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John Ashburner and Karl Friston (2000) introduced
a standardized method of “voxel-based morphometry”
(VBM) for comparisons of local concentrations of gray
matter between two groups of subjects. Segmented
images of gray matter from grossly normalized high-
resolution images are smoothed and their group dif-
ferences analyzed by the now-conventional voxelwise
Worsley approach to Gaussian random fields of differ-
ences. This comment concerns an unfortunate interac-
tion between the algorithm’s spatial normalization
and voxelwise comparison steps, whereby several ob-
vious quantitative confounds are injected at the core
of the inference engine the authors put forward. Spe-
cifically, the statistics of the resulting voxelwise com-
parisons are uninformative about group differences
wherever the spatial normalization algorithm has
failed to register on any robustly appearing image
gradient. The method of Ashburner and Friston is de-
fensible only far from all image gradients. o 2001 Academic

Press

INTRODUCTION

In a recent issue of this journal, John Ashburner and
Karl Friston (2000) argued for a standardized method
of “voxel-based morphometry” (VBM) for comparisons
of local concentrations of gray matter between two
groups of subjects. (This paper will be cited below as
“AF.”) In one version or another, the method has been
exemplified in the peer-reviewed literature since at
least the widely cited study of the medial thalamus in
schizophrenia by Andreasen et al. (1994). In general,
VBM methods combine spatial normalization with tis-
sue classification and the analysis of the ensuing fields
of gray level representing variously MR image inten-
sity or estimated concentration of neural gray matter.
Although the Andreasen group has not persisted in the
use of VBM, the rate of appearance of empirical studies
from other centers developing this method has begun
to accelerate, including additional exemplars in the
most widely browsed media (e.g., Paus et al., 1999).
The present comment argues that this diffusion is pre-
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mature, owing to an unfortunate confusion at the foun-
dation of the method.

The feature | am criticizing appears not to be part of
the existing literature critical of VBM, which seems
mainly concerned with statistical procedures for excur-
sions of the resulting parametric fields (e.g., Worsley et
al., 1999; Bullmore et al., 1999). Indeed one central
concern of AF was a collection of implementation-spe-
cific performance issues such as segmentation under
nonuniformity of intensity and problems with an ear-
lier spatial extent statistic. The issue | am pointing out
lies deeper, buried in the assumptions underlying the
arithmetic by which those fields are produced from
voxels originally arising at a great variety of locations.
It is from the averaged images, not their statistical
manipulation, that the more serious fallacies of the
VBM method arise. Not only in the specific VBM im-
plementation put forward in AF, but also in every other
context in which it has been attempted, its two steps
(spatial normalization and voxel-based analysis of gray
scale) interact computationally in a manner that blocks
all valid statistical inference wherever the spatial nor-
malization fails to attend to registration locally. The
paper | am criticizing couches VBM within a “contin-
uum” of methods, with “tensor-based morphometry”
(TBM) at the far end. I begin my argument by embrac-
ing that context but demonstrating that VBM actually
does not.

ON THE “CONTINUUM” OF REGISTRATION
METHODS

In the article on which | am commenting, the de-
scription of the spatial normalization step is not allo-
cated much space, but instead the reader is referred to
two earlier publications, Ashburner et al. (1997) and
Ashburner and Friston (1999), which introduce least-
squares methods for affine transformations and then
linear combinations of nonlinear basis functions. It is
sufficient for my argument here to go forward that
these methods are least-squares in gray-level differ-
ences between the candidate image and a “template
image” that “should be the average of a large number of
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MR images that have been registered,” and that the
basis functions used for the registration be at large
scale and not be tuned to the detailed geometry of the
template image. There seems to be nothing further
that AF has to say about this normalization step. In
particular, a paragraph on page 808 enumerating “a
number of assumptions [that] need to hold in order for
VBM to be valid” reminds the reader that “confounding
effects must be eliminated or modeled as far as possi-
ble,” but does not list systematic registration bias as
such a potential confound—in fact, this discussion does
not refer to the interaction of registration with voxel-
wise analysis in any way. In my view, this missing
assumption is considerably more important for the “va-
lidity” of VBM than those that AF listed, particularly
inasmuch as it cannot be examined in the VBM com-
puting context itself, but requires a more sophisticated
environment in which statistics of different registra-
tion rules are carried out in a consistent Euclidean
framework.

There is a discussion late in the paper on “the effect
of spatial normalization,” but its concern seems limited
to the effect on actual quantification of the amount of
gray matter present, not on the voxelwise group differ-
ences that are the ultimate goal of analysis. AF avers
that in the limit of a perfect registration, “all the in-
formation would be in the deformation fields and would
be tested using TBM.” That statement is incorrect—
although indeed the information would thereby be in
the deformation fields, it would not be appropriate to
test for shape differences there using TBM methods,
for reasons | have published elsewhere (Bookstein,
1999). But regarding the interaction of the normaliza-
tion step and the voxelwise comparisons of gray, the
present article says only, “It is envisaged that...a
continuum will arise with simple VBM (with low-reso-
lution spatial normalization) at one end of the meth-
odology spectrum and statistical tests based on Jaco-
bian determinants at the other (with high-resolution
spatial normalization).”

The “continuum” metaphor here may have arisen
from a thought experiment such as that in Fig. 1. The
vertical axis here stands for the density of gray matter,
the proportion of gray matter within a voxel, or the
probability of gray matter along a transect through
some point of a medical image. The multiple diagonal
lines indicate the value of this density across the forms
of a data set; that these lines come in two clusters hints
at the presence of a group difference in this distribu-
tion. This figure captures the commonplace awareness
that there are indeed two channels involved in any
medical image analysis, the “vertical” (intensity of
gray) and the “horizontal” (identification of matching
voxels at which statistics of gray are to be compared),
along with the intuition that even when the compari-
sons of gray exploit the same data that were already
used for registration there ought to be some way of
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FIG. 1. The “continuum” metaphor of Ashburner and Friston
(2000) may have presumed a trade-off of registration against image
contents like this one. If all images had a perfectly linear edge-
profile, differing only in position, then analysis of registration vari-
ability (along the horizontal transect) and analysis of voxelwise
registered contents (along the vertical transect) would yield the same
group difference signal.

combining the two approaches so that each helps cir-
cumvent the confounds built into the other.

Ashburner and Friston may have reasoned that in
this setup, the ordinary t test for group difference is the
same whether it is taken vertically (i.e., a voxelwise
averaging of image contents) at the central point here,
whatever registration happened to apply, or instead is
taken horizontally, by asking what shift is required to
register that central point at, say, 50% gray. In this
sense, it looks like it does not matter whether one
registers and then considers the registration function
(their TBM would reduce to testing the derivative
along the horizontal here) or instead tests the same
group difference along the vertical (the VBM version of
AF). Alas, in any context of actual anatomical imagery
this tempting graphical metaphor is seriously mislead-
ing. To show this, we must build a mathematical set-
ting that combines the two procedures, registration
statistics and grayscale statistics, that AF places at the
opposite ends of that “continuum.”

THE SHIFT FUNCTIONAL

A useful way to begin exploring this mathematical
context is to inquire about the nature of a grayscale
basis capable of detecting the simplest nonlinear image
registration, translation of an edge within a fixed
frame, in a manner that imposes equivalence between
registration and voxelwise approaches after the fond
hope of Fig. 1. To ease this exposition the example
deals with the case of a one-dimensional image, gray
values along a line, but the formalism is similar in
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FIG. 2. Shifts of edges can be achieved either by least-squares
superposition in gray scale (left), using basis functions carefully
tuned to the image template and its derivatives, or instead by rereg-
istration (right) at an appropriately small scale. In both panels the
central, heavy curve is the standard cumulative Gaussian distribu-
tion.

higher dimensions. The scheme in Fig. 2 allows the
mathematician to convert between “horizontal” and
“vertical” findings in Fig. 1 with the necessary author-
ity. Without a formalism like this, there is no way to
talk about the effect of different registrations on the
resulting voxel-based analyses.

At the center of either panel in Fig. 2 is the function
d(x) = 1V 27 [*. e *?dx, the standard Gaussian ogive
(cumulative probability distribution). We can imagine
it to indicate a registerable structure somewhere in the
middle of an image, that is, a true (discrete, local)
feature in the intensity profile or density of gray mat-
ter along some one-dimensional cut. Suppose there is a
family of images that all arise from this one by rereg-
istration of this shape within the image boundaries
(here set arbitrarily at =3): the set of images y.(x) =
d(x — a), where a is a parameter for the shift of this
structure. In the research context intended by AF, the
parameter a is different for different subjects; indeed,
it may vary systematically by patient group.

We can imagine two ways to proceed with the anal-
ysis of such a data set. In one approach, we leave the
images unregistered except for some “global normal-
ization,” and examine the variation in the domain of
grayscale functions y(x). That is, we pursue the least-
squares “prediction” of values y,(x) by coefficients in a
multiplying functions of x derived from ®. The predic-
tive representation is a familiar tactic, the expansion of
Ya(X) in powers of a: the Taylor series

aZ

Ya(X) = Yo(x — @) = yo(x) — ayy(x) + > yo(x) —

where yqo(x) = ®(x), the actual edge shape for this
example, and the primes indicate differentiation with
respect to a at a = 0, where y,(x — a) becomes a
function of x only. Specifically, we have
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d(x) —

\/2 a

Ya(x) =

the usual series of Gaussian derivative kernels scaled
by (—)*a*/k!. At the left in Fig. 2 is shown the sum of
terms through a?® in this series for values of a between
—1 and 1; the approximation to the shifted edge ap-
pears satisfactory enough throughout this range. Al-
though this demonstration has varied the parameter a
a priori, in practice it would be derived empirically, by
actually fitting the Taylor series as shown, subject by
subject, in order to retrieve the individual values of a
encoding this residual misregistration.

In the other approach, the parameter a is extracted
explicitly, as by defining a “landmark point” where this
edge has its point of inflection that is then used to
standardize the image geometry by image warping
(which is to say, by voxel relabeling). At the right in
Fig. 2 is one inverse of this normalization, the trans-
formation x — x — a(x* — 9)/9 that fixes the endpoints
+3 but shifts the inflection of that standard Gaussian
ogive from abscissa 0 to abscissas a from —1 to 1. The
actual “large-scale registration” that measures this
shift might involve the inverse function x — —9/2a
(-1 + V1 — (4a/9)(x — a)).

This representation is the only stratagem known to
me that permits the interchange of “horizontal” and
“vertical” statistical tactics, the metaphor of Fig. 1, in
the sense that the same signal is detected in either
formalism. In morphometric summaries of samples of
curves like these for which the parameter a varies, the
“horizontal” statistic that tests for group mean differ-
ences in the location of that inflection point will be
identical, if correctly implemented, with the “vertical”
statistic that uses least squares to fit the corresponding
curve all along its length as a linear combination
d(x) — ¢, @'(x) + ¢, @"(x) — ... with the appropriate
constraint (—)*klc/* = —c,, the shift we seek. The de-
rivatives of the template supply the conversion be-
tween the two units (centimeters, gray levels) in which
that shift might have been observed.

Furthermore, the same net signal can be gotten by
combining the two approaches after each has been
assessed in its own domain, vertical or horizontal, after
any extent of misregistration. That is to say, suppose
we have a set of true images y.(x) as in Fig. 2, where a'
is a patient-specific shift, and that we have registered
them by a procedure that used the information in this
edge to some extent, but only imperfectly. Specifically,
suppose that their horizontal shifts are estimated in
some manner that resulted in reassigning that inflec-
tional “landmark” to the point a|, which is correlated
with a' but somewhat attenuated—say, by half—and
then vertical shifts are fitted to these imperfectly reg-
istered images as y(x) ~ ®(x) — a,®’'(x) + ... by the
usual constrained least squares. (The subscript | is for
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“landmark,” and v is for “voxel.”) In the resulting pa-
rameter space (a|, a), which straddles the ends of the
AF “continuum,” we will have a| + a! = a', the correct
patient-specific value.

This is the proper representation of the “continuum”
about which AF was speculating. Imperfect registra-
tion has weakened either of the two signals a; and a;
when computed separately but has not altered their
sum, which is what ought to have been computed in the
first place. Any claimed “continuum” running from
VBM to TBM (that is, from gray-level variation to
deformation variation) must be managed so as to pro-
duce the same signal regardless of how a comparison is
divided up between registration and gray-level pro-
cessing. But this is not possible for the VBM method as
introduced in AF, as the registration variation is not
preserved in any units commensurate with the gray-
scale analysis, and so the tradeoff between better reg-
istration and better gray-scale analysis simply cannot
be managed. In the VBM analysis of the “partially
registered image,” whenever a; # 0, the value of a; + a,
= a' is inaccessible.

If the phrase “voxel-based morphometry” be reserved
for the Ashburner-Friston method, then the continuum
method | am recommending, even though it includes
the AF term a; as one component, can’t be called VBM
any longer. Perhaps it could be named “registration-
commensurate voxel morphometry,” RCVM. There is
an example (involving the splenium of the midline
corpus callosum) in Bookstein (1999), although neither
the name nor the acronym appears there. The version
of VBM introduced by Ashburner and Friston would
acquire an alternate characterization as “RCVM with-
out the registration signal.” 1 would welcome pointers
to other anticipations of RCVM in any responses to this
Comment.

Arriving at AF’'s VBM approach by removing the a|
signal from RCVM in this way can be rephrased from
the standpoint of spatial normalization as “regressing
out” a set of basis functions. Any spatial normalization
is a regression that stabilizes some edge information
(for instance, the extreme extents of the brain volume)
quite enthusiastically, but that responds to others with
much greater attenuation. The stronger the tuning of
an edge to the normalization basis, the weaker the
image variation that remains: but VBM incorporates
no formalism for the “strength of a regression” voxel-
wise, the term at left in Fig. 2. There exist good meth-
ods for expressing group differences in the information
used for edge-based registration (the methodology ap-
plying at the right in the same figure). If this channel
of information were restored to the VBM output flow,
we would be back at an approximation of a', the “con-
tinuum” that AF appropriately acknowledges. But that
is not what the published algorithm does.

The spatial normalization underlying the present
VBM algorithm, we are told on page 807, “merely cor-
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rects for global brain shape differences.” But the cor-
rection is not based on any model for what is “global,”
merely on an arbitrary stopping criterion for a space of
“smooth spatial basis functions.” The claim that this
algorithm has “ discounted global shape differences” is
wholly metaphorical. There is no model for the quan-
tification of the “discount,” and hence no way to stabi-
lize VBM output against reasonable disagreements
about the detail with which to apply specific suites of
basis functions, the differences among different sets of
basis functions (trigonometric, polynomial, radial), and
even the differences among the estimations of the uni-
form (global) registration underlying these and all
other possibilities. The appropriate basis set is rather,
by analogy with Fig. 2, the set consisting of the average
template and its changes under large-scale deforma-
tion. In Fig. 2, where only one landmark was consid-
ered variable, the additional basis for the expression of
deformation via grayscale regressions consisted of the
first and second derivatives of the template. By anal-
ogy, in more general contexts it might comprise an
orthogonalization of the first- and second-order
changes in the mean image under realistic models of
image deformation as it is actually encountered. These
will continue to be expressible either in the “horizon-
tal” (deformation) metric or in the “vertical” (grayscale)
metric, just as laid out for the simplest case in Fig. 2.
Note that the regression is “multiple multiple” in form,
regressing all voxels simultaneously on all the basis
functions jointly, with constraints on the coefficients as
already noted for the simple shift of the ® waveform in
the example.

Without a protocol for monitoring the tradeoff of a,
against a, sketched in Fig. 2, there is no way for the
user to accommodate differences in “findings” that owe
purely to differences in the minutiae of registration
(e.g., the number of basis elements for spatial normal-
ization and their functional form). The actual effect of
registration upon an edge is a highly nonstationary
function of the location and orientation of the edge. In
one pose, it may be almost completely stabilized by the
nonlinear basis chosen; in another pose, a few millime-
ters away or rotated by 45°, it may fall within the null
space of the same normalization basis. A nonsignifi-
cant finding by VBM might mean absence of signal or
instead presence of signal that is tuned to the spatial
normalization.

Thus it is at the edges of regions, where the differ-
ence between adequately and inadequately aligned
voxels bears the greatest import for the grayscale sta-
tistics that ensue, that VBM is most vulnerable to the
cryptic effects of partial registration. In the absence of
any explicit representation of that spatial normaliza-
tion, this degree of ambiguity should be judged intol-
erable in any applied scientific context. In the alterna-
tive normalization model sketched in Fig. 2, for which
the basis set consists of the mean image and an appro-
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priate number of its derivatives, the problem is obvi-
ated. It is this sort of basis, not the registration “at
large scale” recommended in AF and other tutelary
publications on this method, that supports the idea of a
“continuum” between VBM and the better deforma-
tion-based statistical methods.

In practice, unless the basis for normalization is
tuned to the typical image (® and its derivatives, in the
example of Fig. 2), the consumer of VBM output has no
way to discern what part of a particular normalized
image contrast is robust against moderate changes of
registration rule, nor which features, contrariwise,
have already been attenuated by the “large-scale reg-
istrations” (which, of course, entail small-scale impli-
cations) applied hitherto. If Fig. 2 is understood as the
small-scale variation remaining after “global registra-
tion” of whatever nature, then group differences in
these features will be visualized by VBM as a relief
map of the edges at which the registration has failed in
whole or in part. Such registration errors may well rise
above the Worsley-style threshold for significance and
thus be reported as differences of gray “at” the voxels
underneath. But in fact they would instead be report-
ing only differences between groups in the meaning of
the word “at” according to which the voxel-based sta-
tistics were accrued. Meanwhile, other differences of
equal or greater geometric amplitude might have been
absorbed in the normalization and thereby would have
disappeared.

Because global registrations exploit local features
like these to different extents according to their posi-
tion and direction within the image; furthermore, the
visualization of peaks like these need not obviously
match the researcher’'s pre-existing mental map of
what the underlying boundary looks like as a whole.
That is, systematic spatially partial misregistrations
will be treated as gray-level signal by the VBM
method. Yet such misregistrations are typical conse-
guences of disease-specific deformations of normal
anatomy—diseases cannot be expected to align their
dysmorphy squarely either with the large-scale spatial
basis functions or with their null space: see, again,
Bookstein (1999). A VBM ridge of cortical displacement
owing to an abnormal corpus callosum, for instance,
will not necessarily trace the entire anterior cingulate,
but only a few of its subarcs, and thus might pretend to
be a legitimate spatially concentrated finding. Simul-
taneously, the presence of these fallacious signals aris-
ing from misregistration must attenuate the sampling
distribution of true differences in gray scale at cor-
rectly registered voxels and thus must lower the power
with which the statistical step can detect those differ-
ences that might actually be present. This argument
applies particularly to the resampling version of the
statistical step. Here intragroup differences in misreg-
istration feed directly into the reference distribution,
so that the detection of “true” groupwise voxel differ-
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ences (that is, those that appear even in registrations
according with arbitrarily small neighborhoods of the
target voxel) must necessarily suffer a drop in effi-
ciency. There remain the intergroup differences that
depend on group differences in misregistration. Al-
though these will be tested correctly for significance, as
misregistered, nevertheless in the ensuing interpreta-
tion the registration-dependent part a, cannot be sep-
arated from the voxel-specific a, remaining.

WHY NOT TO USE VOXELWISE STATISTICS
IN ANY EVENT

Notice that the analysis of gray-scale imagery that
produces the shift function expansion 3(—)“@"k!)
®™M(x) is not computed voxel by voxel. In the model of
Fig. 2, which embodies many of the most important
scientific applications of voxelwise gray matter analy-
sis (shifts of relative cortical compartment volumes,
atrophy, etc.), the local image surface is fitted by a
constrained superposition of Gaussians and deriva-
tives that explicitly accounts for residual registration
error.

But perhaps the voxels to which we are attending are
not at the center of a Gaussian edge in the way Fig. 2
is suggesting. Perhaps instead they lie some distance
from this edge structure, past the abscissas *2 in Fig.
2 at which the function ® appears to stop curving (that
is, for which the shift of edge appears no longer to affect
the encoding of intensity for the vertical comparisons
to come). Let us ask, indeed, what effect misregistra-
tion of edges at these greater distances has upon the
voxelwise statistics that correspond to residual misreg-
istration—precisely the circumstance for which AF has
declared VBM to be the method of choice. The situation
is as in Fig. 3: a misregistered edge lies at some dis-
tance, so that we are comparing image contents in the
far tails of our underlying edge model. (Note how the
vertical scales diminish as we move away from the
center of the edge.) Surely there is no remaining effect
of the registration error on voxelwise tests of image
contents?—the signal from transects like that at the
upper left goes away immediately?

Life the metaphor of Fig. 1, this intuition, too, is
misleading. The effect of registration error persists to a
considerable distance outward along the tail of the
Gaussian. We can assess it by modeling the registra-
tion error as a standard Gaussian of its own, located at
or near the inflection point and thus far from the voxels
in question. Specifically, our interest is in the cumula-
tive Gaussian tail ®(x — a), where a is in the general
range of 3 or so, so that to the untrained eye the image
appears to have plateaued, and where x represents
registration uncertainty as a Gaussian of its own for
the variability of the actual value of a. | will take this
edge location uncertainty x as having the usual mean
of 0 and variance of 1. Thus we seek the mean and
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FIG. 3. The voxelwise methods may be intended to apply to
image plateaux far from an edge. Here we explore the effect of edge
location variation at 1, 2, 3, or 4 standard deviations from the voxel
under study for two groups of three specimens with edge centers
differing by twice within-group range. The decline in central ten-
dency of the ogive at more distant center, relative to that at less
distant center, increases with distance, but also the heterogeneity of
these within-group variances. Note the different vertical scales of the
four panels.

variance of ®(x — a) for x ~ N(0O, 1) and a moderately
large.

The expected value of ®(x — a) can be expressed in
closed form. By definition,

1 oC
Ed(x — a) = ?f d(x — a)e *72dx

\JZ’TT

1 o© X—a
- —x212 —y?r2
5 e e dxdy.
X=—o00

y=—»

Change to new variables x' = (y + xX)/V2,y' = (y —
x)/\V/2, an orthogonal rotation leaving both the inte-
grand e 7?2 and the area element dxdy unchanged.
The region y < x — a of the xy-plane is the same as the
region y’ < —a/V'2 of the x'y’-plane. Then

l ) —al \E 2 2
Ed(x —a) = o e (XY I2dx dy’
X'=—o00

y'=—w

1 - \E 2 =
=— ey /Zdy' = CI)(—aJ\f’Z).
\f'2’7T i
y o0
For the expected value of the square of ® there seems
to be no such exact expression, but we can exploit a
very useful approximation to ® known to statisticians
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as Mills’'s Ratio (Stuart and Ord (1994), 193-195). It
expresses the tail-area of the standard Gaussian as a
multiple of the ordinate at that point:

1 1 1-3
R(X) = O(—x)/D'(—x) =— — — +

X X3 -t ...

X7

x5

The series does not converge, but the remainder at any

step is less than the last term used, and in any case it

varies rather slowly in x by comparison with e ™2,
By completing the square, then, we have

1
Ed2(x — a) = —_J (d(x — a))2e *"2dx

\’277 X

f R2(a — x)e ~*“2g ~x-a’gy

" 2w
X
1 , 2
:(2— )3 e 273 | R2(g — x)e (BRKx-(2a3) gy
1 2 2
T 2w R2(a/3)e 273 | g -G~ gy

X

1 2
— R?(a/3)e 2",

277\/3

because the integrand is nonnegligible only for x in the
vicinity of 2a/3. Hence the variance of ®(x — a) is
approximately

R2(a/3)e 2% — d2(—a/\2)

—

277\/3

1 _
— R2(a/3)e 23 — — R2(a/\[2)e 22,
f 2

2’77\3

A useful comparative statistic is the coefficient of
variation, which is the square root of the variance
divided by the mean. From the first term in Mills’s
Ratio, the leading term of the coefficient of variation
turns out to be (3/2)"*e**"*?, which increases consider-
ably more slowly than e ® falls. In short, as a in-
creases—as the center of the edge moves farther and
farther from the voxel at which we are looking—the
signal-to-noise ratio of an actual edge shift falls inex-
orably to zero, indeed, but only quite gradually. To fall
faster toward zero, the effect of a distant edge shift
would have to presume an edge gradient shape that
approaches its asymptote faster than e ¢, a gradient
“sharper than diffusion;” such gradients seem unlikely
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FIG. 4. The effect of an edge shift on voxelwise t fields is discern-
ible quite far from the edge, until it is masked either by true intra-
group grayscale variation or by running out of the bits coding voxel
contents. The surface plotted here is proportional to the group dif-
ference signal from the previous figure for normally distributed
edge-locations differing by fixed multiples of the edge width (vertical
axis) over a range of distances from the pooled mean edge center
(horizontal axis).

to arise from any real physical imaging process or
statistical tissue classification (to say nothing of the
smoothing steps built into the subsequent statistical
processing).

Using the approximation var ® ~ (27\/3) 'R*@/3)
e ®* — ®*(—alV'2), Fig. 4 plots the fraction

Ed(x — (a+ b)) — EDP(x — (a— b))
(var ®(x — (a + b)) + var ®(x — (a — b))) 12’

proportional to the t field for a vertical difference of
average cumulative Gaussians like these, for edges a at
from 2.0 to 4.0 standard deviations’ remove and for
edge shifts 2b between 0.1 and 1.0 in the same stan-
dard deviation units. (The factor for sample size has
been suppressed.) It seems that until within-group
variance swamps these tail effects, any edge will in-
duce a bias to voxelwise group mean comparisons that
is neither flat nor negligible for a considerable dis-
tance. Smoothing the image, as recommended by AF,
has two effects both of which make the problem worse.
By reducing the within-group fluctuations of the image
plateaux, they allow the bias from edge geometry to
extend to a longer distance; but, also, the smoothing of
any registered image smooths the edge as well, in-
creasing the effective standard deviation of the edge-
gradient and again widening the region to which this
counterintuitive bias pertains. For eight-bit images,
the last bit ceases to be informative (that is, the image
content is rounded to O or 1) at 2.88 standard devia-
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tions out; for ten-bit images, at 3.29 standard devia-
tions; and for images that are classification probabili-
ties, the preferred representation, the last bit fails still
farther out, at 5.41 standard deviations for a 24-bit
mantissa. The smoothing recommended in AF will in-
crease all of these. Notice, also, that the presence of the
edge injects a long-range order to voxelwise compari-
sons that vitiates any claims of veridicality for the
random field assumptions that otherwise underlie the
familiar Worsley excursion tests.

That registration is “at large scale” and thus can be
expected to misalign the details of most edges across
subjects does not protect the user from any of these
paradoxes. Whether or not a large-scale registration
happens to overlay edges across subjects, it will typi-
cally preserve their separate orientations. The effect is
to broaden the standard deviation of the Gaussian
model for X, the true variation of edge centers, in both
of the exegeses preceding. As a consequence, more
terms are required in the Taylor series driving the
interchange of horizontal and vertical analyses, Fig. 2,
and also, yet again, the effective window of the asymp-
totic problem is widened, that is, made worse. In either
case, the regression is confounded with anatomical dif-
ference to varying extents across the image, invalidat-
ing any use of voxelwise or cluster tests in the sequel.
Notice, too, that this effect modifies the signal in a,, the
registered voxel value, independently of the signal a,
bearing the information about misregistration. Any fix,
in the course of establishing the valid continuum-based
RCVM method, would require that the misregistration
be explicitly extracted by the Taylor method of Fig. 2,
not this vertical computation (see, again, the little ex-
ample in Bookstein, 1999).

DISCUSSION

Whether “at” an edge or within a surprisingly large
multiple of the underlying edge width, voxelwise sta-
tistics about group differences are biased by registra-
tion failure in systematic ways that the AF implemen-
tation of VBM seems to have taken every opportunity
to aggrandize. Voxelwise comparisons escape registra-
tion problems only when edges are known not to adjoin
the voxels in question. For instance, we could test
voxelwise with confidence everywhere except right
atop edge points whenever registration is “perfect”—
the TBM end of the AF “continuum”—but as the au-
thors have clearly declared that VBM is intended for
application at the other end, this convenient assump-
tion cannot apply. Yet from the nature of the crucial
discussions that were omitted from AF, the developers
of VBM seem to have presumed that however imper-
fectly the images were registered, the registration er-
ror does not matter for the study of group differences
pursuant to either of the fallacies | have explored
above—that all effects of edge geometry, near or far,
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have been swamped within subject-to-subject differ-
ence in image contents, or vice versa.

It follows, in the absence of any mechanism for ex-
amining this confound, that VBM can be applied re-
sponsibly only near the center of relatively uniform
regions. The VBM protocol described in Ashburner and
Friston (2000) ought to be used for empirical inferences
about scientific questions only where image gradients
are very low on average, and to that end the t fields of
classification probability or any other statistical sum-
maries it supplies need to be colorcoded for local aver-
age absolute gradient magnitude whenever they are
displayed. In practice, this would suggest that the
VBM output as described in AF be masked so that only
those voxels are displayed that lie far from edges in
almost every registered subject. Offering this masking
field, keyed to the average image gradient underlying a
normalized voxel, would be a most helpful service to
the SPM community.

For those remaining tests, for voxels far from any
information that might be registration-relevant, one
gains power to the extent that the data arising within
those regions have been smoothed within the maxi-
mum possible smoothing window. Thus the “properly
masked AF method” | seem to be recommending re-
duces to t tests between gray levels over the interiors of
a list of regions, together with a statistical analysis of
the spatial normalization rules themselves: their group
mean differences, their within-group variances, and
their covariances with the normalized signal remain-
ing. The multivariate machinery of these quantities is
actually more accessible than that of the normalized
images themselves (Dryden and Mardia, 1998; Book-
stein, 1999).

That the registration rules underlying VBM remain
obscure to the user bears substantial implications for
the research communities within which VBM would
typically be applied on a routinely uncritical basis. It is
not enough that articles declare analyses to have been
carried out using such-and-such a published package
with the default parameter settings, as if the VBM
implementation was something like a mass spectrom-
eter with a published calibration and a parts number.
“Findings” as sensitive as VBM's to deeply buried de-
tails of between-subject registration have an unaccept-
ably tenuous relation to veridicality claims. The anal-
ysis of a single data set can be stable over variously
normalized images only if the continuum delimited by
the two panels of Fig. 2 is respected—only if the terms
VBM annihilates, for mean differences and variance in
spatial normalization viewed horizontally, are ap-
pended to the visualizations that the user must con-
sider and the statistical computations must accommo-
date prior to hypothesis-testing. Until then, no VBM
analysis should be published unless the authors have
specified precisely how they have registered images
over intersubject variation, precisely which voxels that
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VBM has reported to be interesting are in the vicinity
of strong gradients that may have affected the spatial
normalization computations, and precisely how that
variation was, or was not, attenuated in the registra-
tion applied. It is not enough that findings appear to
“replicate” on a new sample, as a sufficiently similar
sample, processed by the same confounds of misregis-
tration, may well yield the same incorrectly delimited
or detected finding a second time—indeed, will likely
do so if the study is of a disease that entails some local
neuroanatomical abnormality, whether familiar or not.
Nor is it enough for VBM to appear to confirm an ROI
analysis, as they both omit the same information
(about deformation)—their flaws are very similar.

In summary, regardless of the technicalities of
statistical inference that concerned AF, the method
of VBM reviewed there is mathematically vitiated by
the unfortunate confound between its spatial nor-
malization step and all subsequent computations.
This interaction is not noted in the list of conven-
tional assumptions of which the VBM user is pre-
sumed aware. Put forward as a method to be used in
the absence of local registration accuracy, in fact
VBM is capable of providing reliable, sensible an-
swers only in the presence of state-of-the-art regis-
trations such as those of Thompson et al. (2000) or
Joshi et al. (1995), not the low-parameter superposi-
tions with which AF recommends one begin. Failure
to register correctly on all pertinent image gradients
confound the resulting voxelwise tests to a great
distance from the gradient, in fact, everywhere that
the image has not plateaued to stationarity. There
may be no voxel anywhere that is far enough from
the nearest gradient for any of the voxelwise statis-
tics to be trusted. In the vicinity of any strong gra-
dient, VBM findings are seriously confounded by the
imperfections of registration in a manner that can-
not be stabilized, within VBM, against improve-
ments in registration. In neither case, whether reg-
istration is at large scale or at small, can VBM
findings that purport to visualize group differences
be considered empirically reliable in the absence of
verifications so strenuous as to render the method-
ology impractical in most of the applications pro-
posed by its developers.
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