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Abstract

This paper presents morphological operators with non-fixed shape kernels, or amoebas, which take into account the image contour
variations to adapt their shape. Experiments on grayscale and color images demonstrate that these novel filters outperform classical mor-
phological operations with a fixed, space-invariant structuring element for noise reduction applications. Tests on synthetic 3D images are
then performed to show the high noise-reduction capacity of amoeba-based filters.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Noise is possibly the most annoying problem in the field
of image processing. There are two ways to work around it:
either design particularly robust algorithms that can work
in noisy environments, or try to eliminate the noise in a first
step while losing as little relevant information as possible
and consequently use a normally robust algorithm Fig. 1.

There are of course many algorithms that aim at reduc-
ing the amount of noise in images. Most are quite effective
but also often remove thin elements such as canals or pen-
insulas. Even worse, they can displace the contours and thus
create additional problems in a segmentation application.

In mathematical morphology, we often couple one of
these noise-reduction filters to a reconstruction filter that
attempts to reconstruct only relevant information, such
as contours, and not noise. However, a faithful reconstruc-
tion can be problematic when the contour itself is corrupt-
ed by noise, as seen in Fig. 1. This can cause great problems
in some applications which rely heavily on clean contour
surfaces, such as 3D visualization, so a novel approach
was proposed: morphological amoebas.
0262-8856/$ - see front matter � 2006 Elsevier B.V. All rights reserved.

doi:10.1016/j.imavis.2006.04.018

q This paper is an extended version of the one presented at the ISMM’05
congress [10].

* Corresponding author. Tel.: +33 1 64694767.
E-mail address: lerallut@cmm.ensmp.fr (R. Lerallut).
An amoeba (here Amoeba proteus) is a genus of proto-
zoa that moves by projecting pseudopods and is a well-
known representative unicellular organism. They are found
in sluggish waters all over the world, both fresh and salt, as
well as in soils and as parasites. They now begin a new life
in the field of image processing.

2. Amoebas: dynamic structuring elements

2.1. Principle

2.1.1. Classic filter kernel

Formally at least, classic filters work on a fixed-size slid-
ing window, be they morphological operators (erosion,
dilation) or convolution filters, such as the diffusion by a
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Fig. 1. Classic noise filtering (b) removes much contour information. Reconstruction (c) finds not only the contours, but also all the noise connected to the
object.

Fig. 3. Closing of an image by an amoeba. The amoeba does not cross the
contour and as such preserves even the small canals.
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Gaussian. If the shape of that window does not adapt itself
to the content of the image (see Fig. 2), the results deterio-
rate. For instance, an isotropic Gaussian diffusion smooths
the contours when its kernel steps over a strong gradient
area.

2.1.2. Amoeba filter kernel

Having made this observation, Perona and Malik [1]
(and others after them) have developed anisotropic filters
that inhibit diffusion through strong gradients. Most early
work on non-fixed shape structuring elements, such as [11]
and [7] were restricted either in the types of operations per-
formed (openings and closings) or in the type of images
upon which they were to be used.

We were inspired by these examples to define a more
general framework to develop filters, either morphological
or not, whose kernels adapt to the content of the image in
order to keep a certain homogeneity inside each structuring
element (see Fig. 3) while at the same time keeping their
size in check. Tomasi and Manduchi have described in [5]
the coupling of a geometric distance between pixels with
a distance between their values, which offers remarkable
properties for our intended use.

The interest of this approach, compared to the one
based on partial differential equations, is that it does not
depart greatly from what we use in mathematical morphol-
ogy, and therefore most of our algorithms can be made to
use amoebas with little additional work. Most of the under-
lying theoretical groundwork for the morphological
Fig. 2. Closing of an image by a large structuring element. The structuring
element does not adapt its shape and merges two distinct objects.
approach has been described by Jean Serra in his study
[2] of structuring functions, although until now it has seen
little practical use.

The shape of the amoeba must be computed for each
pixel around which it is centered. Fig. 4 shows the shape
of an amoeba depending on the position of its center. Note
that in flat areas such as the center of the disc, or the back-
ground, the amoeba is maximally stretched, while it is
reluctant to cross contour lines.

When an amoeba has been defined, most morphological
operators and many other types of filters can be used on it:
median, mean, rank filters, erosion, dilation, opening, clos-
ing, even more complex algorithms such as reconstruction
filters, levelings, floodings, etc.
Fig. 4. Shape of an amoeba at various positions on an image.
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2.2. Construction

2.2.1. Amoeba distance

In general, a filtering kernel of radius r is formally
defined on a square (or a hexagon) of that radius, that is
to say on the ball of radius r relative to the norm associated
to the chosen connectivity. We will keep this definition
changing only the norm, using one that takes into account
the gradient of the image, so that we get the behavior
described in Fig. 5.

Definition 1. Let dpixel be a distance defined between the
values of the image, for example a difference of gray-value,
or a color distance.

Let r = (x = x0,x1, . . . ,xn = y) be a path between points
x and y. Let k be a real positive number. The value of the
image at position x will be noted as Image (x). The length
of the path r is defined as

LðrÞ ¼
Xn

i¼0

½1þ k � dpixelðImageðxiÞ; Imageðxiþ1ÞÞ�

The ‘‘amoeba distance’’ with parameter k is thus defined as:

dkðx; xÞ ¼ 0

dkðx; yÞ ¼ min
r

LðrÞ; minimum taken on all paths between x and y

(

It is important to realize that dpixel has no geometrical as-
pect, it is a distance computed only on the values of the pix-
els of the image. Furthermore, if n is the number of pixels
of a path r, then L (r) P n (since k P 0), which bounds the
maximal extension of the amoeba.

This distance also offers an interesting inclusion
property:
Property 1. At a given radius r, the family of the balls Bk,r

relative to the distance dk is decreasing (for the inclusion),

0 6 k1 6 k2 ) 8ðx; yÞ; dk1
ðx; yÞ 6 dk2

ðx; yÞ
) 8r 2 Rþ;Bk1;r � Bk2;r

which may be useful when building hierarchies of filters,
such as a family of alternate sequential filters with strong
gradient-preserving properties.
2.2.2. The pilot image

We have found that the noise in the image can often dis-
tort the shape of the amoeba. For this reason, we compute
the shape of the amoeba on another image. Once the shape
is computed, the values are sampled on the original image
and processed by the filter (mean, median, max, min, . . .).
Fig. 5. Behavior of an amoeba on various relief types. Strong gra
Usually, the other image is the result of a strong noise remov-
al filtering of the original image that dampens the noise while
preserving as much as possible the larger contours. A large
Gaussian works fairly well, and can be applied very quickly
with advanced algorithms, however we will see below that
iterating amoeba filters yields even better results.

Furthermore, using the same pilot image means that the
amoebas in two successive runs will have the same shape,
which result in the idempotence property in openings and
closings.
3. Amoebas in practice

3.1. Adjunction

Erosions and dilations can easily be defined on amoe-
bas. However, it is necessary to use adjoint erosions and
dilations when using them to define openings and closings:

dðX Þ ¼ [x2X Bk;rðxÞ
�ðX Þ ¼ fx=Bk;rðxÞ � Xg

These two operations are at the same time adjoint and rel-
atively easy to compute, contrary to the symmetrical ones
that use the transposition, which is not easy to compute
for amoebas. See [2] for a discussion of the various forms
of adjunction and transposition of structuring functions.

Algorithms. The algorithms used for the erosion and
dilation are quite similar to those used with regular
structuring elements, with the exception of the step of
computing the shape of the amoeba.

Erosion (gray-level):

for each pixel x do
dients s
compute the shape of the amoeba centered on x

compute the minimum M of the pixels in the amoeba
set the pixel of the output image at position x to value
M

Dilation (gray-level):
compute the shape of the amoeba centered on x
for each pixel x do:

for each pixel y of the amoeba do:
hou
set value (y) = max(value (y), value (x))
The opening using these algorithms can be seen as the
gray-level extension of the classic binary algorithm of first
ld slow or even hamper the growth of the amoeba.
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taking the centers of the circles that fit inside the shape
(erosion), and then returning the union of all those circles
(dilation).

3.2. Complexity

The theoretical complexity of a simple amoeba-based fil-
ter (erosion, dilation, mean, median) can be asymptotically
approximated by:

T ðn; k; opÞ ¼ O½n � ðopðkdÞ þ amoebaðk; dÞÞ�
where n is the number of pixels in the image, d is the dimen-
sionality of the image (usually 2 or 3), k is the maximum
radius of the amoeba, op(kd) is the cost of the operation
and amoeba(k,d) is the cost of computing the shape of
the amoeba for a given pixel.

The shape of the amoebas is computed by a common
region-growing implementation using a priority queue.
Depending on the priority queue used, the complexity of
this operation is slightly more than O (kd) (see [3] and [4]
for advanced queueing data structures).

Therefore, for erosion, dilation or mean as operators,
we have a complexity of a little more than O (n * kd) which
is the complexity of a filter on a fixed-shape kernel. It has
indeed been verified in practice that, while being quite
slower than with fixed-shape kernels (especially optimized
ones), filters using amoebas tend to follow rather well the
predicted complexity, and do not explode. Tests have been
Fig. 6. Alternate sequential filters on classic kernels and on amoebas. The amo
other areas.
performed on 3D images, size 512 · 512 · 100, with amoe-
bas with sizes up to 21 · 21 · 21, with computation time
ranging from a few minutes to a few hours, depending
on the parameters.
4. Results

4.1. Alternate sequential filters

The images of Fig. 6 compare the differences between
alternate sequential filters (ASF) built on classic fixed
shape kernels and ASFs on amoebas in the filtering of
the image of a retina. The filter should be able to reduce
the amount of background noise while preserving the shape
of the vessels.

4.2. Median and mean

In the context of image enhancement, we have found
that a simple mean or median coupled with an amoeba
forms a very powerful noise-reduction filter. The images
in Fig. 7 show the median and the mean computed on
amoebas compared to those built on regular square ker-
nels. The pilot image that drives the shape of the amoeba
is the result of a standard Gaussian filter of size 3 on the
original image, and the distance dpixel is the absolute differ-
ence of gray-levels.
eba preserves extremely well the blood vessels while strongly flattening the



Fig. 7. Results of a ‘‘classic’’ median filtering and two amoeba-based filterings: a median and a mean on Edouard Manet’s painting ‘‘Le fifre’’.
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For the filters using amoebas, the median filter preserves
well the contour, but the mean filter gives a more ‘‘aesthet-
ically pleasing’’ image. In either case, the results are clearly
superior to filterings by fixed-shape kernels, as seen in the
Fig. 7.

4.3. Mean and median for color images

In the case of color images, the mean is replaced by the
mean on each color component of the RGB color space.
For the ‘‘median’’, the point closest to the barycenter is
chosen. Other distances or colorspaces can be used,
depending on the application, the type of noise and the
quality of the color information (Fig. 8).

4.4. Iteration

The quality of the filtering strongly depends on the image
that determines the shape of the amoeba. The previous
examples have used the original image filtered by a Gaussian,
but this does not always yield good results (also see [6]).

A small detail of the image may be excessively
smoothed in the pilot image, and thus disappears
completely in the result image. On the other hand, noisy
pixels may be left untouched if the pilot image does not
eliminate them. A possible solution is to improve the
quality of the pilot image, so that it helps the amoeba
in preserving these features. Such an image should be
well-smoothed in flat regions, while preserving as well
as possible the contour information. One good method
to compute such an image would be of course to use
an amoeba-based filter!

We will proceed in two steps: the first one follows the
scheme described earlier, using the Gaussian-filtered origi-
nal image as a pilot, with large amoebas, and outputs a
well-smoothed image in flat areas while preserving as much
as possible the most important contours. The second step
takes the original image as input and the filtered image as
a pilot, with smaller amoebas. These amoebas do not need
to be as large as the first ones, since their shapes will be
computed on a very smooth image, and therefore they will
preserve well the finer details.

Although this refinement of the pilot image could be
iterated, we have found in practice that once is enough to
reduce the noise dramatically (see Fig. 9).

Pilot images obtained by a first amoeba-based filtering are
also very useful for color images, since the amoeba-based
pilot image provides better color coupling through the use
of an appropriate color distance than simply merging the
results of a Gaussian filtering of each channel independently.

Indeed, ‘‘perceptual distances’’ (such as LAB) often
merge information from the separate channels in order to
return a value closer to what a human would perceive.

5. Application to 3D images

5.1. 3D images and contour noise

The visualization algorithms for 3D volumic data
often use local gradient information for the computation



Fig. 8. Color images: results of a ‘‘classic’’ median filtering, and two amoeba-based filterings: a median and a mean. As a simple extension of the grayscale
approach, each channel of the pilot image has been independently smoothed by a Gaussian of size 3.
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of the shading of the voxels and many applications, espe-
cially in the medical field, use mostly the contour infor-
mation to visualize the various objects and as such are
very vulnerable to noise on the contours (see Fig. 10).
While noise reduction is important when processing 2D
images, Boehm showed in [9] that a very small amount
of noise can almost entirely prevent the visualization of
3D medical images when it is located at the contours
(see Fig. 10).

When displaying directly 3D data (as opposed to
studying a stack of 2D images), it is essential that
the user be able to see the objects they are interested
in. This is why most modern tenderers include a com-
plex transparency and shading model that makes it
possible to peek far inside the image to display the
interesting objects. To make a quantitative analysis eas-
ier, a synthetic image was created that presents many
similarities with 3D scanner images, especially images
of the cardiac region: strong textures and thin vessels
to preserve.

Fig. 10 illustrates the problem due to strong noise in a
3D image and Fig. 11 shows that levelings are ineffective
as they suppress the noise inside the objects but not on
the contours. Most basic morphological tools are defined
using set theory, and thus are adimensional. Amoebas are
no exception to this rule, being the balls defined by a spe-
cific distance. Therefore, they can be used without modifi-
cation on 3D images.
5.2. Median filtering with amoebas

One important aspect of the filtering of many medical
images (MRI, scanner) is that those images are mono-
spectral: coloring and, ultimately, tissue identification is
done using a look-up table. This means that a shifting
of the values may have a dramatic effect on the visualiza-
tion and consequently on the interpretation of the images.
This is why we have chosen to first test the median: with
its property of returning only values existing in the image,
the median lessens the risk of misinterpretation. However,
traditional median filtering does not preserve well the
contours, and may remove small details which may be
crucial to a physician’s analysis, hence the use of
amoebas.

For each pixel, the processing is done in two steps: first
compute the shape of the amoeba centered on the pixel and
then sample the values of the pixel inside the amoeba, feed
them to the median operator and write the result at the
center of the amoeba in the output image.

5.3. Results for 3D images

Fig. 12 shows the result of a median filter computed on
amoebas. It is plain to see that most of the transparency
effect has been preserved, which indicates that most of
the noise has been filtered on the contours as well as inside
the objects.



Fig. 9. Comparison between two pilot images: a Gaussian one, and one based on a strong amoeba-based filtering. With the amoeba pilot image the hand
is better preserved, and the eyebrows do not begin to merge with the eyes, contrary to the Gaussian-based pilot image. Having both less noise and stronger
contours in the pilot image also enables the use of smaller values on the lambda parameter so that the amoeba will stretch more in the flatter zones, and
thus have a stronger smoothing effect in those zones, while preserving the position and dynamics of the contours.
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Fig. 13 is a zoom of Fig. 12 centered on the thin struc-
tures. Once again we have good results in the preservation
of those elongated structures. This is absolutely essential
since this type of features include critical body parts such
as blood vessels, nerves, etc.

It is extremely hard to quantify in a meaningful way

the results of such a filtering, especially since the usual
signal-to-noise ratio does not express well the fact that
we may tolerate small variations in many places but
not a few strong variations in critical areas. A more
meaningful measure for this problem was developed by
Boehm in [9]. This measure is tied to a 3D volume ren-
derer (ray-caster) by comparing the visibility of each voxel
in the filtered image with that of the corresponding voxel
in the ideal image. When a voxel in the filtered image
contributes in the same amount to the visualization as
the corresponding voxel in the ideal image, then its
associated quality measure is equal to one. The greater
the difference between both contributions, the closer to
zero the measure will be. Results are then averaged in
the whole image as well as separately on each
component.
Fig. 14 shows a comparison between an amoeba-based
median filter and a classic alternate sequential filter
(ASF). The results show clearly that while the ASF is as
good as the amoeba on the larger structures (spheres B2,
B3 and B5), it fails completely to preserve the thin struc-
tures such as the rings. Furthermore, there is a clear shift
of the values, especially on the outermost rings, which
may cause diagnostic errors.

5.4. Simple optimizations

An important fact to take into account is that the radius
parameter is like an amount of energy given to the amoeba.
It can be used either to climb slopes (with a penalty given by
the k parameter) or it can be used to expand in flat areas. This
amount of energy needs to be quite high so that the amoeba
can jump over noisy pixels (though not too high so that it
does not cross too much over strong gradient lines). However
such a high energy means that in flat areas the amoeba will
grow to a very large size, which means that not only will
the shape be costly to compute but the resulting sample of
pixel values will be quite large and so the filter operator will



Fig. 12. The median applied to the amoeba recovers most of the information very well, including thin details. The cleaner gradient on the contours results
in a near-perfect transparency effect.

Fig. 11. Although the median filters much noise away, the reconstruction (needed to recover the position of the contours) reconstructs most of the noise
on the borders of the object, removing most of the transparency.

Fig. 10. Asynthetic3Dvolumepresentingmanysimilaritieswithmedical imagesofthecardiacregions.Left,original image.Right, imagewithadditionofnoise.
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Fig. 13. The amoeba-based median filter recovers very well the contours, as well as the transparency.
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Fig. 14. Comparison of the results of an amoeba-based median filter and an alternated sequential filter of size up to 3. The measure is performed on each
component of the image (spheres B1–B5, parallelopipeds P1 and P2, rings, and total average).
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be accordingly long. A very simple yet dramatically effective
optimization is thus to impose an upper bound on the size of
the amoeba, the value of which depends on the type of noise
and the characteristic size of the image elements. This can
reduce the cost of computation by an order of magnitude
without any detectable loss of effectiveness.

Another form of optimization is performed when apply-
ing a smoothing filter to compute the pilot image. This
smoothing will reduce small noise without displacing too
much the contours and enable the use of smaller amoebas
for the same result.

6. Conclusion and future work

We have presented here a new type of structuring ele-
ment that can be used in many morphological algorithms.
By taking advantage of outside information, filters built
upon those structuring elements can be made more robust
on noisy images and in general behave in a ‘‘more sensible’’
way than those based on fixed-shape structuring elements.
In addition, morphological amoebas are very adaptable
and can be used on color images as well as monospectral
ones and, like most morphological tools, they can be used
on images of any dimension (2D,3D, . . .). Depending on
the application, alternate sequential filters are very effective
when looking for very flat zones, whereas median and
mean filters output smoother images that may be more
pleasing to the eye but could be harder to segment.

It is possible to use amoebas to create reconstruction
filters and floodings that take advantage of the ability to
parametrize the shape of the amoebas based on the image
content. However, the behaviors of the amoebas are much
more difficult to take into account when they are used in
such complex algorithms. In particular, most of these
algorithms are defined for structuring elements that have
a radius of at most one pixel. In order to use them with
amoebas, it necessary to ensure that the amoebas have a
maximum radius of one pixel. More complex implementa-
tions of both the amoebas and the algorithms can be used
to work around this problem, but they are beyond the
scope of this paper.

The results show that simple extensions of the scalar
algorithms to the RGB space already yield excellent results,
especially when iterating. The use of more ‘‘perceptual’’
distances (HLS or LAB) would probably prevent some
unwanted blending of features, although this is as yet con-
jectural and will be the basis of further work.

The filtering of 3D images by morphological amoebas,
though still in its infancy, seems very promising. Express-
ing the coupling between image data and geometry through
a kernel makes it possible to implement a much larger
range of filters to an image than was possible before.
Future work will include quantitative as well as qualitative
comparison on real medical 3D images. Another area
where improvement is to be expected is the computation
of the shape of the amoeba. Not only should it be possible
to use elaborate gradient estimation such as proposed in
[6], but also providing more complex behaviors for the
amoebas, such as an incompressible minimum element, to
guarantee at least some diffusion, or on the contrary a min-
imum size requirement to prevent diffusion through small
holes.

We hope to be able to run comparisons between amoe-
bas and well-known anisotropic filtering methods, both in
terms of quality and computation time. However such
comparisons are not really meaningful without expert tun-
ing of both algorithms, which was not available to us by
press time although the subject will certainly be the matter
of a subsequent paper.

Finally, it is important to notice that this amoeba frame-
work is general enough to accommodate other types of dis-
tances. The distance presented here couples geometry and
grey levels (or color distances), but other similar schemes
can be expressed in terms of amoebas. For instance, the
approaches presented in [7] and [8], which offer very inter-
esting results, can be implemented by amoebas with the
appropriate distance, which thus inherit all the possibilities
available to the ones described in this paper. These various
approaches show the viability and the vitality of the amoe-
ba framework, as well as its applicability to many fields of
research.
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