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Abstract— In this paper, we propose a general formulation of
discrete functional regularization on weighted graphs. This frame-
work can be used on any multi-dimensional data living on graphs
of the arbitrary topologies. In this work, we focus on microscopic
image segmentation and classification within semi and unsupervised
schemes. Moreover, to provide a fast image segmentation we propose
a graph based image simplification as a pre-processing step. Biologi-
cal elements contained in images such as cells, cytoplasm and nuclei
are segmented and classified with this image simplification and label
diffusion processes on weighted graphs.

Keywords— Discrete regularization, weighted graphs, microscopic
images, image simplification, semi-supervised, unsupervised, segmen-
tation, classification.

I. INTRODUCTION

Microscopic image segmentation consists in extracting cells
from image background and nuclei from cytoplasm, i.e. local-
izing homogenous regions relative to image content. Then, the
classification step corresponds to classify extracted elements
in the same biological groups, i.e. to group similar objects into
the same class among the existing ones in the image.

Numerous image segmentation and classification methods
can be found in the literature. Among existing ones, derivative
approaches from supervised to unsupervised machine learning
algorithms or variational methods have been successfully
applied in computer vision problems. Variational methods,
based on regularization, provide a framework to handle im-
age processing problems by designing and solving Partial
Differential Equations (PDEs) in continuous domain. Then,
PDEs are discretized in order to fit with the image domain.
Many PDE-based resolution schemes have been presented so
far in the literature (see, for instance [1], [2], and references
therein for more details on variational methods). In the same
time, recent data sets analysis and machine learning methods
have been developed. They are based on graph Laplacian
diffusion processes and have been used to perform data sets
classification [3], [4] or dimensionality reduction [5] problems.

Inspired by continuous regularization and data-dependent
function analysis methods, we propose a general discrete
regularization framework on weighted graphs of the arbitrary
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topologies for any multi-dimensional data [6], [7], [8]. Our
regularization framework is expressed directly in a discrete
setting and unifies continuous regularizations and graph Lapla-
cian diffusion methods. It provides a formulation for a wide
range of applications in various domain. In this paper, we focus
on image segmentation and classification problems.

Numerous label diffusion based methods for image segmen-
tation have been proposed, for instance see [9], [10]. If we
consider an image as a set of pixels, graph based Laplacian
classification is difficult to use due to the great mass of data to
analyze. In this work, we propose a fast label diffusion image
segmentation scheme. This fast segmentation is performed
with a simplified version of the original image. This pre-
processing is achieved by a graph based image simplification
inspired by the notions of energy partition and the Voronoı̈
diagram [11]. This image simplification, in connection with
our graph based regularization, provides a fast, simple and
iterative scheme to perform an efficient image segmentation
and classification. Moreover, our approach has the advantage
to work with graphs of the arbitrary topologies. If we use the
fully connected graph on the simplified image version, our
framework provides a natural formulation of a fully non-local
label diffusion process in contrast with the usual methods.

This paper is organized as follow. In Section II, we recall
some definitions and notations on weighted graphs. In Sec-
tion III, we present the notion of graph energy partitions. It
constitutes the basis of our image simplification strategy. In
Section IV, we introduce our general discrete regularization
framework and its application in cytological image segmen-
tation and classification. On the one hand, semi-supervised
classification is considered. On the other hand, a scheme to
transform the semi-supervised learning into an unsupervised
one is also described. Interesting experiments are shown and
notably the ability of our approach to segment non spatially
connected elements by using a minimal number of initial
labels. Finally, main ideas and future works are summarized
in Section V.

II. PRELIMINARIES ON WEIGHTED GRAPHS

We consider the general situation where a set of data X =
{x1, . . . , xn}, with x ∈ Rm, is described by a finite weighted
graph G = (V,E).



A graph G = (V,E) is composed of a finite set V of ver-
tices describing a set of objects, such as image pixels, image
regions, data features, etc. Each vertex v ∈ V corresponds to
an element x ∈ X . G is also consists in a subset E ⊆ V ×V of
edges. An edge represents the pairwise relation between two
vertices of the graph. In this work, we consider the graph G
as weighted, connected, undirected and with no self loops. A
undirected graph is weighted when there is a function, called
weight function, w : E → R+. This function associates a
real value w(u, v) to each edge (u, v) ∈ E. It reflects the
similarity between vertices u and v and satisfies: w(u, v) = 0
if (u, v) /∈ E, and w(u, v) = w(v, u), ∀(u, v) ∈ E.

Let H(V ) be the Hilbert space of functions, where each
function f : V → Rm assigns a real value f(v) to each vertex
v ∈ V . The function f can be thought as a m-dimensional
feature vector. Similarly, one can define H(E), the Hilbert
function space on edges. These two spaces are endowed with
the usual inner product.

The graph representation provides a natural and an useful
formulation to model any general discrete data. In image
processing, this structure is commonly used to represent digital
image. We can quoted some of the commonly used graph
structures:

• The uniform sampled grid graph where each vertex
represents a image pixel and the edges represent the pixel
adjacency relationship (commonly in 4 or 8-connectivity).

• The region adjacency graph where vertices describe the
image regions, i.e. the high level structures of the picture,
and the graph edges represents the region adjacency
relationship.

• The proximity graphs: for instance the k-nearest neighbor
graph, where each vertex is associated with a set of k
close vertices depending on a similarity criterion.

III. GRAPH BASED ENERGY PARTITIONS FOR DATA
SIMPLIFICATION

In cytological images, image pixels are not the single
relevant elements. Cells or nuclei can be considered as macro
structures of the image, i.e. a group of pixels. A pre-processing
step, also called pre-segmentation, can be considered. This
approach consists in seeking more local and homogenous com-
ponents than image pixels but also to respect the geometrical
structures of elements contained in the image. Moreover, this
data simplification reduces the number of objects to analyze in
a post-processing step. To perform this decomposition, one can
use mathematical morphology operators such as watersheds
or the normalized cuts technics. In this work, we propose
to use a graph based approach inspired by energy partitions
and Voronoı̈ diagram. The Voronoı̈ diagram is a well-known
structure in image processing. It is the result of an image space
decomposition into a discrete set of objects. Starting from a
set of seeds S, each data is associated to the closest seed using
a metric function d.

Let G = (V,E) be a graph, V be the set of the graph
vertices and S = {si} ⊆ V a set of K seeds over G, where
i ∈ [1,K] . Let f : V → Rm be a function which associates
a real-valued vector f(v) to each v ∈ V . Then, a metric d :
V × V → R+, for u ∈ V and v ∈ V , can be defined as:

d(u, v) = min
ρ(u,v)

∑

ρ(u,v)

||f(u)− f(v)||,

where ρ(u, v) represents all the paths over G connecting u to
v and ||.|| is the usual Euclidian norm in Rm.
The energy dS : V → R+ induced by the metric d for all the
seeds of S can be expressed as:

dS(v) = min
si∈S

dsi(v) = min
si∈S

d(si, v), ∀v ∈ V.

The influence zone z, also called Voronoı̈ region of a given
seed si, is the set of vertices which are closer to si than to
any other seeds. It can be defined, ∀j ∈ [1,K] and j '= i, as:

z(si) =
{

v ∈ V : dsi(v) ≤ dsj (v)
}

.

The energy partitions of G, for a given set of seeds S and a
metric d, is the set of influence zones noted by:

Z(S, d) =
{

z(si)
}

, ∀si ∈ S.

For a given graph G, to find the energy partitions corresponds
to seek a minimal cost path over G. Among the graph
algorithms dedicated to this shortest path problem, the Dijkstra
algorithm can be applied.

Let f : Ω ⊂ Z2 → R3 be a color image. We define f :
V → R3 ∈ H(V ) and G = (V,E), the associated uniform
sampled grid graph in 8-connectivity, where each vertex v of
V corresponds to a pixel of the image f . A pre-segmentation
of f corresponds to find the energy partitions of G from a set
of seeds S ⊆ V , i.e. a graph G′ = (V ′, E′) such as:
{

V ′ = S

E′ =
{

(si, sj) : z(si) ∩ z(sj) '= ∅, i '= j ∀si, sj ∈ S
} .

The graph G′ is an approximation of the image by assigning
a model for each influence zone of Z. A simple model can
be a mean or a median value of each influence zone. This
approach is equivalent to a classical watershed algorithm.
Computationally, it is faster than watershed by using Dijkstra
algorithm and a Fibonacci heap structure rather than a simple
priority queue.

Fig. 1 illustrates the application of graph based energy
partitions to simplify cytological images. To obtain a set
of seeds, the extrema of f can be used. Original images
have 134 400 pixels. The obtained number of influence zones
corresponds approximatively to 5 ± 2% of the original ones.
The energy images show the ability of this method to respect
objects structure by preserving edge information.



Fig. 1. Cytological image simplification by graph based energy partitions.
First row: original images of size 480× 320 i.e. 134 400 pixels. Second row:
energy images. Third row: influence zones images, 8 319 and 6 815 regions
from left-to-right images, respectively. Fourth row: reconstructed images from
influences zones with mean color as region model.

IV. SEGMENTATION AND CLASSIFICATION BASED ON
DIFFUSION PROCESSES ON GRAPHS

In this section, we introduce our discrete regularization
framework and its application for image segmentation and
classification. First, we focus on semi-supervised learning and
finally we propose a scheme to modify the semi-supervised
strategy into a unsupervised one.

A. Discrete Regularization Framework

Let G = (V,E) be a weighted graph. The regularization of a
given function f0 ∈ H(V ) corresponds to seek a function f ∈
H(V ), sufficiently smooth to respect the graph structure of this
graph and also close enough to f0. This optimization problem
can be expressed as the following energy minimization:

min
f∈H(V )

{
Ep =

∑

v∈V

‖∇f(v)‖p + λ
∑

v∈V

‖f − f0‖2
}

. (1)

The first term is the regularizer, also called the smoothness
term. The second term is the fitting term. The parameter p ∈
[1,+∞). The parameter λ ∈ [0,+∞) specifies the trade-off
between the two competing terms. ‖∇f(v)‖ is the norm of
the weighted gradient operator ∇f at vertex v.
Using standard arguments in convex analysis, (1) has a unique
solution for p = 1 and p = 2 and satisfies, ∀v ∈ V :

∂Ep

∂f

∣∣∣∣
v

=
(
∆pf

)
(v) + 2λ

(
f(v)− f0(v)

)
= 0, (2)

where (∆pf)(v) is the weighted graph p-Laplace operator
∆p : H(V ) → H(V ) of f at the vertex v.

In this work, we restrict ourselves to the case of p = 2.
More details on the case of p = 1 and the defined weighted
graph operators can be found in our previous works [8], [12].
In the case of p = 2, (∆pf)(v) corresponds to the classical
graph Laplacian operator defined as:

(
∆f

)
(v) =

(
∆2f

)
(v) = 2

∑

u∼v

w(u, v)
(
f(v)− f(u)

)
, (3)

where u ∼ v means that vertices u ∈ V and v ∈ V are
connected by an edge (u, v) ∈ E. Using (3) in (2), the system
of equations can be rewritten as:

(
λ +

∑

u∼v

w(u, v)

)
f(v)−

∑

u∼v

w(u, v)f(u) = λf0(v). (4)

Among the existing methods, the Gauss-Jacobi iterative al-
gorithm can be applied to resolve (4). Given an iteration
step t and an initial function f0, the corresponding linearized
regularization algorithm is defined, ∀v ∈ V as:





f0 = f

f t+1(v) = 1
λ+

P
u∼v

w(u,v)

(
λf0(v) +

∑

u∼v

w(u, v)f t(u)

)
.

(5)

B. Graph Based Diffusion Processes for Semi-Supervised
Classification

The objective of cytological image analysis is to segment
cells from background and/or distinguish cytoplasm from
cells´ nuclei. Inspired from recent graph based semi-supervised
learning [9], [13], we propose to use our discrete regulariza-
tion framework to perform the semi-supervised classification
problem.

A typical semi-supervised learning problem can be de-
scribed as follow. Given a set of data V composed of labeled
and unlabeled data points, the general goal is to estimate
the unlabeled points from the labeled ones by a functional
regularization based on diffusion processes. In this work, we
consider this learning problem and propose to solve it by using
the previously formulated regularization framework (5).

Let V = {v1, ..., vn} be a set of vertices defined in Rm, f
be a function which associates a feature vector to each v ∈ V
and ci be the set of vertices which belong to the ith class.



The set C = {ci}, with i ∈ [1, k], is the initial set of all
labeled vertices. The initial unlabeled vertices set is the {V \
C}. The learning problem is composed of k classes. Thus, k
independent iterative regularization processes are considered,
one per class. This is equivalent to define the function f0 :
V → Rk, for each regularization process, as:

f0
i (v) =






+1 if v ∈ ci with i ∈ [1, k], ∀c ∈ C

−1 otherwise
0 if v ∈ {V \ C}

.

Then, each regularization process follows the same previously
defined algorithm (5), with i ∈ [1, k] and for each v ∈ V :

f t+1
i (v) =

1
λ +

∑
u∼v

w(u, v)

(
λf0

i (v) +
∑

u∼v

w(u, v)f t
i (u)

)
,

(6)
One can note that the label diffusion algorithm only depends
on the estimated labels in the neighborhood of the considered
vertex v. At the end of the regularization processes, a class
is assign to a vertex v ∈ V by using the following decision
function:

c(v) = argmax
fi(v)∑
i

fi(v)
.

To construct the representative graph, we propose to use one
of the following two similarity functions between two neighbor
vertices u ∈ V and v ∈ V (but any other formulation can be
considered) : w(u, v) = exp(−h(||u − v||2)) and w(u, v) =

1
||u−v||+ε ,∀(u, v) ∈ E, where h is a parameter depending on
the variation of ||u− v||. ε → 0 is a fixed parameter to avoid
the zero denominator. ||.|| is the norm between u and v defined
on Rm.

In image segmentation, it is natural to represent the image as
an uniform sampled grid graph (in 4 or 8-connectivity) where
each vertex corresponds to an image pixel. But, as mentioned
previously, in cytological image, pixels rarely represent rele-
vant elements such as cells or nuclei. Therefore, to construct
the weighted graph, we use a pre-segmented image obtained
with our graph based image simplification scheme. One way to
construct the graph from this simplified image is, for instance,
to use the well-known region adjacency graph. Another way
is to construct the fully connected graph.

The fully connected graph has the advantage to extend the
notion of proximity between two vertices. Two vertices can be
similar relatively to the weight function even if they are not
spatially close or adjacent in an image. Thus, in connection
with the diffusion processes, objects can be quickly labeled
as the same class even if they are not spatially adjacent. If
we consider an image as a set of pixels, it is clear that this
approach can not be applied due to the computing time. But,
if we consider the simplified version of images, this method
becomes an efficient one. Moreover, this graph structure
in connection with the proposed regularization framework,

provides a natural fully non-local label propagation process
in contrast to the usual methods.

Fig. 2 demonstrates the efficiency of the proposed semi-
supervised classification algorithm to segment image back-
ground and different kinds of biological elements: cytoplasm
and nuclei. This example shows a five classes classification
problem such as the background, two kinds of cytoplasm and
two kinds of nucleus. One can note in Fig. 2(a) that not
all relevant elements are marked. A fully connected graph is
constructed from Fig. 2(b): the influence zones image. The
advantage of the fully connected graph, associated with the
proposed label diffusion process, lies in the ability to segment
non spatially adjacent regions. The user only needs to label
some relevant elements of the image. For instance, in Fig. 2(a),
user does not mark the two different cytoplasm but the label
diffusion algorithm found all the similar ones relatively to
the marked ones. Fig. 2(c) shows the fully non-local label
diffusion result after only one iteration.

(a) (b)

(c) (d)

Fig. 2. 5 classes cytological semi-supervised image segmentation problem.
(a) Original image with user initial labels. (b) Influence zones image. (c)
Regions map after label diffusion. (d) Original image with the obtained region
boundaries superimposed in black color.

This experiment shows the advantage of using the fully
connected graph. This structure contains all the image data
information. Therefore, only few labels are needed to start the
segmentation method. The proposed diffusion algorithm labels
objects depending on the closeness defined by the similarity
function w. A drawback of using the fully connected graph is
when the number of vertices increases (a several thousands). It



will become difficult to obtain results in reasonable computing
time (less than a few minutes).

Graphs structures typically used in the literature include
fully connected graph, fixed grid graph, or nearest neighbor
graph (k−nn graph, ε-graph). Recent studies take an interest
in the graph construction itself to optimize the classification
computational time. These methods [14] use derivative forms
of neighborhood graphs or minimum spanning trees (MST). A
MST is a well-known structure in graph theory. It consists in a
tree subgraph that contains all the vertices and has a minimum
sum of edges weights. This compact graph structure has good
properties for our problem. It gives a connected graph with no
cycles and is also sparse: for N data points, it has only N −1
edges.

Fig. 3 shows the segmentation comparison between fully
connected and MST graphs and the computing time for ap-
proximatively the same segmentation results. In this example,
one can note the influence of the graph structure on the
computing time and the segmentation results. Moreover, one
can see that user only labels one nucleus as initial label and
the diffusion process has found all the nuclei contained in the
image.

Choosing the graph structure is an application dependent
problem and no general rules can be given. For instance, the
MST graph or other proximity graphs speed up the diffusion
processes but need a pre-processing for their construction step,
usually a distance estimation over all the graph vertices. This
step is not needed for the fully connected graph construction.
The choice of the appropriate graph structure depends on a
fine compromise between application, results accuracies and
computing time.

C. From Semi-Supervised to Unsupervised Classification

In this section, we show how with the label diffusion
algorithm, semi-supervised classification and energy partitions
principle, we can obtain an automatic classification scheme.

The cytological image clustering is usually a three classes
classification problem: image background, cytoplasm and nu-
clei. Knowing the number of classes to extract, the idea
is to automatically select and classify image representative
instances, with an arbitrary machine learning method. Thus,
these selected instances can be used as initial labels for the
proposed label diffusion scheme.

Our image pre-segmentation step uses a set of seeds to
perform image simplification. The idea is to use this set of
seeds as initial labels. To label these seeds in three classes,
any machine learning algorithm can be used. Once seeds
are labeled, the classification based on the label diffusion
algorithm (6) can be applied in the same scheme as semi-
supervised one.

Fig. 4 illustrates an unsupervised classification experiment.
Fig. 4(b) shows the classification of influence zones image
seeds by k-means algorithm with k = 3. Each seed is
described by the mean color vector of each region. This

(a) (b)

(c) (d)

(e) (f)

Fig. 3. Segmentation comparison between fully connected graph and MST
graph. (a) User manually labeled image (3 classes problem). (b) Influence
zones image. (c) and (e) Regions map after label diffusion. From top-to-
bottom, results with the fully connected graph obtained in approximatively 5
seconds and results with the MST obtained in less than 1 second. (d) and (f)
Original image with the obtained regions boundaries superimposed in white
color from (c) and (e), respectively.

example illustrates the ability of the proposed unsupervised
classification to extract significant elements. It also shows
interesting properties for different values of λ parameter in
(6). When λ is positive value, the label diffusion is highly
oriented by initial labels. Obtained results in Fig. 4(c) reflect
the initial labels classification. When the λ parameter is null,
the algorithm has the ability to modify initial labels classifica-
tion using neighbor ones. Fig. 4(e) shows label modification
effects on classification results. Bad initial cytoplasm labels
are changed to background label and conversely.

They are differences between a simple region merging
algorithm and our automatic classification scheme. Indeed,
the proposed method does not need any merging criterion to



assign a label to a region: it is implicitly done by the weighted
graph representation. Moreover, our method does not need
any stopping criterion: the final result is obtained when the
algorithm reaches the convergence.

(a) (b)

(c) (d)

(e) (f)

Fig. 4. Unsupervised classification using energy partitions seeds classified
with k-means algorithm. (a) Original image. (b) K-means seeds classification
(k = 3). (c) and (e) Segmentation regions map with parameter λ = 1 and
λ = 0, respectively. (d) and (f) Original image with the obtained region
boundaries superimposed in white color from (c) and (e), respectively.

V. CONCLUSION AND FUTURE WORKS

In this paper, a classification scheme for cytological images
is presented. This strategy is based on image simplification
and discrete regularization framework. These approaches use
graphs as an underlying representation and a unified formula-
tion.

Image simplification has been performed by using graph
based energy partitions. This data reduction allows us to
efficiently use our discrete regularization based on diffusion
processes on graphs to solve cytological image classification
problems. The proposed segmentation scheme has the ability
to segment elements which are not spatially close or adjacent
by using fully connected graphs or MST ones. All the signif-
icant elements having to be extracted from an image, do not
need to be marked to be segmented by the proposed scheme.
Moreover, the fully connected graph, in connection with our
regularization framework based on diffusion processes on

weighted graphs, provide a natural and uncommon used fully
non-local label propagation formulation.

Our work describes two classification approaches. On the
one hand, an interesting user guidance interactive semi-
supervised classification. On the other hand, an unsuper-
vised classification using pre-labeled image seeds. Moreover,
our discrete regularization can be also used on any multi-
dimensional data and on any graph of the arbitrary topologies.
Thus, our approach can be applied in a wide range of appli-
cations in various domains, for instance data sets analysis or
clustering. In particular, we plan to categorize and recognize
segmented cellular objects in huge image data sets.
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