o
§'§*@£’§%‘@%§§3§’%»>{3
: ,:ge o S

.
5
.

.
r»%@'%%;ai
:

S
S i
.
e
.

o S

T

12 MATHEMATICAL MORPHOLOGY: 40 YFEARS ON

W-operator in its corresponding ROBDD. The uniqueness of the ROBDD rep-
resentation allows a simple solution to the problem of checking the equivalence
between morphological operators.

Currently, we are working on an implementation of a BDD-based morpho-
logical machine.
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Abstract This paper px:escms merphological operators with non-fixed shape kernels, or
amoebas, which take into account the image contour variations to adapt lli,mir
s‘hape. Expesiments on grayscale and color images demonstrate that (hese novel
filters outperform classical morphological operations with a fixed SpilCC—kinV‘ll'i'illl
structuring element for noise reduction applications. ! o

Keywords:  Anisotropic fiiters, noise reduction, morphological filters, color fillers

1. Introduction

. Noise is possibly the most annoying problem in the field of image process-
ing. Tllere are two ways to work around it: either design particularl l‘Ob;l:Sl
'Ti]g()nthms that can work in noisy environments, or try to ehminate lge 110i;e
in a first step while losing as little relevant information as possible and ¢ y
quently use a normally robust algorithm. ) ‘ e
There are of course many algorithms that aim at reducing the amount of

- noise in images. Most are quite effective but also often remove thin elements

SUC'C'"""": . '
" h a‘s cgnaih ot peninsulas. Even worse, they can displace the contours and
uls create additional problems in a segmentation application.
n mathematical morphology we often couple one of these noise-reduction

._ m-t'“’ to a reconstruction filter that attempts to reconstruct only relevant infor-
ation, such as contours, and not noise. However, a faithful reconstruction

Ca ; ati ‘ i j
m be problematic when the contour itself is corrupted by noise. This can

cause gre -oblems in s icati i
‘cause great problems in some applications which rely heavily on clean contour

surfaces. g R
urfaces, such as 3D visualization, so a novel approach was proposed

C. ¢ o ;
50;1.»(,1(.1 _”[' {eds. ), Mathematical Morphology: 40 Years On, 1322
005 Springer. Printed in the Netherlands. , .
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2. Amoebas: dynamic structuring elements
Principle

Classic filter kernel.  Formally at least, classic filters work on a fixed-size
sliding window, be they morphological operators (erosion, dilation) ot convo-
Jution filters, such as the diffusion by a Gaussian. If the shape of that window
does not adapt itself to the content of the image (see figure 1), the results de-
teriorate. For instance, an isotropic Gaussian diffusion smooths the contours
when its kernel steps over a strong gradient area.

Figure I Closing of an im-
age by a large stracturing ele-
ment. The structuring element
does pol adapt its shape and
merges two distinct objects.

Amoeba filter kernel.  Having made this observation, Perona and Malik [1]
{and others after them) have developed anisotropic filters that inhibit diffusion
through strong gradients. We were inspired by these examples (o define mor-
phological filters whose kernels adapt to the content of the image in order 1o
keep a certain homogeneousness inside each structuring element (see figure 2).
The coupling performed between the geometric distance between pixels and
the distance between their values has similarities with the work of Tomasi and
Manduchi described in [5].

The interest of this approach, compared to the analytical one pioneered by
Perona and Malik is that it does not depart greatly from what we use in math-
ematical morphology, and therefore most of our algorithms can be made to
use amoebas with little additional work. Most of the underlying theoretical
groundwork for the morphological approach has been described by Jean Serra
in his study [2] of structuring functions, although until now it has seen little
practical use.

Figure 2 Closing of an im-
age by an amoeba.  The
amoeba does not cross the
contour and as such preserves
even the smail canals.

The shape of the amoeba must be computed for each pixel around which it
is centered. Figure 3 shows the shape of an amoeba depending on the posi-
tion of its center. Note that in flat areas such as the center of the disc, or the

Image filtering using morphological amoebas

Figure 3 Shape of an
amocha at various positions
on an image.

background, the amoeba is maximally streiched, while it is reluctant to cross
contour lines.

When an amoeba has been defined, most morphological operators and many
other types of filters can be used on it: median, mean, rank filters, erosion, di-
lation, opening, closing, even more complex algorithms such as reconstruction
filters, levelings, floodings, ete.

Construction

f}moeba distance.  In general, a filtering kernel of radius r is formally de-
img(l on a square (or a hexagon) of that radius, that is to say on the ball of
radius 7 refative to the norm associated to the chosen connectivity. We will
keep this definition changing only the norm, using one that takes into account
the gradient of the image.

DEFINITION 1 Let dyiper be a disiance defined on the values of the image, for
e.mmple a difference of gray-value, or a color distance.

Let o = (x = xg,21,...,2, = y) a path between points x and 1. Let X be
da real positive number. The length of the path & is defined as

T
L{o) = 1+ Adpier (v, wi41)
=0

o The “amoeba distance” with parameter X is thus defined as:

dy(z,2) = 0
da(z,y) = min, L(o)

C Ieit 1rl-nportant to realize that «:fﬂp.m,ﬁg h.as no geometrical aspect, it is a distance
._ omputed only on the values of the pixels of the image. Furthermore, if 7 is
?116 number of pixels of a path o, then L(o) = n (since A > 0), which bounds
the maximal extension of the amoeba. - |

Th R e . . .
his distance also offers an interesting inclusion property:
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PROPERTY | At a radius v given the family of the balls By, relative to the
distance dy is decreasing (for the inclusion),

0 <A <A = V(_f[:,y),d)u(.’ﬂ,y) < d)\g(m:y)
= ¥reRY, By D Basy

Which may be useful when building hierarchies of filters, such as a family
of alternate sequential filters with strong gradient-preserving properties.

The pilot image.  We have found that the noise in the image can often distort
the shape of the amocba. As such, we often compute the shape of the amoeba
on another image. Once the shape is computed, the values are sampled on
the original image and processed by the filter (mean, median, max, min, ...).
Usually, the other image is the result of a strong noise removal filtering of the
original image that dampens the noise while preserving as much as possible the
Jarger contours. A large Gaussian works fairly well, and can be applied very
quickly with advanced algorithms, however we will see below that iterating
amocba filters yields even better results.

3. Amoebas in practice

Adjunction

Erosions and dilations can easily be defined on amoebas, However it 1s nec-
essary to use adjoint erosions and dilations when using them to define openings
and closings:

.
d()‘) = U:rr@)_( ]BA,I(T)
(X)) = {z/B(x) C X}

These two operations arc at the same time adjoint and relatively easy (o com-
pute, contrary to the symmetrical ones that use the transposition, which is not
easy lo compule for amoebas. See [2] for a discussion of the various forms of
adjunction and transposition of structuring functions.

Algorithms

The algorithms uvsed for the erosion and dilation are quite similar to those
used with regular structuring elements, with the exception of the step of com-
puting the shape of the amoeba.

Erosion (gray-level).
for cach pixel x:
compute the shape of the amoeba centered on 2
compute the minimumM of the pixels in the amoeba
set the pixel of the output image at position « to value M

Image filtering using morphological amoebas

Dilation (gray-level):
for each pixel x:
compute the shape of the amoeba centered on
for each pixel y of the amoeba:
value(y y=max(value(y),value())

The opening using these algorithms can be seen as the gray-level extension
f’f Fhe classic binary algorithm of first taking the centers of the circles that fit
mf;:(le the shape (erosion), and then returning the union of all those circles
{dilation).

Complexity

. The theoretical complexity of a simple amoeba-based filter (erosion, dila-
tion, mean, median) can be asymptotically approximated by:

T(n, k,op) =0 [n * (op(kd) + amoeba(k, d))}

Where n is the number of pixels in the image, d is the dimensionality of the
image (usually 2 or 3}, k is the maximum radius of the amoeba, op{k*) is the
cost of the operation and arnocba(k, d) is the cost of computing the shape of
the amoeba for a given pixel.

The shape of the amoebas is computed by a common region-growing imple-
mentation using a priority queue. Depending on the priority queue used, the
complexity of this operation is in slightly more than O(k?) (see [3] and [4] for
advanced queueing data structures). - '

‘ Therefore, for erosion, dilation or mean as operators, we have a complex-
1}y of a little more than O(n * k%) which is the complexity of a filter on a
I’le(]—siaallne kernel. It has indeed been verified in practice that, while being
quite slower than with fixed-shape kerels (especially optimized ones), filters

- using amoebas tend to follow rather well the predicted complexity, and do not

explode (tests have been performed on 3D images, size 512x512x100, with

- amoebas with sizes up to 21x21x21).

4, Results

: i;&lternate sequential filters

- The images of figure 4 compare the differences between alternate sequential

Iters built on classic fixed shape kernels and ASFs on amoebas in the filtering

-.of_lhe image of a retina.

Median and mean

I the context of i .
medi(ihu context of image enhancement, we have found that a simple mean or
d an coupled with an amoeba forms a very powerful noise-reduction filter.
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() Normal ASF: first pass (€) Normal ASIT second
pass

) Amoeba ASE: first pass ey Amoeba ASTH second (1) Amoeba  AST: fourth
pass pass

Figure 4. Aliernate sequential fillers on classic kernels and on amoebas. The amocba pre-
serves extremely well the blood vessels while strongly flattening the other areas.

The images in figure 5 show median and the mean computed on amoebas
compared to those built on regular square kernels. The pilot image that drives
the shape of the amoeba is the result of a standard Gaussian filter of size 3 on
the original image, and the distance dpige 18 the absolute difference of gray-
levels.

For the filters using amoebas, the median filter preserves well the contout,
but the mean filter gives a more “acsthetically pleasing” image. In either case,
the results are clearly superior Lo filterings by fixed-shape kernels, as seen in
the figure 5.

Mean and median for color images

In the case of color images, the mean is replaced by the mean on each color
component of the RGB color space. For the “median”, the point closest to
the barycenter is chosen. Other distances or colorspaces can be used. such
as increasing the importance of the chrominance information with respect 0

Image filtering using morphological amoebas

(b) Usual median (¢) Amoeba median (d} Amoeba mean

i ) A o a Celacele T 3 :
Figure 5. Results of a “classic” median fillering and two amoeba-based filterings: a median
and a mean on Edouard ManeUs painting “Le fifre”,

iummance, or the other way around, depending on the application, the type of
noise and the quality of the color information.

lteration

‘1 The qua]ity of the filtering strongly depends on the image that determines
the shape of the amoeba. The previous examples have used the original image

iltered by a Gaussian, but this does not always yield good results (also see

[6)).

* Itis frequent indeed that a small detail of the image be excessively smoothed
n the pilot image, and thus disappears completely in the result image. On the
_ _O_t'he;" hand, noisy pixels may be left untouched if the pilot image does not
: ?1_11]_1{1]2116 them, A possible solution is to somewhat iterate the process, using

the first output image not as an input for filtering, as it would commonly be
done, but as a new pilor image instead.
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{a} Original (b) Usual median (©) Amoeba miedian (d) Amoeba mean

Figure 6. Color images: results of a “classic” median filtering, and two amoeba-based filter-
ings: a median and a mean, As a simple extension of the grayscale approach, each channel of
the pitos image has been independently smoothed by a Gaussian of size 3.

There are two sleps at cach iteration: the first one follows the scheme de-
scribed earlier, using the Gaussian-filtered original image as a pilot, with ag-
gressive parameters, and outputs a well-smoothed image in flat arcas while
preserving as much as possible the most important contours. The second step
takes the original image as input and the filtered image as a pilot, with less de-
structive parameters, and preserves even more the finer details, while removing
a Tot of the noise.

In practice, we have found that performing those two steps only once 18
enough to reduce the noise dramatically (see figure 7}, although further itera-
tions may be required, depending on the image and the noise.

This method is also very useful for color images, since the amoeba-based
pilot image provides better color coupling through the use of an appropriate
color distance than simply merging the results of a Gaussian filtering of each
channel independently.

Image filtering using morphological amoebas

2} Origing ilot image: Gaussian filler ot i
(a) ginal (b) Pilot image: Gaussian filter () Pilot image: amoeba mean fil-
ter

N ({1) Result image: « # i i i o & o bl s
- - ape: amoeba ot 3 HUSSE 5 i N i
R £ a mean with Gaussian ])li()[ (L) Result naage: amogba mean with amoeba [)i]()t

VI et g ~ .
i lf]é;{f)fzi(}:bd%(d)2}1{}:;:]:(])11 %\’:/tiﬁe?]n,u}io pillo’l' in.lage's: a Gaussian one, and one hased on a strong
r;yébmws ped i ,i}; o 3-,1} anocba pilot image the hand is better preserved, and the
Having both s noic . (d li“lt:l{:b :J\j’lth the eyes, con?rar)f to the Gaussian-based piot image.
Al o i ia\l;]bd’l. .‘in st (.uTgu contours in the Pl]@t image also enables the use of smaller
a parameter so that the amoeba will streteh more in the flatter zones, and thus

have a sir
1 stronger simoothi fect 1 ;
b ng effect in those zones while preservi s oSO : :
the contours , while preserving the position and dynamics of
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5. Conclusion and future work

We have presented here a new type of structuring element that can be used in
many morphological algorithms. By taking advantage of outside information,
filters built upon those structuring elements can be made more robust on noisy
images and in general behave in a “more sensible” way than those based on
fixed-shape structuring elements. In addition, morphological amoebas are very
adaptable and can be used on color images as well as monospectral ones and,
like most morphological tools, they can be used on images of any dimension
(2D, 3D, ...). Depending on the application, alternate sequential filters are
very effective when Jooking for very flat zones, whereas median and mean
filters output smoother images that may be more pleasing to the cye but could
be harder to segment.

Work is cutrently in progress (O integrate the filtered pilot image directly
in the basic formulation, instead of having it as a preprocessing step. with the
various drawbacks studied in [0].

It is possible to use amoehas to create reconstruction filters and floodings
that take advantage of the ability to parameterize the shape of the amoebas
based on the image content. However, the behaviors of the amoebas are much
more difficult to take into account when they are used in such complex. al-
gorithms. In particular, amocbas often have a radius larger than one, SO for
instance the identification made between conditional dilation and geodesic di-
jation is no longer valid.

The results show that simple extensions of the scalar algorithms to the RGB
space already yield excellent results, especially when iterating. The use of
more “perceptual” distances (HLS or LAB) would probably prevent most un-
wanted biending of features, although this is as yet conjectural and will be the
basis of further work.
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Abstract

Binary morphological (ransformations based on the residues (ultimate cro-
ston, skeleton by openings, cle.} #1¢ extended to functions by means of (he trans-
formation definition and of its associated function based on the analysis of e
vesidue evolution in every point of the image. This definition attows to build not
only the transformed image irse]l but also its associated function, indicating the
value of the residue index for which this cvalution is the most important. These
definitions are totally compatible with the existing definitions for sets. More-
over, they have the advantage of supplying effective 1ools for shape analysis on
one hand and, on the other hand , of allowing the definition of new residual trans-
forms together with their associated functions. Two of these numerical restdues
wilt be intraduced, called respectively ultimate opening and quasi-distance and,
through some applications, the interest and efficiency of these operators will be
illustrated.

1. Introduction

In binary morphology there are some operators based on the detection of
residues of parametric wransformations, Among these operators, the ultimate
erosion or the skeleton by maximal balls can be quoted. They can more or less

casily be extended o greytone images. These extensions are however of little

“use because it is difficult to exploit them, This paper explains the reasons of this

dli'hcgity and proposes a means {0 obtain interesting information from these
transformations. It also introduces new residual transformations and illustrates

- their use in applications.

2. Binary residues: reminder of their definition

Only operators corresponding to the residues of two primitive transforms

. 1}3 be addressed here. A residual operator 6 on a set X is defined by means
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