider (R,G,B) =
(IHECD1, IACTIN , IDAPI) image composites like the one
shown in Figure 1. To investigate the way epithelial cells attach
to one another, it is essential to rely on an accurate image
segmentation of the constituent parts of each cell (nucleus,
cytoplasm and membrane) so as to identify those proteins
whose depletion by RNAi perturbed levels of E-cadherin
or F-actin at junctions or in the cytoplasm. As it can be
noted in Figure 1, this is not a straightforward task since
RNAi depletion causes various cell distortions that need to
be quantified, making any automatic segmentation attempt
extremely challenging. The main challenges for automated
analysis that we observed in the acquired images are their
low signal-to-noise ratio (SNR), broken cell-cell contacts and
multiple cell overlaps.

In this paper we propose an algorithmic pipeline for the
automatic segmentation of epithelial cells that is well-suited
for high-content, high-throughput RNAi screens. Our method
is able to segment most cells under these challenging
conditions. It is based on a simple but effective combination
of well-established filters, morphological operations and
watershed segmentation. We are specially keen on segmenting
three types of cell structures: nuclei, cell walls and cell-cell
contacts. That way, we can aim at distinguishing different
actin-binding proteins by their image readouts.

The rest of the paper is organised as follows: Some
related work on cell segmentation is reported in Section II.
Our proposed approach is presented in detail in Section III.
Section IV demonstrates the suitability of our approach to
correctly segment junctional and cytoplasmic structures, which
allows for the characterisation of different proteins. Finally,
we discuss our contributions and sketch some future work in
Section V.
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Fig. 1. (a) image composite (R,G,B) = (IHECD1, IACTIN , IDAPI); (b), (c) and (d) display zoomed-up images of each channel, respectively.

II. RELATED WORK ON CELL SEGMENTATION

From the abundant literature on cell segmentation, here we
briefly report on two recent and competing methods:

A common approach to cell segmentation is to begin by
thresholding the nuclei and then propagating the obtained
seeds to define the cytoplasm. Jones et al. [9] proposed
a Voronoi-based segmentation approach that approximates
the Voronoi regions of each seed on a manifold with a
metric that moves pixels closer depending on the similarity
of their surrounds. This method has become very popular
and it has been implemented in CellProfiler [10] and in
Bioconductor [11].

The method proposed by Yan et al. [12] is based first on a
segmentation of the nuclei with the following pipeline: Otsu
thresholding, distance transform and watershed on the distance
transform. Then, for each nucleus an active contour is fitted
to the cell boundaries by minimising an energy functional that
describes both the repulsion between neighbouring cells and
the competition for segmenting pixels. The authors compared
their method to the Voronoi-based approach mentioned above,
obtaining about 10% better F-score. Nevertheless, they did not
provide the same seeds to both methods. They run a separate
nuclei segmentation, thus blaming the competing method for
over-segmenting the cells. Later in our experiment we also
compare our approach against Jones et al.’s method, but we
attempt doing it as fairly as possible.

There exist other methods particularly focused on nuclei
segmentation [13], [14] and cytoplasm segmentation [15].

III. PROPOSED SEGMENTATION APPROACH

Our approach to cell segmentation utilises a couple of
components that are standard in the biological literature,
plus a few new ingredients that allow us to cope with
the challenging conditions mentioned in the introduction.
Furthermore, we will be able to define three cellular objects:
nuclei, cell-cell contacts and cell walls, which will be very
important for masking the IHECD1 and IACTIN channels to
distinguish between junctional and cytoplasmic cell-features.
The proposed pipeline for cell segmentation is outlined in
Figure 2. It consists of four main blocks: Pre-Processing,
Nuclei Processing, Edge-Map Processing, and Adaptive
Watershed, which are detailed below.

A. Pre-Processing

Screen images were acquired using a line scanning confocal
system. Four projections in the z-plane were acquired at each
experimental well, from which we computed the maximum
intensity projection for each channel. To avoid some optical
aberrations we discarded the pixels with the 2% darkest and
the 1% brightest intensities, performing then a normalisation
to the range [0, 255]. This constitutes our raw data.

The intensity variability and the low SNR observed at
the cell-cell contacts and cytoplasm hinders their proper
segmentation. We therefore opt for denoising the IHECD1 and
IDAPI channels, which are the ones we base our segmentation
approach on. We utilise the block matching 3D (BM3D) filter
of Dabov et al. [16] that is the state-of-the-art for filtering
Gaussian noise. Another issue affecting the IHECD1 channel
is the presence of broken cell-cell contacts. To partially solve
this problem we use the coherence-enhancing diffusion (CED)
filter of Weickert [17] that connects and enhances interrupted
line-like structures. It is important to mention that all these
filtering steps are only employed to help the segmentation
process. Once we have built segmentation masks for the
nuclei, the cytoplasm and the cell-cell contacts, all subsequent
phenotypic measurements are taken from the raw data.

B. Nuclei Processing

With the auto-threshold method of Li and Lee [18] we
obtain a first segmentation of the nuclei, which we then refine
with a watershed process on the grey-scale IDAPI channel to
separate the joined nuclei. As a last step, touching nuclei are
eroded in one pixel to accentuate their separation.

C. Edge-Map Processing

We obtain an approximate localisation of the cell-cell
contacts and their thickness by computing an edge map on
the IHECD1 channel with a Sobel filter, followed by the
application of a mean filter. The latter is used to fill the gaps in
the edge map. Note that a morphological closing would have
served the same purpose.
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Fig. 2. The proposed pipeline for cell segmentation consists of 4 blocks: Pre-Processing, Nuclei Processing, Edge-Map Processing, and Adaptive Watershed.

Fig. 3. Adaptive Watershed block that produces the final segmentation as a composition of three classes of structures: Cell-Contacts, Nuclei, Cell-Walls.

D. Adaptive Watershed

As shown stepwise in Figure 3, we aim at extracting
three different types of cell structures from the images: the
cell-cell contacts where two cells touch each other, the cell
walls delimiting the extent of the cytoplasm, and the nuclei
respecting such cell boundaries.

Using the input nuclei as seeds we perform a watershed on
the edge map to obtain a first segmentation of the cell-cell
contacts, which are then eroded towards the regions of high
HECD1 to obtain a first segmentation of the cell walls.

Despite the fact that the smoothed edge map provides a good
initialisation for estimating the cell boundaries, it does not
carry precise information about the regions of high cadherin.

Therefore, we optimise the cell-cell contacts by adapting
another watershed to the IHECD1 channel using the cell walls
as seed regions.

Subsequently, the nuclei (IDAPI ) are refined such that a
single nucleus is not allowed to be on both sides of a cell-cell
contact. That is, they need to be intercepted with the cell walls.
Finally, a last refinement takes place at the cell walls. They
are re-estimated with the better localised cell-cell contacts.
Note that the update of the cell walls is done after the nuclei
segmentation. That way we diminish the risk of having nuclei
cutting through the cell boundaries (although it might happen),
so we can later make junctional measurements without bias
towards the presence/absence of nuclei.
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IV. RESULTS

We would first like to emphasise the importance of the
pre-processing block in our pipeline. As it was shown in
Figure 1, the IHECD1 channel is affected by a low SNR
and by incomplete cell boundaries. The joint utilisation of
the BM3D and the CED filters does help obtain smoother
and more accurate segmentations as it can be observed in
Figure 4(a)-(b).

Another important characteristic of our segmentation
approach is its ability to accurately localise cell-cell contacts,
which is encoded in the adaptive watershed algorithm
described above. We compare the segmentation of cell-cell
contacts using our approach and the propagate method based
on Voronoi diagrams implemented in Bioconductor. For
a fair comparison, both methods were fed with the same
pre-processed data and the same seed regions as in Figure 2.
The results in Figure 4(c)-(d) indicate that the Voronoi-based
method cannot produce as accurate segmentations of the
cell-cell contacts as our approach. The white arrows point
out some of the misalignments with respect to the IHECD1

channel obtained via propagate. At this point it is worth
noting that it should not be difficult to implement a two-step
propagate method to mimic what we have done with the
two-step watershed algorithm.

To test the biological significance of our segmentation
pipeline, we compare the results of three images from the cell-
based high-throughput screen of actin-binding proteins. After
segmenting all cell components, Figure 5 shows boxplots of
the intensity distribution of three experimental parameters: E-
cadherin (HECD1) and actin filaments (J-Actin) at the cell-cell
contacts, as well as of the non-junctional (cytoplasmic) Actin
(NJ-Actin). In all graphs, the first bar is the quantification
of images from a positive control (Ca2+), while the second
and third bars refer to images obtained after depletion of
two proteins in cells: Tropomyosin-2 beta (TPM2) and VAV-2
oncogene (VAV2), respectively. TPM2 binds actin filaments
and stabilise them and is thereby predicted to play a role in
cytoplasmic actin and potentially at Junctional actin. VAV2 is
an upstream regulator of the small GTPase Rac1, a known
regulator of actin remodelling following different stimuli such
as migration, growth factor stimulation and cell-cell adhesion.

These plots confirm that the RNAi perturbation of both
TPM2 and VAV2 has a strong effect on the response of
cadherin receptors. In terms of the actin measurements, both
proteins distinguish themselves from the positive control
with higher and lower intensity levels, respectively. Thus the
new pipeline proposed here is able to identify cell borders
efficiently and provides reliable quantification. They are also
consistent with the images and predicted phenotype of the
proteins investigated (see discussion in Section V).

V. DISCUSSION AND CONCLUSIONS

We have presented a general approach to cell segmentation
that is well-suited for image-based high-throughput RNAi
screens. The most challenging issues were: i) to accurately
extract well-localised cell-cell contacts –which sometimes
appear fuzzy– respecting the tightly packed organisation of cell

(a)

(b)

(c)

(d)

Fig. 4. Cell segmentation (b) with and (c) without pre-processing; localisation
of cell-cell contacts (black lines) after segmentation with (d) our approach and
(e) Bioconductor. Please refer to the text for details.



5

Ca2+ TPM2 VAV20

20

40

60

80

100

(a)

Ca2+ TPM2 VAV20

20

40

60

80

100

120

140

(b)

Ca2+ TPM2 VAV20

20

40

60

80

100

120

(c)

Fig. 5. Boxplots of the intensity distribution of E-cadherin (HECD1), junctional actin (J-actin) and non-junctional actin (NJ-actin) for the positive control
(Ca2+) and the proteins Tropomyosin-2 beta (TPM2) and VAV-2 oncogene (VAV2).

conglomerates, and ii) to determine the thickness of the cell
walls –even fuzzier. Both issues have a significant impact on
the definition of cell phenotypes that can reliably distinguish
between actin-binding proteins inhibiting or promoting actin
reorganisation and the establishment of cadherin receptors.

The method proposed here has shown its usefulness in
identifying modulation of the levels of cell-cell adhesion
receptors and changes in cytoskeleton caused by removal
of specific proteins from cells. The data suggest that, upon
depletion of TPM2 or VAV2, cell-cell contacts are not very
stable and cadherin levels at junctions severely perturbed
as shown by a strong reduction in HECD1 levels. Potential
explanations are, in the case of TPM2, that stabilisation of
actin filaments adjacent to cell-cell contacts are important to
stabilise the membrane at junctions and to cluster cadherin
receptors in place. Regarding VAV2, its downstream partner
Rac1 is well-known to regulate actin recruitment to cadherin
receptors engaged in adhesion. Thus by removing VAV2, it
is feasible that Rac1 cannot be activated and thus unable
to stabilise contacts by providing actin to support adhesion.
Consistent with this, VAV2 depletion leads to a partial
reduction in the actin levels in their respective images.

These encouraging preliminary results are currently
followed by a more extensive validation with further controls
and other cell samples in order to apply the proposed
methodology to a whole set of circa 400 RNAi-depleted
actin-binding proteins.

REFERENCES

[1] Christophe J. Echeverri and Norbert Perrimon, “High-throughput RNAi
screening in cultured cells: a user’s guide,” Nat Rev Genet, vol. 7, no.
5, pp. 373–384, 05 2006.

[2] Roy Wollman and Nico Stuurman, “High throughput microscopy: from
raw images to discoveries,” J Cell Sci, vol. 120, no. Pt 21, pp. 3715–22,
Nov 2007.

[3] Hanchuan Peng, “Bioimage informatics: a new area of engineering
biology,” Bioinformatics, vol. 24, no. 17, pp. 1827–36, Sep 2008.

[4] W. James Nelson, “Adaptation of core mechanisms to generate cell
polarity,” Nature, vol. 422, no. 6933, pp. 766–774, 04 2003.

[5] Manuel R. Amieva, Roger Vogelmann, Antonello Covacci, Lucy S.
Tompkins, W. James Nelson, and Stanley Falkow, “Disruption of
the epithelial apical-junctional complex by Helicobacter pylori CagA,”
Science, vol. 300, no. 5624, pp. 1430–1434, 05 2003.

[6] Kaylene J. Simpson, Laura M. Selfors, James Bui, Angela Reynolds,
Devin Leake, Anastasia Khvorova, and Joan S. Brugge, “Identification
of genes that regulate epithelial cell migration using an siRNA screening
approach,” Nat Cell Biol, vol. 10, no. 9, pp. 1027–1038, 09 2008.

[7] Sabina E. Winograd-Katz, Shalev Itzkovitz, Zvi Kam, and Benjamin
Geiger, “Multiparametric analysis of focal adhesion formation by RNAi-
mediated gene knockdown,” The Journal of Cell Biology, vol. 186, no.
3, pp. 423–436, 08 2009.

[8] J Mullenders and R Bernards, “Loss-of-function genetic screens as a
tool to improve the diagnosis and treatment of cancer,” Oncogene, vol.
28, no. 50, pp. 4409–4420, 09 2009.

[9] Yanxi Liu, Tianzi Jiang, Changshui Zhang, Thouis Jones, Anne
Carpenter, and Polina Golland, Voronoi-Based Segmentation of Cells
on Image Manifolds, vol. 3765, pp. 535–543–543, Springer Berlin /
Heidelberg, 2005.

[10] CellProfiller, “http://www.cellprofiler.org,” .
[11] Bioconductor, “http://www.bioconductor.org,” .
[12] Pingkun Yan, Xiaobo Zhou, M. Shah, and S. T. C. Wong, “Automatic

segmentation of high-throughput RNAi fluorescent cellular images,”
Information Technology in Biomedicine, IEEE Transactions on, vol. 12,
no. 1, pp. 109–117, Jan. 2008.

[13] Fuhui Long, Hanchuan Peng, Xiao Liu, Stuart K Kim, and Eugene
Myers, “A 3D digital atlas of C. elegans and its application to single-cell
analyses,” Nat Meth, vol. 6, no. 9, pp. 667–672, 09 2009.

[14] Cris L Luengo Hendriks, Soile V E Keränen, Charless C Fowlkes,
Lisa Simirenko, Gunther H Weber, Angela H DePace, Clara Henriquez,
David W Kaszuba, Bernd Hamann, Michael B Eisen, Jitendra Malik,
Damir Sudar, Mark D Biggin, and David W Knowles, “Three-
dimensional morphology and gene expression in the Drosophila
blastoderm at cellular resolution I: data acquisition pipeline,” Genome
Biol, vol. 7, no. 12, pp. R123, 2006.
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